
ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2009

The Codesign Challenge

Objectives
In the codesign challenge, your task is to accelerate a given software reference
implementation as much as possible. You can use any of the previously discussed
techniques to accelerate the implementation: optimize the software, build a coprocessor,
optimize the hardware/software communication. The constraints of your implementation
are

1. that it must be completed by 11/30/2009 at 5:00PM;
2. that it must run correctly on the Spartan 3E starter kit;
3. and that it follows the given testing procedure to demonstrate the performance of

your implementation.

All solutions will be strictly ranked and graded accordingly. Thus, there will be a
single 'best' solution, a single 'second' solution, and so on. There is no perfect solution;
the only 'perfect' solution is the one that ranks higher than all the others. The quality of
your solution will be evaluated using the following criteria:

1. The resulting clock cycle count of your implementation, with a ‘clock cycle’
corresponding to one tick of a PLB Timer module clocked at 50MHz.

2. The product of the Slice Usage (Spartan 3E slices) and the Clock Cycle Count.
3. The time when the solution was turned in (before the deadline, but earlier is

better).

The clock cycle count is most important, the area-time product is second-most important,
and the design time is third-most important. Faster (but correct) designs will always win.
For solutions which have a cycle count within 5% of each other, the area-time product
(item 2) will be used as a distinctive factor. In case two solutions are within 5% of each
with respect to item 1 as well as item 2, the time of posting the solution will be used to
resolve the ranking of the two designs.

Hence, it is in your interest to find the highest possible performance that can still be
accommodated on a Spartan3 board, and to find that solution as quickly as possible.

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2009

Assignment: Monster Multiplier Madness

The task is to create a very efficient implementation of the Monster Multiplier Madness
(MMM) algorithm. This algorithm is specified as:

widemagic(input a, input b, output lo) {
 loop 16384 times {
 (hi,lo) = a * b;
 b = hi + lo;
 }
}

In this algorithm, the variables a, b, hi and lo are unsigned 256-bit numbers. The
algorithm multiplies two 256-bit operands, a and b, and produces a 512-bit result. hi is
the upper 256-bit, while lo is the lower 256-bit of the result. The algorithm then adds the
upper part and the lower part together, and uses that as an input to the next iteration.

a b

lo hi

a b

one iteration

one iteration

256 256

512

256 256

256

*

+

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2009

The reference software implementation implements this algorithm on a 32-bit Microblaze
processor. In that case, one must implement so-called multi-precision arithmetic
operations. Here is an example how a 256-bit addition can be implemented on a 32-bit
processor.

void add32(unsigned a,
 unsigned b,
 unsigned *q,
 unsigned *y) {
 unsigned max = (a > b) ? a : b;
 *q += (a + b);
 if (*q < max)
 *y = 1;
 else
 *y = 0;
}

void wideadd(unsigned a[8],
 unsigned b[8],
 unsigned t[8]) {
 unsigned i, cy;

 for (i=0; i<8; i++)
 t[i] = 0;

 cy = 0;
 for (i=0; i<8; i++) {
 t[i] = cy;
 add32(a[i], b[i], &(t[i]), &cy);
 }
}

The procedure wideadd makes use of a 32-bit addition procedure, add32, that can
detect a carry bit. Using this addition, a wide addition is iteratively implemented from the
least significant word to the most significant word, while the carry bit is propagated.

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2009

The multiplication of 256-bit is quite interesting as well, because there are multiple ways
to do it. We illustrate just one of them, the 'pencil and paper' method.

a[0]a[1]a[2]

b[0]b[1]b[2]

a[0].b[0]

a[1].b[0]

a[2].b[0]

a[0].b[1]

a[1].b[1]

a[2].b[1]

a[0].b[2]

a[1].b[2]

a[2].b[2]

s[0]s[1]s[2]s[3]s[4]s[5]

In this example, we assume two multiprecision arguments of just 3 words rather than 8.
Using each word, we than calculate all partial products: a[0].b[0], a[1].b[0], a[2].b[0],
and so forth. Note that the wordlength of a partial product will be twice as big as that of
an operand word. For example, on a 32-bit processor, the operand words are 32 bit and
the partial products are 64 bit. After the partial products are known, we accumulate all of
them into the final multiplication result. For two multiprecision arguments of 3 words,
the multiplication result will be 6 words.

The following is an implementation of the multi-precision multiplication in pseudocode.
C and S are 32-bit unsigned integers; the assignment to (C,S) is an assignment of a 64-bit
unsigned integer with C the upper part and S the lower part.

for i = 0 to W-1 do {
 C = 0
 for j = 0 to W - 1 do {
 (C,S) = s[i+j] + a[j] * b[i] + C
 t[i+j] = S
 }
 t[i+W] = C
}

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2009

An implementation of this multiplication algorithm in C is as follows. The following
helper routines are used: add32 performs a 32-bit addition with carry generation.
mult64 multiplies two 32-bit words into a 64-bit result. inc64 increments a 64-bit
number represented as two 32-bit words.

void widemult(unsigned a[W],
 unsigned b[W],
 unsigned t[2*W]) {
 unsigned i, j, C, S;
 unsigned hi, lo;
 unsigned q, cy1, cy2;

 for (i=0; i<2*W; i++)
 t[i] = 0;

 for (i=0; i<W; i++) {
 C = 0;
 for (j=0; j<W; j++) {
 mult64(a[j], b[i], &lo, &hi);
 add32(lo, C, &q, &cy1);
 add32(t[i+j], q, &S, &cy2);
 C = hi;
 if (cy1) inc64(&S, &C);
 if (cy2) inc64(&S, &C);
 t[i+j] = S;
 }
 t[i+W] = C;
 }
}

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2009

Using the wideadd and widemult routines, we can now implement the MMM algorithm
as follows:

void widemagic(unsigned a[W],
 unsigned b[W],
 unsigned t[W]) {
 unsigned tmp[2*W], btmp[W];
 unsigned i;
 for (i=0; i<W; i++)
 btmp[i] = b[i];
 for (i=0; i<(16384); i++) {
 widemult(a, btmp, tmp);
 wideadd(tmp, &(tmp[W]), btmp);
 }
 for (i=0; i<W; i++)
 t[i] = tmp[i];
}
The reference implementation of this algorithm, using only Microblaze software, takes
280 million clock cycles to complete. Your task is to create an optimized implementation
of the reference design that decreases the execution time as much as possible.

The reference architecture for the design includes the following elements:

Microblaze
32-bit RISC

16KB BRAM

LMB

PLB

Debug

USB-JTAG

Spartan 3E S500

Timer

• A 32-bit Microblaze processor with 16 Kilobyte instruction- and data-memory,
• An on-chip timer
• A debug module

This baseline design occupies 30% of the slices of the Spartan FPGA, 40% of the on-chip
RAM modules, and 15% of the on-chip multiplier modules.

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2009

The testbench for this design takes the following steps:
1. It initializes two 256-bit multi-precision operands a and b.
2. It performs the MMM algorithm using the reference software, and records the

execution time with the timer.
3. It performs the MMM algorithm using your optimized implementation, and

records the execution time with the timer.
4. It compares the result of the reference MMM implementation with your MMM

implementation.
5. It prints the cycle count of both executions.

The speedup of your design is defined as:

speedup = (cycles_reference_MMM) / (cycles_your_MMM)

Obviously, the objective is to find the highest possible speedup.

You can use any possible trick to improve the execution speed. Some examples are as
follows.

• Adding coprocessors to the PLB or FSL bus, to improve the multiplication speed.
Note that a 256*256 bit multiplier requires twice the number of logic resources of
your FPGA.

• Optimize the software, using source code transformations or compiler flags.
• Re-allocating memory.

However, you need to stick with the standard testbench, and you cannot tweak the
testvectors. The resulting design must also fit onto your Spartan 3E starter kit. If you are
in doubt if a tweak is allowed or not, send an email or post a question on the bulletin
board.

How to start

On Blackboard, download the baseline reference implementation. This design will run
directly on your Spartan kit. Start by studying the reference implementation software.
This reference implementation calls yourmagic(). Running the design on your board
will show you the following result.

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2009

Hints and Tips

• If you build a coprocessor, it is highly recommended to construct a cosimulation
model of your design using GEZEL. While you can develop coprocessor
hardware directly in VHDL, it will require you to take care of many details at
once. Going through cosimulation first enables you to test your idea before taking
it to the board.

• Also, when developing hardware, first test your ideas on ‘small’ designs. When
the low level components work fine, next verify how well it scales up.

• Also, carefully consider tradeoffs. There are obviously many more
implementation alternatives than you have time to try out. Thus, you will have to
think before you implement, and to experiment to find the largest acceleration as
quickly as possible.

• Always focus on the bottleneck in the overall system. Remember the earlier
examples we discussed. Hardware parallelism is useless if you cannot provide
data sufficiently fast.

• Also, make use of your homework assignments/solutions to see examples on
how a memory-mapped interface or an FSL interface can be created.

What to turn in

By the deadline, post the following information on Blackboard.

• A short report (no more than 4 pages) that summarizes the main characteristics of
your design. Your report must at least contain the following table.

Area of the baseline design (slices)
Performance of the baseline design (cycles)
Area of the optimized design (slices)
Performance of the optimized design (cycles)

In addition, you are encouraged to discuss the trade-offs you made, to provide a
block-diagram of the resulting system, to describe the architectural features of the
hardware coprocessor you made. Also include a screenshot of the design as it
executes in XMD.

• If you developed a cosimulation model in GEZEL, please provide the

cosimulation model (C driver and FDL file).

• The optimized implementation in XPS. Before posting the design on Blackboard,

make sure you run Project->Clean All Generated Files. Then, zip the project
directory and post it on Blackboard.

ECE 4530: Hardware/Software Codesign Codesign Challenge Fall 2009

Grading

Your design will be graded as follows:
• Your ranked performance counts for 75% of the grade
• Your report counts for 25% of the grade.

Your cosimulation model and XPS project will be run to verify the correctness of the
statements you make in the report.

The performance ranking criteria described above will be used. Having a working
solution is not sufficient to obtain a good grade. Having a speed improvement of, for
example, 3 times, is not sufficient to obtain a good grade. The best grade will go to the
design with the highest performance. All other designs will be strictly ranked according
in relation to the best one. This strict ranking rule is introduced based on the observation
that, under free market conditions, better designs have a better chance to make it into a
product.

However, don’t let this rule spoil the fun.

This is your chance to explore new ideas and to try out what you have learned in this
class! We will discuss the design in detail in the class of 2 December.

Good luck!

	Word Bookmarks
	OLE_LINK1
	OLE_LINK2

