
You Can Hide but You Can’t Verify:
On Side-channel Countermeasure Verification

Patrick Schaumont
Worcester Polytechnic Institute, Worcester, MA 01609

Abstract—Power-based Side-channel Leakage (SCL) is a hard-
ware vulnerability that may be mitigated using hardware coun-
termeasures. We present a hardware-based hiding countermea-
sure for a small RISC-V (RV32IMC) based SoC, and apply it
to hide the leakage of a software implementation of AES. We
evaluate SCL by gate-level simulation of the design files and by
measuring a 180nm ASIC prototype. We then compare these two
approaches and optimize the hiding countermeasure. Our results
highlight the specific challenges of the security verification of a
hiding-based countermeasure.

Index Terms—hardware security, cryptographic engineering,
reverse engineering

I. INTRODUCTION

Power-based Side-channel Leakage (SCL) has been ex-
ploited in a growing variety of settings, even by remote
monitoring of power consumption of cloud-based FPGA [1].
There is a perceived need that secure hardware designs
must be protected by countermeasures to mitigate the risk
of SCL exploitation. Such countermeasures come in two
flavors. Masking countermeasures use secret-sharing to make
the lower-order statistics of the SCL independent of the secret
intermediate variables [2]. Hiding countermeasures reduce the
contribution of the secret intermediate variables’ power con-
sumption to the overall power consumption variations. Neither
technique is perfect, and either can fail due to countermea-
sure implementation errors, or to more powerful side-channel
attacks. Hence, verification of side-channel countermeasures
is mandatory. In current practice, this verification is almost
always done post-silicon, namely when the actual device is
available. Recently, considerable attention has been given to
the case of pre-silicon security verification [3]. The compelling
arguments for pre-silicon security verification include reducing
the time-to-market by eliminating or simplifying post-silicon
security testing, increasing the understanding of side-channel
leakage root causes, and design-space exploration involving
security-versus-cost trade-offs.

In this contribution we look at a concrete case of se-
curity verification for a hiding countermeasure, comparing
pre-silicon simulations with post-silicon measurements. We
highlight the importance (and difficulty) of taking all factors
into account into SCL verification. Fig. 1 shows the layout
of a small SoC with a RISC-V core, on-chip RAM, several
cryptographic accelerators and peripherals, and an array of 32
ring oscillators (ROs). Table I summarizes the main properties

This research was supported in part through the National Science Founda-
tion Grant no. 2219810.

AES RV32

ASCON

Ring
Oscillators

SRAM
8x8K

Fig. 1. Layout of the PICO test chip, a small SoC with 32 ring oscillators
(ROs) working as a hiding countermeasure. The ROs are distributed in two
groups of 16 RO each, marked with blue and yellow squares.

of the chip. The ROs are distributed over the standard cell
area, and they are configurable from the RISC-V core through
a memory-mapped interface. Each RO has a 32-bit counter
to measure the RO oscillation frequency through integration.
The ROs serve multiple objectives [4]. They can sense electro-
magnetic fault injection and voltage glitching, since these fault
vectors affect the immediate RO frequency. Next, the ROs can
indirectly sense the on-chip activity, as the voltage of each RO
is taken from the power distribution network of surrounding
components. Finally, the ROs can serve as a hiding side-
channel countermeasure, by switching the ROs randomly on
and off. The obective of this contribution is to verify (only)
the efficiency of the ROs when operating as a side-channel
countermeasure.

This paper is organized as follows. Section II discusses re-
lated work and highlights the challenge of security verification
of a countermeasure. Section III describes the measurement
setup and parameters. Section IV summarizes our experimental
results, followed by the lessons learned. We then conclude the
paper.

II. RELATED WORK

Unlike masking-based side-channel countermeasures which
are based on secret-sharing, hiding-based countermeasures
have no formal notion of security. That may explain why there
are relatively fewer publications exploring hiding-based coun-
termeasures. The objective of a hiding based countermeasure
is to degrade the Signal-to-Noise Ratio (SNR) of side-channel

TABLE I
PICOSOC CHIP CHARACTERISTICS

Technology TSMC 180nm (tcb018gbwp7t 270a)
Comb. Cells 43,724 cells
Seq. Cells 13,947 cells
Core Area 10.69 sq mm
Chip Area 13.35 sq mm
SRAM 64 KByte (8 x 8K macro)
Core PicoRV (RV32IMC)
Crypto AES, ASCON
Peripherals UART, SPI, GPIO
Countermeasure 32 Configurable RO

leakage. The S-part represents side-channel leakage power,
while the N-part represents the noise power added by mea-
surement and by unrelated activities. There are two strategies
to develop a hiding countermeasure. One can either decrease
the application-dependent S-part, or one can increase the
platform/environment dependent N-part. In the first category,
Wave Dynamic Differential Logic (WDDL) was arguably the
first generic, logic-level solution for hiding. Moreover, WDDL
was demonstrated on a test chip [5]. Similar hiding techniques
have been explored using architecture-reconfiguration [6], and
as random delays and operation-shuffling in software [7].
More recently, energy buffering is proposed as an application-
dependent hiding technique [8]. Our work belongs to the
second category, and we degrade the SNR using randomly
switched ring oscillators. In reconfigurable platforms, noise
generation was previously demonstrated using shift registers,
artificial short-circuit and memory-write collisions [9]. The
generic nature of a noise generator also makes it appealing
as an add-on technique as described by patents [10].

The evaluation of a countermeasure’s quality is challenging,
because there is no universally accepted technique to quantify
SCL [11]. In this paper, we evaluate the hiding counter-
measure by testing its effectiveness to protect a software
AES implementation running on the RISCV processor. We
measure the power of the complete SoC without and with
the countermeasure. We then aim to show that AES SCL can
no longer be exploited when the countermeasure is turned
on. To demonstrate leakage, we use traditional correlation
power analysis (CPA) as well as a non-specific random-versus-
fixed data test (TVLA). We do not apply the measurement-to-
disclosure (MTD) metric. Indeed, we are primarily interested
in relative comparisons: we check if the countermeasure is
effective using a fixed number of traces (in our case: 50,000
traces). An additional system-level security design requirement
is then to replace the ephemeral keys every 50,000 encryptions.

While traditional SCL evaluation is done on prototypes,
there is a rising interest in the use of simulation techniques
[3]. By combining logic simulation and power estimation,
side-channel traces are computed over a set of test vectors.
The power traces are then assessed for SCL. Side-channel
leakage can be simulated at diffent abstraction levels (RTL
to transistor), and there is a steep trade-off between the
simulation speed and the modeling detail [12]. We perform
our power simulations at gate-level, which we found to be an

Fig. 2. PICO test chip on the Saidoyoki board (left) with ChipWhisperer
Husky (right)

acceptable trade-off between accuracy and speed [13]. While
the exact interpretation of acceptable is application-dependent,
it is based on an overall objective of completing an SoC-level
SCL assessment within 24 hours.

III. MEASUREMENT SETUP

Our measurement setup includes a prototype (Fig. 2) and a
corresponding simulation flow. The prototype Saidoyoki board
supports chip-level testing and allows direct measurement of
power-based side-channel leakage [14]. We use a Chipwhis-
perer Husky kit to feed test vectors over a serial connection
to the PICO test chip, and then sample its power dissipation.
The Husky kit generates the clock for the PICO test chip,
which allows efficient synchronous sampling of side-channel
leakage [15]. The PICO test chip runs at 4 MHz and its power
is synchronously sampled at 16 MHz (4 samples per cycle).
The setup in Fig. 2 captures around 20 traces per second
at 16000 points per trace, which comfortably spans several
SBOX operations of the AES. These SBOX operations are
the focus of the SCL assessment.

We also use a simulation flow that captures the PICO
test chip with gate-level accuracy (TSMC 180nm standard
cells), and that performs gate-level power estimation using
Cadence Joules. The power measurement in Cadence Joules
is performed over frames, where a frame collects the average
power consumption of the chip in a given time window. Joules
practically limits the number of frames per simulation run to
1000, and we map the power estimation to one frame per two
clock cycles. Because of the integration process during power
estimation, no aliasing occurs [16]. While Joules is by far the
slowest step in the power simulation flow, the overall flow is
embarrassingly parallel. We typically run 20 concurrent Joules
sessions on a design server, each working on a test vector.
It takes around 150 minutes to produce 1000 power traces
at gate-level accuracy for the entire PICO test chip. Despite
the low sample rate of simulated traces, we still need far less
simulated traces compared to the measured traces. The primary
reason is the noiseless nature of the simulation.

TABLE II
TEST VECTORS: CORRELATION POWER ANALYSIS (CPA) AND TEST

VECTOR LEAKAGE ASSESSMENT (TVLA)

CPA PT = random
KEY = fb0b38bcad60b76c73377dfd9ce5692f

TVLA PT1 = random
KEY1 = 9c15e97ba6b973c55fc2e2385f6620a1
PT2 = da39a3ee5e6b4b0d3255bfef95601890
KEY2 = KEY1

StdDev on Simulated Traces StdDev on Measured Trace
[0] [4] [8] [12] [0] [4] [8] [12] [1] [5] [9] [13]

Fig. 3. StdDev over traces from simulation (left) and measurement (right),
as power over sample points. The plots are uncalibrated which explains the
absence of Y-axis labels.

IV. EVALUATING THE COUNTERMEASURE

The hiding countermeasure works by turning on a random
number (0 to 32) of ring oscillators before each security-
sensitive operation. We run the ring oscillators at their maxi-
mum frequency (about 120 MHz), 30 times the chip’s clock
frequency. Turning on and off the ring oscillators is done
through a memory-mapped interface. It takes two memory-
write operations to turn on or off an arbitrary number of ROs
out of a group of 32. Each memory-write controls 16 ROs.

A. Unprotected Software AES

The reference implementation is a byte-wise software AES.
A standard check to identify the location of potential side-
channel leakage is to compute the standard deviation (STD)
over a set of traces. Figure 3 shows the STD over 500
simulated traces and 10,000 measured traces for the CPA test
vectors. One can clearly identify the SBOX lookup operations
of AES, which computes SBOX[state[i][j]] using the
secret state. To assess the leakage, we use two different test
techniques as listed in Table II. First, we compute a Welch-t
statistic using the TVLA test set (Fig. 4). The t-test clearly
marks leakage at every SBOX access with high confidence.
Next, we also verified that a CPA easily recovers every key
byte correctly on both simulated traces and measured traces.

B. Hiding-based Countermeasure

To protect the SBOX lookup operations, we enable a random
number of RO at each SBOX lookup.
static void SubBytes() {
for(uint8_t i = 0; i < 4; ++i) {
for(uint8_t j = 0; j < 4; ++j) {

enable_ro_config(ct[i*4 + j]);
state[i][j] = sbox[state[i][j]];
disable_ro();

} } }

Fig. 5 (top) shows the impact of the RO on the simulated
STD on 500 traces. The RO power variations are 2 orders

t-test on Measured Tracest-test on Simulated Traces

Fig. 4. TVLA over traces from simulation (left) and measurement (right).

RO on
RO off

[0] [4] [8] [12]

2000 4000 6000 8000 10000 12000 14000 160000

r[0]

r[4]
r[8]
r[12]

StdDev on
Measured Trace

Time Correlation
on Key Bytes

StdDev on
Simulated Trace

SBOX
access

[0] [4] [8] [12]

RO off

RO on

Fig. 5. The hiding countermeasure on simulated traces (top) and measured
traces (middle). Residual leakage enables recovery of key bytes after the RO
configuration stabilizes.

of magnitude bigger than the power variations of the SBOX
lookup. No keys can be recovered from the simulated traces.
Fig. 5 (middle) shows the impact of the RO on the measured
STD on 50K traces. The plot reveals the switch-on and switch-
off events of the ROs for each SBOX lookup. However, once
the RO power has stabilized, the measured STD drops. This is
an artefact of the measurement setup, which measures power
as a voltage drop over a shunt resistor. To remove the common
mode, the signal is passed through a band-pass filter, masking
out the DC component. As the RO power variation drops, the
side channel leakage of the SBOX lookup becomes visible.
Fig. 5 (bottom) shows that the design is still vulnerable. A
time correlation plot on key bytes shows that the bytes can
be recovered when the ROs have stabilized, just before they
are switched off. We conclude that, while the design appears
secure from a simulation point of view, the implementation
shows this countermeasure design is flawed.

C. Hiding-based Countermeasure, revisited

To solve this flaw, we must realize that a hiding coun-
termeasure must use broadband noise (N) to be effective.

Fig. 6. The improved hiding countermeasure increases power variation
through the sensitive operation (top). The key byte correlations disappear
except on the keybyte 12 (middle). However, a t-test shows that no leakage
is identified based on fixed versus random test (bottom).

Hence, we must switch a random number of ROs for (at
least) each sensitive instruction. A manual study of the data
dependencies in the assembly code of SBOX lookup shows
that the sensitive operations can be reduced to just three
instructions, highlighted in light gray below. We then surround
these sensitive instructions with RO switch commands.

static void SubBytes() {
..
lui a4, 0 // clear working register
sw RO1, random1 // switch group 1 of 16 RO

lbu a4, [state] // read secret state

add a4, a4, base // add sbox base address
sw RO2, random2 // switch group 2 of 16 RO

lbu a4, [a4] // read sbox[state]

sw RO1, random3 // switch group 1 of 16 RO

sb a4, [state] // overwrite secret state

sw RO2, random4 // switch group 2 of 16 RO
lui a4, 0 // clear secret state
disable_ro();

Fig. 6 indicates that distributing the RO switching com-
mands keeps the power variation high throughout the sensitive
SBOX lookup. The first three key bytes are now effectively
hidden at 50K traces. However, keybyte 12 can still be
recovered by CPA. This keybyte is accessed just at the last
j-loop iteration (See code block in IV.C), and we suspect that
leakage may be caused by an micro-architecture effect outside
of the S-box access and will require further analysis. A further
fixed-versus-random TVLA test on 50K traces demonstrates
no leakage during Sbox access. However, the CPA test and
the TVLA test used a different key.

V. CONCLUSION

We conclude by highlighting the significant challenge that
exists to systematically test a countermeasure against side-
channel leakage. The discrepancy between simulation and
measurement, is not caused a chip-level modeling mistake but
by a measurement effect. In hindsight, the flaw of the counter-
measure and its fix seems obvious. But that didn’t prevent it
from happening. Security verification of a cryptographic SoC
must extend beyond the chip boundary.

REFERENCES

[1] M. Zhao et al., “Fpga-based remote power side-channel attacks,” in 2018
IEEE Symposium on Security and Privacy (SP), 2018, pp. 229–244.

[2] A. Covic et al., “Circuit masking: From theory to standardization, A
comprehensive survey for hardware security researchers and practition-
ers,” CoRR, vol. abs/2106.12714, 2021.

[3] I. Buhan et al., “Sok: Design tools for side-channel-aware implemen-
tations,” in ASIA CCS ’22: ACM Asia Conference on Computer and
Communications Security, Nagasaki, Japan, 30 May 2022 - 3 June 2022,
Y. Suga, K. Sakurai, X. Ding, and K. Sako, Eds. ACM, 2022, pp. 756–
770.

[4] Y. Yao et al., “Programmable RO (PRO): A multipurpose countermea-
sure against side-channel and fault injection attacks,” IACR Cryptol.
ePrint Arch., p. 878, 2021.

[5] D. D. Hwang et al., “Aes-based security coprocessor IC in 0.18-
$muhbox m$cmos with resistance to differential power analysis side-
channel attacks,” IEEE J. Solid State Circuits, vol. 41, no. 4, pp. 781–
792, 2006.

[6] N. Mentens et al., “Power and fault analysis resistance in hardware
through dynamic reconfiguration,” in Cryptographic Hardware and Em-
bedded Systems - CHES 2008, 10th International Workshop, Washington,
D.C., USA, August 10-13, 2008. Proceedings, ser. Lecture Notes in
Computer Science, E. Oswald and P. Rohatgi, Eds., vol. 5154. Springer,
2008, pp. 346–362.

[7] J. Coron et al., “An efficient method for random delay generation in
embedded software,” in Cryptographic Hardware and Embedded Sys-
tems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, ser. Lecture Notes in Computer
Science, C. Clavier and K. Gaj, Eds., vol. 5747. Springer, 2009, pp.
156–170.

[8] D. Das et al., “STELLAR: A generic EM side-channel attack protection
through ground-up root-cause analysis,” in IEEE International Sympo-
sium on Hardware Oriented Security and Trust, HOST 2019, McLean,
VA, USA, May 5-10, 2019. IEEE, 2019, pp. 11–20.

[9] T. Güneysu et al., “Generic side-channel countermeasures for reconfig-
urable devices,” in Cryptographic Hardware and Embedded Systems -
CHES 2011 - 13th International Workshop, Nara, Japan, September 28 -
October 1, 2011. Proceedings, ser. Lecture Notes in Computer Science,
B. Preneel and T. Takagi, Eds., vol. 6917. Springer, 2011, pp. 33–48.

[10] M. Han et al., “Countermeasure to power analysis attacks through
time-varying impedance of power delivery networks,” 2017, uS Patent
9,755,822 B2.

[11] K. Papagiannopoulos et al., “The side-channel metrics cheat sheet,”
ACM Comput. Surv., vol. 55, no. 10, feb 2023.

[12] D. Sijacic et al., “Towards efficient and automated side-channel evalu-
ations at design time,” J. Cryptogr. Eng., vol. 10, no. 4, pp. 305–319,
2020.

[13] Y. Yao et al., “Verification of power-based side-channel leakage through
simulation,” in 63rd IEEE International Midwest Symposium on Circuits
and Systems, MWSCAS 2020, Springfield, MA, USA, August 9-12, 2020.
IEEE, 2020, pp. 1112–1115.

[14] P. Kiaei et al., “Saidoyoki: Evaluating side-channel leakage in pre- and
post-silicon setting,” IACR Cryptol. ePrint Arch., p. 1235, 2021.

[15] C. O’Flynn et al., “Synchronous sampling and clock recovery of internal
oscillators for side channel analysis and fault injection,” J. Cryptogr.
Eng., vol. 5, no. 1, pp. 53–69, 2015.

[16] P. Kiaei et al., “Leverage the average: Averaged sampling in pre-
silicon side-channel leakage assessment,” in GLSVLSI ’22: Great Lakes
Symposium on VLSI 2022, Irvine CA USA, June 6 - 8, 2022, I. Savidis,
A. Sasan, H. Thapliyal, and R. F. DeMara, Eds. ACM, 2022, pp. 3–8.

