
ECE4530 Fall 2013:

The Codesign Challenge

Hash Collision Search

Assignment posted on Thursday 14 November Noon
Solutions due on Friday 6 December Noon

The Codesign Challenge is the final assignment in ECE 4530. This project is an exercise
in performance optimization: you will start from a given reference application on a Nios-II
processor. You have to improve the performance of the reference application as much as
possible, using the hardware/software codesign techniques covered in this course. Typically,
you would design a hardware coprocessor. In addition, you would also optimize the driver
software, and/or modify the system architecture. There is an important constraint: the
final result must execute on the DE2-115 board under a predefined performance-evaluation
testbench. The testbench is written in C, so you have to keep a Nios-II processor present in
the final implementation.

Application: Collision Search on SHA-1 Hash

A hash function is a one-way function which converts an arbitrary bitstring into a fixed-
length digest. In this challenge, we will be using SHA-1, one of the best known and (still)
most widely used hash functions. Refer to http://link.springer.com/chapter/10.1007/

978-3-642-04101-3_11 for a good introduction to hash functions and SHA1 in particular.
The one-wayness of SHA-1 is reflected in several properties.

• Preimage resistance: If you know the output or digest of a hash function, D = H(x),
it is very hard to find an x that would result in the same D.

• Collision resistance: For a given hash function, it is very hard to find any two inputs
that result in the same digest D, ie. it is very hard to find an x and a y such that
H(x) = H(y).

Hash functions are an important component in cryptographic protocols. They are used
during the computation of electronic signatures, in authentication protocols, in file integrity
applications, and more. Try the following. Open your Ubuntu VM and install the openSSL
tools.

sudo apt-get install openssl

Next, compute the SHA-1 digest of the word HOKIES as follows:

openssl dgst -sha1<press return>

HOKIES<press Ctrl-D>
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You will see the output digest as follows:

openssl dgst -sha1<press return>

HOKIES(stdin)= e017d72b9ceae0544b42c2a9300c0708d015021b

The 160-bit word e017... is the digest for the string HOKIES. Now let’s change one
letter of the word. For example, compute the SHA-1 digest of the word GOKIES:

openssl dgst -sha1<press return>

GOKIES<press Ctrl-D>

In this case the digest is

openssl dgst -sha1<press return>

GOKIES(stdin)= 878e4c065d05e5a1ca87fdef81607ab097d83a65

As you can see, the resulting digest is completely different. This is common for hash
functions: a very small change in the input will generate a large change in the digest.
Furthermore, based on the input, it is practically impossible to predict the digest.

Why collisions are hard to find

A hash function maps the set of all (ie. an infinite number of) possible input strings
to a finite set of 2160 digests. So, there are an infinite amount of collisions. Why is it so
hard to find a collision? Because 2160 is an astronomical number! The chance of hitting any
particular chosen digest with an arbitrary input message is very small: about 2−160.

In a collision search problem, we try to do exactly that: the digest output of SHA-1 is
chosen, and next we try to find an input string that will map into the selected digest. Of
course, an exact SHA-1 collision is extremely hard and improbable: the probability of finding
one is 2−160!. So instead, we define an easier problem as follows:

Find an input string that yields a digest in which the leading n bits are zero, and the
remaining (160-n) bits are don’t cares.

If n is small, that is relatively easy. Indeed, suppose n = 1. Then, for any arbitrary
input, the chance of having the first digest bit zero is 1/2. If n = 3, then the chance would
become 1/8, since we require three leading bits to be zero (fixed). In general, the chance
of creating a digest with n initial zeroes from an arbitrary input is 2−n. The call this n the
target. It is the parameter that defines the difficulty of the collision search problem. For
small n, collisions are easy to find, but for large n, collisions are exponentially more complex
to find.

This leads to the following collision search problem, used in the codesign challenge.

1. Pick a reference string, for example:
XXXX Keep your head cool and your FPGA spinning!
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2. Pick a target, for example 14 bits.

3. Replace the XXXX at the front of the string with a 32-bit counter value, starting from
0.

4. Compute the digest of the resulting string and count the number of leading zeroes in
the digest. If the number of leading zeroes is equal to, or exceeds, 14 bits, you have
found a valid collision for the target. Report the counter value used in this collision
and exit.

5. Otherwise, if the number of leading zeroes does not meet the target, then increase the
counter and repeat from step 3.

The previous algorithm is bound in speed by the speed at which you can compute a SHA-
1 digest. Hence, this problem is very well suited for the codesign challenge: who can build
the fastest SHA-1 collision search engine? You may also note it’s an embarrassingly parallel
problem: if you have multiple SHA-1 implementations, you can compute different digests at
the same time, for different counter values. In the following, we first define the architecture
of the reference testbench implementation, and next the reference testbench software.

Reference Architecture

Figure 1: Reference Architecture

The reference implementation uses about 4% of the resources of the FPGA. It includes
the following components.

• A NiosII/e microprocessor to execute the reference implementation in software

• A timer to measure the performance of your design. The timer interrupt is connected
to the NiosII/e. The timer is used to determine the number of hashes computed per
second; this metric is used to determine the ranking (see further under ’Reference
Testbench’.
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• A UART to print terminal output on your laptop

• A PIO to drive the 7-segment LED displays

• An 8KB on-chip memory, mapped to the instruction- and data-space of the NiosII.

• A memory controlled for an off-chip 128 MByte DDR memory

Your accelerated design may make arbitrary modifications to the design. However, the
top-level testbench, explained in the next section, must remain unchanged.

Reference Testbench

Please consult the reference implementation on scholar, challenge.qar. Expand the archive
in a directory, and consult the files in the software subdirectory. You will find three files.

• sha1.c and sha1.h: reference implementation of the SHA-1 algorithm. This function
is extracted from a library called PolarSSL. This is the SHA-1 implementation used
for the reference design, and the implementation used to verify collisions identified by
your accelerated design.

• cinterface.c and cinterface.h: This file contains four functions that make up
the interface between your collision searcher and the top-level testbench in the main
function. Your implementation must support each of the four functions, which are
defined below.

• collisions.c: the main testbench for the collision search. This file must remain
unchanged in your final design.

At the highest level, your SHA-1 collision search engine must provide an implementation
for the following four functions, defined in cinterface.h and cinterface.c.

• void setsearchstring(char *s): This function is called by the top-level testbench
to define the search string. The search string will be shorter than 48 bytes, and will
always start with four ’X’ characters. The collisions have to be computed over a fixed-
length 48-byte search string, padded with 0x0 bytes if the argument to setsearchstring
is a strong of less than 48 bytes.

• void settarget(int t): This function is called by the top-level testbench to set the
target number of bits required for a collision. For example, if the target would be 12,
then you would need to find a search string that creates a digest that starts with 12
zeroes.
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• int searchcollision(): This function performs a collision search, by repeatedly
replacing the four leading ’X’ characters in the search string with a counter value,
and each time computing the SHA-1 digest. A collision is declared when a digest is
generated with the required number of zero-bits at the start.

• int shacomputed(): This function returns the number of SHA-1 computed since the
last call to searchcollision().

Let’s take a closer look at searchcollision() to see exactly what happens.

int searchcollision() {

currentcount = 0;

hascollision = 0;

unsigned char digest[20];

sha1_context ctx;

while (currentcount < ((unsigned)-1)) {

currentsearchstring[0] = (char) (currentcount >> 24);

currentsearchstring[1] = (char) (currentcount >> 16);

currentsearchstring[2] = (char) (currentcount >> 8);

currentsearchstring[3] = (char) (currentcount );

sha1_starts( &ctx );

sha1_update( &ctx, currentsearchstring, 48 );

sha1_finish( &ctx, digest );

if (testdigest(digest))

return currentcount;

currentcount++;

}

return 0;

}

• A while loop repeatedly computes SHA-1 digests, until a collision is found. Note
that computing a SHA-1 digest actually involves three function calls, sha1 starts(),
sha1 update() and sha1 finish(). This is a common software interface for SHA-1
and other functions. The input to the SHA-1 function is currentsearchstring, and
the output is digest. The ctx variable is a state variable.

• For each iteration of the while loop, a counter value currentcount is pasted in the
first four bytes of currentsearchstring. This will overwrite the four ’X’ characters
at the start of the search string with counter bytes.

• A SHA-1 digest is 160 bits, and it is stored in a 20-byte digest array. The func-
tion testdigest() evaluates if the computed digest meets the search target. The
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testdigest() function is defined in cinterface.c as well, just above searchcollision().
It performs some bit fiddling to ensure that at least n leading bits of the digest are
zero, where n is defined by the main testbench through a call to settarget().

The three remaining functions, setsearchstring(), settarget(),and shacomputed(),
are easy and compact. Note how setsearchstring clears a block of 48 bytes in memory,
and next pastes the 48 first characters of the argument in that region of memory.

void setsearchstring(char *v) {

memset(currentsearchstring, 0, 48);

strncpy(currentsearchstring, v, 48);

}

void settarget(int n) {

currenttarget = (n > 0) ? n : 1;

}

int shacomputed() {

return currentcount;

}

Next, open collisions.c and study how the main testbench interacts with the four
functions that define the colliision search.

int main() {

alt_alarm alarm;

char *secretkernel = "XXXX Keep your FPGA spinning!";

printf("Collision string: %s\n", secretkernel);

printf("Display update interval (seconds): %4d\n", updateeach);

printf("Sysclock ticks per second: %4d\n", (int) alt_ticks_per_second());

unsigned iteration = 0;

cbcontext cb;

do {

iteration++;

printf("--------- Iteration %d\n", iteration);

printf("Target collision (bits): %4d\n", iteration);

settarget(iteration);

setsearchstring(secretkernel);
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cb.prevcount = 0;

cb.callbackcount = 0;

alt_alarm_start(&alarm,

updateeach * alt_ticks_per_second(),

updatecallback, &cb);

unsigned cnt;

cnt = searchcollision(secretkernel);

alt_alarm_stop(&alarm);

reportcollision(secretkernel, cnt);

} while ((cb.callbackcount < 10) && (iteration < 32));

printf("Terminating Search\n");

return 0;

}

The high-level picture of this testbench is as follows. It will repeatedly test your collision
searcher at increasing difficulty, where difficulty is defined by the target. The target starts
easy, at 1 (ie. a collision with a single leading zero-bit), and it increases for every iteration.
The testbench will stop your collision searcher at the first target that takes more than 100
seconds to compute, or is your collision search can work up to a 31 bit target1. Depending
on the quality of your design, the target may be higher (better). Eventually, what counts is
the number of SHA-1 computations per second delivered by your collision searcher.

When searchcollision() returns, the resulting collision is printed on the terminal
through reportcollision(). Next, a test is made how long this collision took to compute
(test on cb.callbackcount), and, when it took less than 100 seconds, the loop is restarted.
At the next loop iteration, the target is increased to the next difficulty level, and the collision
search is repeated.

To report feedback during the collision search, the testbench uses an alarm, which is
a timer interrupt from the system timer. Just before the searchcollision() function
is called, the testbench initiates the alarm with alt alarm start(). Exactly 10 seconds
later (ie., updateeach * alt ticks per second(), where updateeach has the value 10), the
function updatecallback() is called. That function simply reports the current performance
of your collision searcher:

alt_u32 updatecallback(void *context) {

((cbcontextptr) context)->callbackcount++;

printf("Count %d, SHA1 per sec %d\n",

shacomputed(),

1This is not unlikely, given that a 31 bit counter at 50MHz runs out in 43 seconds
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(shacomputed() - ((cbcontextptr) context)->prevcount) / updateeach);

((cbcontextptr) context)->prevcount = shacomputed();

return updateeach * alt_ticks_per_second();

}

The callback function makes use of a structure called a callback context, an area of
memory that is passed on between different callbacks and the main function. In our imple-
mentation, the context includes two elements: the number of times the callback function
has been called so far (callbackcount) and the number of SHA-1 computed at the previous
invocation of updatecallback. The first field is used as a time-out. It will allow the main
testbench to detect when it is starting to take too long for your collision searcher to find
new targets. The second field is used to estimate the number of SHA-1 computations per
second. This last metric, SHA-1 computations per second, is the key performance metric of
your implementation.

The reference testbench output looks as follows. Refer to the quickstart folder in the dis-
tributed code: it contains a bitstream challenge.sof, and an ELF binary collisions.elf.
Open two NiosII command shell windows. In the first one, run a nios2-terminal. In the
second one, download the bitstream and run the ELF binary

nios2-configure-sof challenge.sof

nios2-download collisions.elf --go

The terminal window will show the following output.

Collision string: XXXX Keep your FPGA spinning!

Display update interval (seconds): 10

Sysclock ticks per second: 1000

--------- Iteration 1

Target collision (bits): 1

Collision found at Counter Value 0!

Digest: 34379479 17be5513 a84f67df 4446fad0 86e314a4

--------- Iteration 2

Target collision (bits): 2

Collision found at Counter Value 0!

Digest: 34379479 17be5513 a84f67df 4446fad0 86e314a4

--------- Iteration 3

Target collision (bits): 3

Collision found at Counter Value 3!

Digest: 18bd42fe 4d6c58b8 42fb8669 86580eae 1f700131

--------- Iteration 4

Target collision (bits): 4

Collision found at Counter Value d!
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Digest: 0880bab3 4390f0d0 f7c18da1 889a4f1c 54d6d45f

--------- Iteration 5

Target collision (bits): 5

Collision found at Counter Value 2a!

Digest: 023f44fc d322b26b be5ced83 c1523aa2 5101f17a

--------- Iteration 6

Target collision (bits): 6

Collision found at Counter Value 2a!

Digest: 023f44fc d322b26b be5ced83 c1523aa2 5101f17a

--------- Iteration 7

Target collision (bits): 7

Collision found at Counter Value 12b!

Digest: 01308f0d 890c0844 136bc748 610d460f 8f201067

--------- Iteration 8

Target collision (bits): 8

Collision found at Counter Value 14a!

Digest: 007d7bac 61baee27 c6b350d2 23484a20 79e0eb20

--------- Iteration 9

Target collision (bits): 9

Collision found at Counter Value 14a!

Digest: 007d7bac 61baee27 c6b350d2 23484a20 79e0eb20

--------- Iteration 10

Target collision (bits): 10

Collision found at Counter Value 877!

Digest: 0004d5cc 4317283e e07f9eb3 f3a72e17 848d23fb

--------- Iteration 11

Target collision (bits): 11

Collision found at Counter Value 877!

Digest: 0004d5cc 4317283e e07f9eb3 f3a72e17 848d23fb

--------- Iteration 12

Target collision (bits): 12

Collision found at Counter Value 877!

Digest: 0004d5cc 4317283e e07f9eb3 f3a72e17 848d23fb

--------- Iteration 13

Target collision (bits): 13

Collision found at Counter Value 877!

Digest: 0004d5cc 4317283e e07f9eb3 f3a72e17 848d23fb

--------- Iteration 14

Target collision (bits): 14

Count 5490, SHA1 per sec 549

Collision found at Counter Value 26d2!

Digest: 00038f8b 9b792b89 284dbfb9 4356ef70 0e39720d
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--------- Iteration 15

Target collision (bits): 15

Count 5490, SHA1 per sec 549

Count 10980, SHA1 per sec 549

Count 16470, SHA1 per sec 549

Count 21960, SHA1 per sec 549

Count 27450, SHA1 per sec 549

Count 32940, SHA1 per sec 549

Count 38430, SHA1 per sec 549

Count 43920, SHA1 per sec 549

Count 49410, SHA1 per sec 549

Count 54900, SHA1 per sec 549

Count 60390, SHA1 per sec 549

Count 65880, SHA1 per sec 549

Count 71370, SHA1 per sec 549

Count 76860, SHA1 per sec 549

Count 82350, SHA1 per sec 549

Count 87840, SHA1 per sec 549

Count 93330, SHA1 per sec 549

Count 98820, SHA1 per sec 549

Count 104310, SHA1 per sec 549

Count 109800, SHA1 per sec 549

Count 115290, SHA1 per sec 549

Collision found at Counter Value 1cf4b!

Digest: 0000d783 e8ad6e98 76b7a24f 733c2afe 291f6be5

Terminating Search

The collision searcher can find the first few targets very quickly. For example, for target
12, the collision searcher returns the counter value 877 (hex), corresponding to the digest
0004dc... (hex). At target 15, the collision searcher computes for more than 100 seconds.
Each 10 seconds, a line is printed with the current counter value, and the performance of
the collision searcher. A collision is eventually found for counter value 1cf4b (118,603). So,
you have to compute over 100K SHA-1 functions to find a 15-bit collision. This highlights a
particular feature of collision search: it’s a probabilistic process. On the average, we would
expect that a 15-bit collision can be found in approximately 215 iterations (32K), but it is
very well possible that it takes longer than that.

For this reference testbench, the reported performance is 549 SHA-1 computations per
second. This value would be the reported performance for your implementation. The absolute
runtime of your collision search does not matter. The target will be increased until you get
a target that requires a runtime of over 100 seconds on your implementation.
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Ranking Criteria

All designs will be strictly ranked from best to worst. This section defines what ’best’ means.
We will use the following metrics to evaluate the rank of your design.

• Functional Correctness: This requirement is mandatory for all designs. Your design
has to work, in order to be considered for ranking. If it does not work, you will be
automatically ranked last. Working means: your design identifies collisions.

• Metric 1: The number of SHA-1 computations obtained per second. Higher is better.

• Metric 2: The area efficiency of the resulting design, expressed in terms of ’SHA-1
computations per second per LE’. An LE is a Logic Element, a unit of hardware in a
Cyclone IV FPGA. A lower LE cell count corresponds to a smaller design.

• Metric 3: The turn-in time of your design and report, as measured by the turn-in time
on Scholar. Turning in the solution earlier is better. Note that, if you turn in the
design multiple times, only the latest turn-in time will be used.

Two designs will be compared as follows, to determine their ranking order. If a design
is functionally not correct (i.e. fails the testbench), it will automatically moved to the last
rank. If multiple designs are not operational, they will all share the same lowest rank. All
functionally correct designs will get a better and unique rank.

• First, the SHA-1 computation rate (Metric 1) will be compared. If there is a difference
of more than 5% between them (with the fastest design considered 100%), the fastest
design will get a better rank. If, one the other hand, the difference is smaller than 5%,
Metric 2 will be used as tie-breaker.

• Metric 2 will be used in a similar way to compare two designs. If the difference in
area efficiency between two designs is larger than 5%, then the smallest design gets the
better rank. Otherwise, if they are separated less than 5%, Metric 3 will be used as
tie-breaker.

• Metric 3 will be used as a final metric in case the ranking decision cannot be made
using Metric 1 and Metric 2 alone. In this case, the design turned-in earlier wins.

The grade for your project is determined as follows.

• 70 points of the grade are determined by the ranking of your project as described
above. The best design gets 70 (out of 70) points, the worst design gets 30 (out of 70)
points, and all other designs are linearly distributed between 30 and 70 points.

• 30 points of the grade are determined by the quality of the written documentation you
provide with the solution. The requirements are listed below.
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Accelerated Testbench

On Scholar, you will find the reference implementation of this design, challenge.qar. You
need to expand the project, compile the bitstream, and prepare a board support package as
with the previous homework.

You are allowed to make arbitrary changes to the design, as long as the top-level testbench
remains unchanged. Your accelerated implementation, regardless of a hardware or a software
target, needs to provide an implementation for the following four functions:

• void setsearchstring(char *);

• void settarget(int);

• int searchcollision();

• int shacomputed();

For example, let’s say that you would implement a collision searcher as a memory-mapped
hardware module. In that case, the calls to these functions would be interacting with
memory-mapped registers.

Here are some tips for accelerated designs.

1. Proceed cautiously. The time you have to optimize the performance of your design is
limited. If you are unsure about how to proceed, work in small steps, always making
sure that you keep a functional design.

2. Keep it simple. If you cannot clearly explain your optimization idea to yourself, it’s
probably not a good idea. Don’t start off blindly trying things, you will almost certainly
fail. Starts by carefully thinking about the problem. Learn how SHA-1 works. Evaluate
options to parallelize the implementation. Think first, implement later.

3. While being cautious, also think about the big picture. SHA-1 collision search is
an embarassingly parallel program. If your implementation supports it, you could
compute multiple SHA-1 at the same time, each for different counter values. For
example, let’s say you implement four hardware coprocessors that each compute a
SHA-1. Assign these coprocessors the ID value 0, 1, 2, and 3. Then, for a counter value
x, compute the digest for x+0, x+1, x+2 and x+3. In such a parallel implementation,
the searchcollision() driver can increment x in steps of 4.

4. Don’t spend too much time developing your own custom-made implementation of SHA-
1. It’s easy to find a hardware implementation online, or to find sample Verilog code
for it. It is OK to use such code for the codesign challenge. The time you save with
(not) coding SHA-1 can be used to work on the integration. Some pointers:

• http://rijndael.ece.vt.edu/schaum/slides/ddii/lecture11.pdf
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• http://opencores.org/project,sha_core and http://opencores.org/project,

sha1

5. A well-optimized software implementation may be as good as a lousy hardware imple-
mentation. Don’t underestimate the performance of software (and multi-core)!

What to turn in

You have to deliver the following items for the project result:

• A qar file of your final design. It must contain a Nios processor that is capable to exe-
cute the evaluation testbench. Make sure it is a complete system, and, pay particular
attention to the following items.

– Include the driver software for the resulting system as well. By default, the
software is not included as part of a qar file - you have to include it by hand.

– Include the bitstream (sof file) for your design. This can be selected as an option
during qar file generation.

• Any GEZEL code that you’ve developed. It is not mandatory to use GEZEL coding,
and you may directly code your design in VHDL or Verilog. However, if you have not
done HDL coding before, it’s strongly recommended to develop your coprocessor in
GEZEL, and follow one of the methods explained in the previous Homework.

• A PDF document that describes your resulting design. Please explain your design
strategy, the architecture of your hardware/software solution, and overall observations
on the design.

Good Luck!!
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