
ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2010

The Codesign Challenge

Objectives
In the codesign challenge, your task is to accelerate a given software reference
implementation as much as possible. You can use any of the previously discussed
techniques to accelerate the implementation: optimize the software, build a coprocessor,
optimize the hardware/software communication. You can use library modules you find on
the Internet.

The constraints of the solution are:

1. that it must be completed by 11/29/2010 at 5:00PM;
2. that it must run correctly on the Spartan 3E starter kit or the Altera DE2 kit

(depending on the type of kit you have used during Homework assignments);
3. and that it follows the given testing procedure to demonstrate the performance of

your implementation.

The solutions will be ranked in two categories: one for Altera kits, and a second one for
Xilinx kits. Within each category, all solutions will be strictly ranked and graded
accordingly. Thus, there will be a single 'best' Xilinx solution, a single 'best' Altera
solution, and so on. There is no perfect solution; the only 'perfect' solution is the one that
ranks higher than all the others within its category.

The quality of your solution will be evaluated using the following criteria:

1. The resulting clock cycle count of the design. The clock cycle count is defined in
the system test-bench, to be specified further in this homework.

2. The product of the logic utilization and the cycle count. Logic utilization is
defined as:

a. for Xilinx devices: the sum of LUTs and registers
b. for Altera devices: the sum of Logic Elements and registers

3. The time when the solution was turned in (before the deadline, but earlier is
better).

The clock cycle count is most important, the area-time product is second-most important,
and the design time is third-most important. Faster (but correct) designs will always win.
For solutions which have a cycle count within 5% of each other, the area-time product
(item 2) will be used as a tie-breaker. In case two solutions are within 5% of each with
respect to item 1 as well as item 2, the time of posting the solution will be used to resolve
the ranking of the two designs.

Hence, it is in your interest to find the highest possible performance that can still be
accommodated on the Xilinx/Altera board, and to find that solution as quickly as possible.

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2010

The Fast Fourier Transform

Your task is to accelerate a Discrete Fourier Transform as much as possible. The Discrete
Fourier Transform (DFT) is an algorithm to evaluate the spectrum of a sampled-data
signal. The DFT is extensively used in Digital Signal Processing applications that need
spectral analysis.

The particular variant of the DFT you need to accelerate is a Fast Fourier Transform. You
will receive a reference implementation of the FFT in C. The FFT operates on complex
data, which means that each data sample has a real part and an imaginary part.

As the FFT is an extensively studied algorithm, there is plenty of documentation that can
be found online. In this assignment, we only include a summary discussion, emphasizing
the flow of data in the algorithm, and the operations it performs.

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

bit-reverse
addressing

input
data

samples

-

-

-

-

-

-

-

-

-

-

-

-

W8
2

W8
0

W8
0

W8
2

W8
0

W8
1

W8
2

W8
3

W8
0

W8
0

W8
0

W8
0

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

output
data

samples

2-point
transform

4-point
transform

8 point
transform

Figure 1: Data-flow in an 8-point decimation-in-time FFT

Figure 1 illustrates the data operations involved in an 8-point FFT. This algorithm
transforms 8 samples on the left of the figure, x[0] through x[7], into 8 frequency samples
on the right of the figure, X[0] through X[7]. The FFT goes through the following steps:

• Initial bit-reversal, which reshuffles each element to its bits-reversed index. For
example, element x[3] has index 3 = (011)b. The bit-reversed index is (110)b = 6.
Hence, the fourth position of the bit-reversed array is occupied by x[6].

• Four 2-point transforms
• Two 4-point transforms
• One 8-point transform

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2010

The notation for the transforms is further clarified as follows. Each cross in a transform is
called a butterfly; it’s an operation on two complex data samples, resulting in two
transformed data samples.

-
W8

0

b

a

d

c

W8
0

= exp(-j.2pi.0/8) = 1 + j.0

cr = ar + br
ci = ai
dr = ar - br
di = ai

-
W8

3

W8
3

= exp(-j.2pi.3/8) = -1/√2 - j/√2

cr = ar + (-br / √2 + bi / √2)
ci = ai + (-br / √2 - bi / √2)
dr = ar - (-br / √2 + bi / √2)
di = ai - (-br / √2 - bi / √2)

a

b

c

d

c = a + bW8
0

d = a - bW8
0

c = a + bW8
3

d = a - bW8
3

Figure 2: FFT Butterfly Operations

Figure 2 describes two sample butterflies present in Figure 1. The left butterfly can be
found in the 2-point transform; the right butterfly can be found in the 8-point transform.
A butterfly consists of a complex addition and a complex subtraction. The b-operand of
the butterfly is multiplied with a complex weight factor W before the addition/subtraction.
These W can be expressed as exp(-j.a) = cos(a) - j.sin(a). For example,

W8

0 = exp(-j.2pi.0/8) = cos(0) - j.sin(0) = 1 + j.0.

Similarly,

W8

3 = exp(-j.2pi.3/8) = cos(2pi.3/8) - j.sin(2pi.3/8) = -1/√2 - j/√2.

When observing Figure 1 closely, one can see that the FFT has a high degree of
symmetry. In fact, a 16-point FFT looks very similar to an 8-point FFT. It consists of an
initial bit-reversal and four passes of transforms:

• Initial bit-reversal
• Eight 2-point transforms
• Four 4-point transforms
• Two 8-point transforms
• One 16-point transform

In the Challenge, you will implement a 1024-point FFT, consisting of an initial bit-
reversal followed by 10 passes of transforms.

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2010

Fast Fourier Transform on Fixed-point Data

The reference implementation you receive works on 32-bit data in <32,16> fixed-point
representation. This data format has 32 bit of resolution and 16 bit of fractional precision.
The following examples illustrate operations on <32,16> fixed-point data.

int a; // a is an integer
double d; // d is a floating point data type
int afix; // afix is a <32,16> data type
int bfix; // bfix is a <32,16> data type
int cfix; // cfix is a <32,16> data type

// to convert integer to <32,16>, shift up by 16
// this may cause overflow of afix
afix = a << 16;

// to convert <32, 16> to integer, shift down by 16
// fractional bits in afix will be lost
a = afix >> 16;

// to convert double to <32,16>, multiple by (1 << 16)
// this may cause overflow of afix
afix = (int) (d * (1 << 16));

// to convert <32, 16> to double, divide by (1 << 16)
d = afix * 1.0 / (1 << 16);

// addition of <32,16> is easy
afix = bfix + cfix;

// multiplication of <32,16> requires scaling
afix = (bfix * cfix) >> 16;

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2010

The reference architecture

Figure 3 illustrates the reference architecture (in Xilinx or Altera). Obviously, you can
modify this as part of solving the codesign challenge.

CPU

DDR

Bus

Debug

USB-JTAG

FPGA

Timer DDR CTL 8KB RAM

DDR

FFT
Data

0x0000

0x0FFF

0x1000

0x1FFF

REAL

IMAG

Figure 3: Architecture for the reference implementation

The configuration includes a soft-core CPU, a timer, an off-chip memory controller, and
8 Kilobyte of on-chip RAM. The data that needs to be transformed by the FFT is stored
in the 8KB RAM as a 1K-element array of real data followed by a 1K-element array of
imaginary data.

You may make arbitrary modifications to the architecture but you must stick to the
following restrictions:

• The clock cycles are counted against a 50MHz system clock
• The data transformed by the FFT must be fetched from the 8KB RAM module.
• The 8KB RAM must remain attached to a PLB bus (Xilinx) or an Avalon bus

(Altera)

Example ‘modifications’ of the architecture could include the following:
• Adding CPUs, coprocessors, custom instructions, or memory-mapped

coprocessors.
• Segmenting the bus in smaller parts and promoting parallel access.
• Adding storage elements to repartition program/temporary data in the system,

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2010

The testbench

On scholar, you will find the following files:

• Xilinx project with reference implementation: xilinxchallenge.tgz
• Altera project with reference implementation: alterachallenge.qar and alterasw.tgz
• Reference C code: fftref.c. The reference C code is for illustration purposes; the

Xilinx and Altera projects are self-contained.

The reference implementation of the FFT in C is found in fftref.c:

void reference_fftfix(unsigned m, int *x, int *y)

Your implementation needs to implement a function

void my_fftfix(unsigned m, int *x, int *y)

In these functions, m is the size of the FFT (given as log2(number_of_points)), x is a
pointer to the real part of the FFT data, and y is a pointer to the imaginary part of the FFT
data. By default, my_fftfix calls reference_fftfix. Of course, when you
implement a coprocessor, you will include coprocessor calls inside of my_fftfix.

The testbench (on Xilinx as well as on Altera), in fftverify.c, performs the following
actions:

1. Verify the correctness of your implementation in my_fftfix using a reference
pulse of 8 samples wide and unit-height.

2. Evaluate the timing of reference_fftfix for a dataset of 1024, 512, 256,
and 128 points

3. Evaluate the timing of my_fftfix for a dataset of 1024, 512, 256, and 128
points

4. Evaluate the speedup ratio achieved by your optimized my_fftfix

The ‘resulting clock cycle count’ for the design (see criteria on page one) is the cycle
count timing required to execute my_fftfix for a dataset of 1024 points. The the
timing result on 512, 256, and 128 points will not be included. However, your
implementation must support these data set sizes as well in order to be counted as correct.

The comparison test between my_fftfix and reference_fftfix allows for a
limited amount of error (see function comparefft()). This margin allows for
hardware implementations that are not 100% bit-accurate to the reference implementation
in C. However, keep in mind that the margin is limited. The testbench will tell you if the
accumulated error is within acceptable range.

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2010

Testbench Output on Xilinx/Altera

If you implement the reference design and run the testbench, you will observe the
following output on Xilinx:

XMD% run

RUNNING> XMD% Functional Correctness Test
... Reference FFT
... Optimized FFT
... Error accumulation
... Accumulated error: 0
... Error is within acceptable range.
Performance Test
... Reference FFT size 128 1785412 1785465 1785553 1785675
 1785673 1785640 1785574 1785675
... Reference FFT size 256 3708992 3709033 3708953 3708963
 3709069 3708963 3709069 3708963
... Reference FFT size 512 7652425 7652665 7652665 7652665
 7652665 7652665 7652665 7652665
... Reference FFT size 1024 15759643 15759584 15759549 15759584
 15759549 15759584 15759549 15759584
... Optimized FFT size 128 1785902 1785719 1785743 1786108
 1785813 1785813 1786108 1785813
... Optimized FFT size 256 3709372 3709208 3709390 3709243
 3709355 3709243 3709355 3709243
... Optimized FFT size 512 7653925 7653623 7653960 7653588
 7653862 7653623 7653960 7653588
... Optimized FFT size 1024 15761271 15761102 15761154 15761154
 15761154 15761154 15761154 15761154
 N REF OPT SPEEDUPx100
 128 1785583 1785877 99
 256 3709000 3709301 99
 512 7652635 7653766 99
 1024 15759578 15761162 99

The performance test measures the reference FFT and the optimized FFT for four
different sizes (128, 256, 512, 1024 sampels). Each FFT is measured 8 times, and the
resulting cycle count is the average of these measrements. The speedup is measured as
the ratio of 100 times the reference cycle count divided by the optimized cycle count.

On Altera, you will see the following output:

Functional Correctness Test
... Reference FFT
... Optimized FFT
... Error accumulation
... Accumulated error: 0
... Error is within acceptable range.
Performance Test
... Reference FFT size 128 3285454 3159913 3159371 3180393
 3159561 3159699 3159513 3159513
... Reference FFT size 256 6774687 6734040 6745421 6733883

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2010

 6733569 6734213 6733597 6734109
... Reference FFT size 512 14278582 14246954 14246997 14246709
 14246997 14246734 14247041 14246903
... Reference FFT size 1024 30040310 30008968 30008654 30008654
 30008654 30008594 30008899 30008428
... Optimized FFT size 128 3160064 3160078 3209700 3160425
 3171855 3160155 3159915 3179741
... Optimized FFT size 256 6734270 6775085 6734639 6745821
 6734512 6746151 6734304 6745881
... Optimized FFT size 512 14279344 14247429 14247322 14247346
 14247542 14247620 14247346 14247542
... Optimized FFT size 1024 30040408 30009162 30008987 30009598
 30009686 30009342 30009342 30009342
 N REF OPT SPEEDUPx100
 128 3177927 3170241 100
 256 6740439 6743832 99
 512 14250864 14251436 99
 1024 30012645 30013233 99

How to start

On Scholar, download the baseline reference implementation, for Xilinx or Altera. Use
your experience of previous Homework to implement the reference design. Execute the
testbench and verify that you can observe a similar output as shown above. Then, start
optimizing your design!

Hints and Tips

• If you build a coprocessor, it is highly recommended to construct a cosimulation
model of your design using GEZEL. While you can develop coprocessor
hardware directly in VHDL, it will require you to take care of many details at
once. Going through cosimulation first enables you to test your idea before taking
it to the board.

• Also, when developing hardware, first test your ideas on ‘small’ designs. When
the low level components work fine, next verify how well it scales up.

• Also, carefully consider tradeoffs. There are obviously many more
implementation alternatives than you have time to try out. Thus, you will have to
think before you implement, and to experiment to find the largest acceleration as
quickly as possible.

• Always focus on the bottleneck in the overall system. Remember the earlier
examples we discussed. Hardware parallelism is useless if you cannot provide
data sufficiently fast.

• Also, make use of your homework assignments/solutions to see examples on
how a memory-mapped interface or an FSL interface can be created.

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2010

What to turn in

By the deadline, post the following information on Scholar.

• A report, username_report.pdf, that summarizes the main characteristics of your
design. Mention the cycle count of the resulting implementation, and the area
(LUT/LE + registers).

o In the report, provide a block-diagram of the optimized system.
o In the report, include a screenshot of the optimized design as it runs

through the testbench (similar to the output shown in the section
“Testbench Output on Xilinx/Altera”).

• If you developed a cosimulation model in GEZEL, provide the cosimulation
model (C driver and FDL file). Call the model username_cosimulation.fdl

• The optimized implementation in XPS or Quartus. Zip the project directory as
username_project.zip. Make sure you clean your project before turning it in
(remove binaries, intermediate compilation files, etc).

Grading

The ranked performance of your design will count for 50% of the grade. The other 50%
of the grade will be determined by the quality of the report and the quality of the
optimized design (eg coprocessor design, use of cosimulation, etc).

This is your chance to explore new ideas and to try out what you have learned in this
class! We will discuss the design in detail in the class of 1 December.

Good luck!

	Word Bookmarks
	OLE_LINK1
	OLE_LINK2

