
Root-cause Analysis of the Side Channel
Leakage from ASCON Implementations

Zhenyuan Liu and Patrick Schaumont[0000−0002−4586−5476]

Worcester Polytechnic Institute, Worcester MA 01609, USA

Abstract. Root-Cause Analysis of Side Channel Leakage (SCL) aims
to identify the components of observed SCL. We analyze ASCON’s SCL
for two variants implemented on a RISC-V SoC: a hardware coprocessor
with an iterated implementation of ASCON-128, and a software imple-
mentation of ASCON-128 on RISC-V (RV32IMC). We use gate-level
power simulation to find the power traces, and to identify which por-
tions of the hardware/software implementation show most leakage of the
secret key. Our analysis breaks out the leakage according to the major
processing phases of ASCON and according to their implementation. We
also compare the simulated traces with measurements collected from a
180nm ASIC implementation of the same design1.

Keywords: Power-based Side-channel Leakage · Gate-level Simulation · Pre-
silicon Side-channel Leakage Analysis

1 Introduction

The implementation of a new cryptographic design mandates side-channel leak-
age assessment [PGA+22] to evaluate the extent of side-channel vulnerability,
typically by means of a standard testing mechanism [ISO16]. Side-channel leak-
age assessment also helps to identify and develop leakage models for side-channel
analysis, and to test the quality of countermeasures used in the implementation.
In this paper, we specifically discuss power-based side-channel leakage. We use
the abbreviation SCL to mean power-based side-channel leakage.

In contrast to side-channel leakage assessment, root-cause analysis of SCL
aims to explain how and where the leakage occurs in a design. Root-case analysis
demonstrates a property of the implementation, rather than a property of the
SCL. This type of analysis helps the designer to understand what parts of the
implementation cause side-channel leakage, which is a starting point for the
development of countermeasures, or for debugging of side-channel leakage related
defects.

Root-cause analysis uses simulated or measured SCL, as long as one can es-
tablish a connection between side-channel characteristics and the components

1 The research for this paper was supported in part by the National Science Foundation
Award 1931639

2 Z. Liu et al.

of the implementation [BBYS21]. The terms pre-silicon and post-silicon evalua-
tion have been used to distinguish simulation-based methods from measurement-
based methods. For example, ABBY builds a micro-architectural leakage model
from measurements taken from an ARM M0 core [BIBB21], while MAPS builds
such micro-architectural model from simulated register values for an ARM M3
[LCGD18]. A comprehensive list of recently proposed pre- and post-silicon tools
for side-channel leakage assessment as well as for root-cause analysis may be
found on https://ileanabuhan.github.io/Tools/. While side-channel leak-
age assessment only aims to show a dependency between secret data and ob-
served SCL, root-cause analysis must also attribute the observed SCL to a spe-
cific component. The granularity of these components is determined by the power
modeling abstraction level, and varies from a software instruction down to a logic
gate.

In traditional CMOS technology, power is directly related to the logic tran-
sitions in the design, and side-channel leakage is the result of the dependency
between a secret value and these transitions. The root-cause analysis then be-
comes a matter of tracking the component that has directly caused a given data
transition, for example tracking logic gate that flips a given wire in a netlist.
However, not every data transition may be available in the power model at the
selected abstraction level. At register-transfer level or at instruction-set level, for
example, only transitions in select registers are visible, while those in the data-
path remain invisible [LCGD18,HPN+19]. The SCL of such abstracted models
will not cover every possible source, and this will also limit the accuracy of the
root-cause analysis. Research has also pointed out that data transitions are not
the only source of SCL. Other circuit-level effects such as glitches, static power
dissipation [MMR20], coupling [PRP+19], and signal integrity on the power de-
livery [GS20] all have been identified as contributing to power-based side-channel
leakage. Furthermore, even a highly accurate power model of on-chip power dis-
sipation may still be insufficient to fully explain the root cause, as it has been
shown that the off-chip components such as decoupling capacitors can affect
the SCL [GGB+23]. Hence, the present state of knowledge in SCL simulation
does not provide sufficiently accurate power models that guarantee the absence
of false negatives: the absence of side-channel leakage in simulation does not
imply the absence of side-channel leakage in the implementation. However, we
do have power models that ensure, with high confidence, the absence of false
positives: the presence of side-channel leakage in the simulation will also lead
to side-channel leakage in the implementation. In this paper, we use gate-level
power estimation because it provides a decent trade-off between power model
detail and simulation performance [YSW+20].

Architecture Correlation Analysis Our root-cause analysis method is called Ar-
chitecture Correlation Analysis (ACA) [KYL+22]. The basic flow of ACA is
shown in Figure 1. For a given set of test vectors, the ACA flow will perform
logic simulation followed by high-resolution power simulation. Each test vector
yields a trace reflecting the power consumption of the design while processing the
test vector. ACA will then compute a leakage time interval (LTI) over the traces,

https://ileanabuhan.github.io/Tools/

Root-cause Analysis of ASCON Implementations 3

Synthesis,
Simulation,
Trace
Generation

Leakage
Time Interval

Leakage
Impact Factor

RTL

Fig. 1. ACA Flow

which corresponds to the time windows within the ensemble of side-channel leak-
age traces that are considered leaky, i.e. at what times the ensemble of traces
would be identified as SCL by a side-channel leakage assessment method. The
LTI is computed through a global (overall) side-channel leakage assessment. Be-
cause traces are in sampled form, the time windows of the LTI are captured as
a collection of leaky points. For each leaky point, ACA will then rank the logic
gates of the design according to the amount of contributed leakage per gate by
computing a leakage impact factor (LIF) for each gate. The LIF represents the
similarity of an individual gate’s activity to the overall SCL metric. A higher
LIF indicates a gate that has a stronger similarity and thus is more likely to
contribute to the overall side-channel leakage of the design. The collection of
gates with a LIF higher than a predefined threshold is the root-cause set S of
SCL. The S set depends on the specific activity of a design, and thus can change
per leaky point. Hence, a complete root-cause description of SCL over N leaky
points is list of sets {S0, S1, ..., SN−1}. For a detailed discussion on ACA we refer
to Kiaei et al. [KYL+22].

Related work in ASCON SCL assessment In this paper, we perform the SCL
root-cause analysis of ASCON implementations. Compared to substitution per-
mutation network (SPN) algorithms such as AES, the side-channel leakage from
sponge constructions is less well investigated. A few authors have presented side-
channel leakage assessment for hardware implementations of ASCON [SD17]
[RAD20][DCBG+17][GWDE17], and for software implementations [AFM18][SS23].
These attacks target S-box output in the ASCON initialization phase and they
require several thousand traces (ASCON iterations) for success. In the context of
the NIST Light Weight Cryptography competition, GMU has organized a com-
prehensive benchmarking effort for the side-channel leakage assessment of the
finalists including a protected hardware implementation of ASCON [MBA+23].
To our knowledge, no earlier work has presented a root-cause analysis of AS-
CON, i.e. explains how side-channel leakage is distributed over individual gates
(for hardware implementations) or over individual software instructions (for soft-
ware implementations).

4 Z. Liu et al.

Contributions and Outline The contributions of our work are as follows.

1. We present a RISC-V based system-on-chip (SoC) architecture with a hard-
ware and a software implementation of ASCON128, and use a design flow
that enables simulation as well as measurement of side-channel leakage.

2. We use a non-specific root-cause analysis over specific regions of ASCON
AEAD processing that directly manipulate the key. We do this for both
the hardware implementation as well as for the software implementation.
Selected regions of interest include the coprocessor key-loading process, the
ASCON first-round initialization phase (for hardware and software), and the
ASCON finalization phase (for software).

3. For each region of interest we determine the root-cause set of leaky gates as
a function of the processing stage of ASCON (initialization, associated-data
processing, plaintext encryption, and finalization). When analyzing ASCON
software, we express the leakage pattern as a root-cause set of leaky instruc-
tions by back-annotating leaky gates and cycles to software [KS22].

The remainder of this paper is organized as follows. We first describe the
main properties of our implementation in Section 2. Next, we perform root-cause
analysis on the ASCON hardware coprocessor in Section 3, as well as root-cause
analysis on the ASCON RISCV software implementation in Section 4. Finally, in
Section 5 we validate our simulation results by comparing a side-channel leakage
assessment on the gate-level simulation with a side-channel leakage assessment
of the ASIC implementation. We conclude in Section 6.

2 ASCON Coprocessor and ASCON Software

We analyze two different implementations of ASCON, a first one running as a
hardware coprocessor and a second one executing as software. Both ASCON
implementations are implemented on a small RISC-V SoC in 180nm standard
cells (Figure 2, top). The chip executes bare-metal software from on-chip RAM.
The complexity of the chip design is captured in Table 1.

– The software implementation of ASCON is based on the reference implemen-
tation for ASCON128v12 by the ASCON Designers [asc23], compiled with
O2 optimization level. We refer to this target as SWASCON-128.

– The hardware implementation of ASCON is an iterated design based on M.
Fivez’s open-source implementation [Fiv16]. This kernel is encapsulated in
a memory-mapped interface and integrated in a PicoRV32 RISC-V based
SoC (Figure 2, bottom). We refer to this target as HWASCON-128. The
fundamental characteristic of a memory-mapped interface is that all com-
munication to the coprocessor hardware – data as well as control signals –
are expressed as memory writes/reads in a shared address space between
the software and the hardware. HWASCON uses 18 shared addresses to
communicate the secret key value, the associate data, the public nonce, the
plaintext, the ciphertext and the tag. The coprocessor maintains a memory-
mapped status register that is used by the software to determine if a given

Root-cause Analysis of ASCON Implementations 5

Worcester Polytechnic Institute

Memory-Mapped
Interface

to bus

control + data

Data In

Fig. 2. Block Diagram of PicoSoc with ASCON Coprocessor

coprocessor transfer (such as a block of Associated Data) has been fully
processed.

Trace Collection To collect power traces from the simulation of the chip, we use
gate-level simulation and Cadence Joules to capture both static and dynamic
power consumption. Cadence Joules is limited to traces of 1,000 frames, where
frame captures the average power over a small time window in the simulation.
To limit the overhead of data collection, we use a software trigger that marks
the beginning and end of the region of interest for analysis. The software trigger
toggles a GPIO pin, which can be detected in the simulation testbench to enable
the event collection process. To collect power traces from the chip measurement,
we use Chipwhisperer Husky which synchronously clocks the chip while recording
the power trace. Chipwhisperer Husky enables traces of up to 131,072 points.
The same software trigger is used to start and stop recording of a trace.

Non-specific Leakage Test An important design choice in our root-cause analysis,
is the selection of a leakage metric. We are using a non-specific leakage test,
which measures the statistical difference between two groups of traces. Group 0
are traces generated for a random secret key, while group 1 are traces generated
for a constant secret key. The test statistic for leakage is either the Welch-t
t-value between group 0 and group 1, or Pearson’s correlation with the group

6 Z. Liu et al.

Table 1. Chip Characteristics

Technology TSMC 180nm (tcb018gbwp7t 270a)
Comb. Cells 43,724 cells
Seq. Cells 13,947 cells
Core Area 10.69 sq mm
Chip Area 13.35 sq mm
SRAM 64 KByte (8 x 8K macro)

identifier (+1 for group 0 and -1 for group 1). The ranking process of ACA will
attribute a higher LIF (Leakage Impact Factor) to gates with a higher t-value
or with a higher correlation value [KYL+22].

3 Root-cause Analysis of ASCON Hardware SCL

In this experiment, our objective is to present the root-cause analysis of key-
dependent SCL in ASCON Coprocessor on RISC-V Soc. We narrow down to two
regions that has direct interaction with the 128-bit key as our analysis targets:

1. ASCON Coprocessor Key-Load.
2. ASCON Coprocessor Initialization.

To maximize the proportion of key-dependent SCL in the overall power con-
sumption of ASCON Coprocessor on RISC-V Soc, we apply 2000 test vectors
consisting of random vs. fixed key (1000 test vectors each group) with constant
nonce, associated data, and plaintext. The clock frequency is 4MHz, and the
power simulation is oversampled at 4 samples per clock cycle.

For root-cause analysis, we present ACA LTI to identify the leaky clock
cycles over simulation time. To quantify the key-dependent leaky gates over
clock cycles, we rank the logic gates of the design per clock cycle according to
the amount of contributed leakage per gate by computing LIF. Moreover, we
express the leakage pattern as a root-cause set of leaky instructions by back-
annotating leaky gates and cycles to software.

ASCON Coprocessor Key-Load The operation of the ASCON Coprocessor
involves software as well as hardware. To initialize the coprocessor, the software
will load the key, associated data and plaintext from RAM to the hardware
coprocessor. While this operation strictly does not involve ASCON computation,
it is included in every execution of the ASCON coprocessor; the key can be reused
over multiple operations but must be loaded at least once. For this reason, we
also investigate the key loading process.

Listing 1 summarizes the software operations involves in a key load. It takes
four instructions (lw, lw, addi, sw) to load a 32-bit key[0] from RAM to co-
processor (Instr. 70e, 712, 716, 718). This is repeated four times to complete a
128-bit key load using a 32-bit bus interface. After a 128-bit key is loaded, the
software writes a key update control signal to the coprocessor (Instr. 744), and

Root-cause Analysis of ASCON Implementations 7

wait for the coprocessor to send back a key ready signal (Instr. 754). Finally, the
software sends a key valid signal to complete the sequence (Instr. 75c).

Listing 1. Coprocessor Key-Load Sequence. Marked addresses refer to Fig. 3’s X-axis

70e lw a4 , -228(s0) # load key[0] from RAM

712: lw a5 ,-20(s0)
716: addi a5,a5 ,4

718 sw a4 ,0(a5) # store key [0] to coproc

71a lw a4 , -224(s0) # load key[1] from RAM

71e: lw a5 ,-20(s0)
722: addi a5,a5 ,8

724 sw a4 ,0(a5) # store key [1] to coproc

726 lw a4 , -220(s0) # load key[2] from RAM

72a: lw a5 ,-20(s0)
72e: addi a5,a5 ,12

730 sw a4 ,0(a5) # store key [2] to coproc

732 lw a4 , -216(s0) # load key[3] from RAM

736: lw a5 ,-20(s0)
73a: addi a5,a5 ,16

73c sw a4 ,0(a5) # store key [3] to coproc

73e: lw a5 ,-20(s0)
742: li a4 ,4
744: sw a4 ,0(a5) # coproc control: key update
746: nop
748: lw a5 ,-20(s0)
74c: addi a5,a5 ,68
750: lw a5 ,0(a5)
752: andi a5,a5 ,1
754: beqz a5 ,748 # wait for key update ready
756: lw a5 ,-20(s0)
75a: li a4 ,8

75c sw a4 ,0(a5) # coproc control: key valid

The entire ASCON Coprocessor Key-Load process requires 214 clock cycles
to complete. We identify the LTI with a ρthreshold of 0.2, which flags 198 clock
cycles out of these 214 clock cycles as containing potentially leaky samples.
Figure 3 shows the root-cause analysis results from ACA. The top figure shows
the correlation of the trace partitions with the group identifier. The bottom
figure shows the number of leaky gates over time, indicating each gate’s source
code (RTL module) in color (red indicates a leaky gate from the PicoRV, blue
indicates a leaky gate from the ASCON coprocessor, and black indicates the rest
of the modules from Figure 2 (top)). We observe a clear leaky-gate transiting
pattern over time for each load key: flagging 750 leaky gates from the PicoRV at
the beginning, and 100 leaky gates from the coprocessor at the end. This pattern
validates the correctness of our software Key-Load from the RTL-level as well as
shows how detailed that ACA can perform in terms of the root-cause analysis
on SCL.

We also observe that a high correlation value (Figure 3 (top)) does not imply
a high number of leaky gates (Figure 3 (bottom)). This is caused by the noiseless
simulation: even when there are almost no activities in the design (such as in
the waiting loop at Instr. 754), a high correlation can still exist. For this reason,
it is important to simultaneously consider Figure 3 top and bottom. A high
correlation value will only have impact on the overall side-channel leakage when

8 Z. Liu et al.

ASCON Status

Time(ms)

PC Counter

ACA Leakage Time Interval

70e
718

71a
724

726
730

732
75c

N
um

 o
f L

ea
ky

 G
at

es

Time(ms)

rh
o

73c

Load
Key

Key
Update

Key
Valid

Load
Key

Load
Key

Load
Key

Wait
for
Key
Ready

Leaky Gates Over Time

Fig. 3. ACA LTI Results (top) and Num of Leaky Gates over Simulation Time (bot-
tom) on HWASCON-128 Co-Processor Key-Load Phase with PC counter values in Red
and ASCON Program Status in Green

a high number of leaky gates are involved. Furthermore, we note that 750 gates
are still a tiny fraction of the overall 57,671 cells in the chip.

By annotating the time instant of the peaks in the leaky gates to the pro-
gram counter of the PC, we can back-annotate the leakage to activities in the
software. This way, we can find 9 instructions (highlighted in red in Listing 1 and
Figure 3’s PC Counter) that are responsible for a significant amount of leaky
gates (key-dependent SCL). These instructions copy the key value from RAM
to a coprocessor register. There is another peak in Figure 3, which maps to in-
struction 75c in Listing 1. Even though this instruction is a control instruction
for the coprocessor, its effect is to move the key value from the register in the
memory-mapped interface to a register in the ASCON hardware core. This cre-
ates additional side-channel leakage, and the source of the side-channel leakage
comes from the ASCON coprocessor.

ASCON Coprocessor Initialization Moving on to the root-cause analysis
inside of the ASCON coprocessor, this selected region covers the entire ASCON
Coprocessor Initialization phase and software control writes. Listing 2 summaries
its software instructions. 12-round of coprocessor initialization happens between
sends nonce valid (Inst. 7a6) and loads AD[0] from RAM (Inst. 7b0). The entire
ASCON Coprocessor INIT simulation takes 198 clock cycles to complete. We
identify the LTI with a ρthreshold of 0.2, which flags 185 clock cycles out of the
198 clock cycles as containing potentially leaky samples. Figure 4 shows the root-

Root-cause Analysis of ASCON Implementations 9

ASCON Status

Time(ms)

ACA Leakage Time Interval
N

um
 o

f L
ea

ky
 G

at
es

Time(ms)

rh
o

Wait for
Nonce
ready

Nonce
Valid

INIT Wait for
AD ready

Store
AD[0]

Store
AD[1]

AD
Valid

Leaky Gates Over Time

Fig. 4. ACA LTI Results (top) and Num of Leaky Gates over Simulation Time (bot-
tom) on HWASCON-128 Co-Processor Initialization Phase with PC counter values in
Red and ASCON Program Status in Green

cause analysis results from ACA. We observe that there is no significant amount
of key-dependent SCL showing in software instructions, nor from the PicoRV
module. This is expected because during software load/store nonce and associate
data, there is no sensitive data (key) being processed, and the computations are
happening inside of the ASCON coprocessor. For this reason, we see significant
amount of key-dependent leaky gates during the coprocessor initialization stage
from Figure 4 (bottom). There are 12 clock cycles being flagged over 2000 leaky
gates per clock cycle. These 12 clock cycles consist of 12-round of permutation,
and the key is directly feed into the initialization, therefore, shows significant
amount of key-dependent SCL. Furthermore, we note that 2000 gates are still a
tiny fraction of the overall 57,671 cells in the chip.

Listing 2. Coprocessor INIT sequence. Refer to Fig. 4
792: lw a5 ,-20(s0) # load ascon co-processor base address
796: addi a5,a5 ,68
79a: lw a5 ,0(a5)
79c: andi a5,a5 ,2
79e: beqz a5 ,792 # loop wait for coproc nonce ready
7a0: lw a5 ,-20(s0)
7a4: li a4 ,16
7a6: sw a4 ,0(a5) # send nonce valid
7a8: lw a5 ,-20(s0)
7ac: addi a5,a5 ,36
7b0: lw a4 , -136(s0) # load AD[0] from RAM
7b4: sw a4 ,0(a5) # store AD[0] to coproc

10 Z. Liu et al.

7b6: lw a5 ,-20(s0)
7ba: addi a5,a5 ,40
7be: lw a4 , -132(s0) # load AD[1] from RAM
7c2: sw a4 ,0(a5) # store AD[1] to coproc
7c4: nop
7c6: lw a5 ,-20(s0)
7ca: addi a5,a5 ,68
7ce: lw a5 ,0(a5)
7d0: andi a5,a5 ,4
7d2: beqz a5 ,7c6 # loop wait for coproc AD ready
7d4: lw a5 ,-20(s0)
7d8: lui a4 ,0x1
7da: addi a4,a4 ,32
7de: sw a4 ,0(a5) # coproc control: AD valid | AD last block

4 Root-cause Analysis of ASCON Software SCL

1: Simulation covers NonceLoad
+ KeyLoad + 1stRound of INIT

2: Simulation covers 12th
Round of INIT + KeyXor

3: Simulation covers
KeyXor + 1st Round of
FINAL

4: Simulation covers 12th
Round of FINAL +
KeyXor

Fig. 5. SWASCON-128 Simulation Experiment Rationale

In this experiment, our objective is to present the root-cause analysis of key-
dependent SCL in SWASCON SCL on RISC-V (RC32IMC). Figure 5 shows
SWASCON encryption details from Initialization, Associated Data, Plaintext,
to Finalization. To select our analysis regions, we narrow down to four regions
that has direct interaction with the 128-bit key in SWASCON as our targets:

1. SWASCON Nonce-Load, Key-Load, and 1st Round of Initialization.
2. SWASCON 12th Round of Initialization and Key-XOR.
3. SWASCON Key-XOR and 1st Round of Finalization.
4. SWASCON 12th Round of Finalization and Key-XOR.

To maximize the proportion of key-dependent SCL in the overall power con-
sumption of SWASCON on RISC-V (RC32IMC), we apply 1000 test vectors
consisting of random vs. fixed key (500 test vectors each group) with random
nonce, constant associated data, and constant plaintext. The clock frequency is
4MHz, and the power simulation is sampled at 1 sample per clock cycle.

For root-cause analysis, we use the same method as in section 3. We present
ACA LTI to identify the leaky clock cycles over simulation time. To quantify

Root-cause Analysis of ASCON Implementations 11

the key-dependent leaky gates over clock cycles, we rank the logic gates of the
design per clock cycle according to the amount of contributed leakage per gate
by computing LIF. Moreover, we express the leakage pattern as a root-cause set
of leaky instructions by back-annotating leaky gates and cycles to software.

SWASCON Nonce-Load, Key-Load, and 1st Round of Initialization
Comparing to ASCON Coprocessor, all the SWASCON computations happen
in side of the PicoRV. From section 3, we observe that the coprocessor takes
one clock cycle on one round of permutation, however, this is not the case in
SWASCON. In this selected region, SWASCON takes around 900 clock cycles to
complete one round of permutation. Together with Nonce-Load and Key-Load,
the entire simulation takes 957 clock cycles to finish. The corresponding software
instructions are showing in Listing 3, including load/store nonce and key, and
part of the 1st round of permutation (Round Constant, KECCAK SBOX and
Linear Diffusion Layer).

Listing 3. Software ASCON Nonce-Load, Key-Load, and 1st Round of INIT. Refer to
Fig. 6’s X-axis

2a68: addi a0,sp ,88
2a6a: sw s7 ,112(sp) # store nonce [0]
2a6c: sw s3 ,116(sp) # store nonce [1]
2a6e: sw s11 ,124(sp) # store nonce [2]
2a70: sw a1 ,120(sp) # store nonce [3]

2a72 sw s4 ,96(sp) # store key[0]

2a74 sw s6 ,100(sp) # store key[1]

2a76 sw s10 ,104(sp) # store key [2]

2a78 sw s0 ,108(sp) # store key[3]

2a7a: jal ra,fe4 <P12 >

00000 fe4 <P12 >:
...

fee lw s1 ,8(a0) # load key[0]

ff0 lw ra ,12(a0) # load key [1]

...

1004 lw a5 ,16(a0) # load key[2]

1006 lw t4 ,20(a0) # load key[3]

...

1026 xori s4,a5 ,240 # round constant: state_reg [2] XOR with 0xf0

...

1036 not a7 ,t4 # not key [3]

103a xori a5,a5 ,-241 # XORI key[2]

...
1246: jal ra ,19c

We identify the LTI with a ρthreshold of 0.2, which flags 239 clock cycles
out of the 957 clock cycles as containing potentially leaky samples. Figure 6
shows the root-cause analysis results from ACA. By annotating the time instant
of the peaks in the leaky gates to the program counter of the PC, we find 11
instructions (highlighted in red in Listing 3 and Figure 6’s PC Counter) that are
responsible for a significant amount of leaky gates (key-dependent SCL). These
instructions show direct interaction with the sensitive data (key), including four

12 Z. Liu et al.

2a72,2a74,2a76,2a78 Time(ms)

PC Counter

ACA Leakage Time Interval

N
um

 o
f L

ea
ky

 G
at

es
rh

o

Time(ms)

ASCON Status

fee,ff0

1026
1004,1006

1036,103a

Store
Key

Load
Key

Round
Constant

SBox ROR
Function

Linear DiffStore
Nonce

…………………..

Leaky Gates Over Time

1st round of
INIT

Fig. 6. ACA LTI Results (top) and Num of Leaky Gates over Simulation Time (bot-
tom) on SWASCON-128 Nonce-Load, Key-Load, and 1st Round of Initialization Phase
with PC counter values in Red and ASCON Program Status in Green

load/store key instructions, Round Constant (Instr. 1026), and more for the rest
of the permutation.

We observe that the key is being used multiple times in the software instruc-
tions causing large amount of leaky gates being flagged in Figure 6, and majority
of these leaky gates come from the PicoRV module, but still a tiny fraction of
the overall 57,671 cells in the chip. Moreover, we notice that there is a differences
between SWASCON and ASCON coprocessor during the initialization phase. In
ASCON coprocessor, each round of permutation finishes within one clock cycle,
therefore, we see 12 clock cycles with significant amount of leaky gates being
flagged in Figure 4 (bottom). On the other hand, SWASCON takes around 900
clock cycles to complete one round of permutation, so when there are no key-
dependent instructions executing, the number of leaky gates being flagged in
that clock cycle is close to zero. We also observe that half passed the Linear
Diffusion Layer from the 1st round of permutation, the number of leaky gates
(key-dependent SCL) significantly reduces in SWASCON, which is not very ob-
vious from the coprocessor experiment results (Figure 4 (bottom)). This shows
that in SWASCON, the sensitive data (key) is gradually being consumed over
clock cycles, flagging less key-dependent leaky gates towards the end of the 1st
round of permutation.

Root-cause Analysis of ASCON Implementations 13

N
um

 o
f L

ea
ky

 G
at

es

Time(ms)

ACA Leakage Time Interval

Leaky Gates Over Time

rh
o

Time(ms)

PC Counter
27d8,27e8, 27ec,27f4

29c0
29c8,29d0,29d4

Final Round of INIT Load
Key

Key
XOR

Fig. 7. ACA LTI Results (top) and Num of Leaky Gates over Simulation Time (bot-
tom) on SWASCON-128 12th Round of Initialization and Key-XOR Phase with PC
counter values in Red and ASCON Program Status in Green

SWASCON 12th Round of INIT and Key-XOR Moving on to the root-
cause analysis at the end of the SWASCON initialization phase. During the 12th
round of initialization and Key-XOR, the entire simulation takes 973 clock cycles
to complete. We identify the LTI with a ρthreshold of 0.2, which only flags 30
clock cycles out of the 973 clock cycles as containing potentially leaky samples.
Figure 7 shows the root-cause analysis results from ACA. We find 8 instructions
(highlighted in red in Listing 4 and Figure 7’s PC Counter) that are responsible
for a significant amount of leaky gates (key-dependent SCL), but still a tiny
fraction of the overall 57,671 cells in the chip. We only see a few clock cycles
marked as leaky at the end of permutation and this is expected. Because at
the end of the 12th round permutation, it loads the final state registers values
(Instr. 27d8, 27e8, 27ec, 27f4) and a 128-bit key (Instr. 29c0), and perform the
Key-XOR operation (Instr. 29c8, 29d0, 29d4). Only one out of four key load
instruction, and three out of four xor instructions are flagged with significant
amount of leaky gates. This shows us that the post-permutation Key-XOR dur-
ing the initialization phase contains less key-dependent SCL even though the
key is directly being used in the computation.

Listing 4. Software ASCON 12th Round of INIT and Key-XOR. Refer to Fig. 7’s
X-axis

00000 fe4 <P12 >:
...

14 Z. Liu et al.

27d8 lw s0 ,88(sp) # load state_reg

...

27e8 lw s4 ,72(sp) # load state_reg

...

27ec lw s6 ,64(sp) # load state_reg

...

27f4 lw s10 ,48(sp) # load state_reg

27fa: ret

29bc: jal ra,fe4 <P12 >

29c0 lw t0 ,124(sp) # load key

29c2 lw s3 ,112(sp) # load key
29c4 lw s7 ,116(sp) # load key
29c6 lw s11 ,120(sp) # load key

29c8 xor s8,t0,s0 # xor state_reg and key

29cc xor s3 ,s3,s4 # xor state_reg and key

29d0 xor s7,s7,s6 # xor state_reg and key

29d4 xor s11 ,s11 ,s10 # xor state_reg and key

SWASCON Key-XOR and 1st round of FINAL Moving on to the root-
cause analysis in the finalization phase. During the Key-XOR and 1st round of
finalization, the entire simulation takes 941 clock cycles to finish. We identify
the LTI with a ρthreshold of 0.2, which only flags 48 clock cycles out of the 941
clock cycles as containing potentially leaky samples. Figure 8 shows the root-
cause analysis results from ACA. We find 14 instructions (highlighted in red
in Listing 5 and Figure 8’s PC Counter) that are responsible for a significant
amount of leaky gates (key-dependent SCL), but still a tiny fraction of the overall
57,671 cells in the chip. We observe that at the beginning of this region, there are
significant amount of leaky gates flagged. This is where the Key-XOR happens.
Leaky instructions are Key-XOR (Instr. 452e, 4532, 4538, 453c) and store the
XORed values (Instr. 4540, 4542, 4544, 4546). We only see few clock cycles
marked as leaky during the 1st round of finalization, these are store instructions
which store the key-dependent intermediate values when executing KECCAK
SBOX and Linear Diffusion layer. Comparing to the 1st round of initialization,
the 1st round of finalization flagged way less leaky cycles and gates.

Listing 5. Software ASCON Key-XOR and 1st Round of FINAL. Refer to Fig. 8’s
X-axis
452e xor a5 ,s5,s0 # key xor

4532 xor t5 ,s10 ,s2 # key xor

...

4538 xor t2 ,s6,s1 #key xor

453c xor ra ,s7,s8 #key xor

4540 sw a5 ,96(sp) # store xored value

4542 sw t5 ,104(sp) # store xored value

4544 sw t2 ,100(sp) # store xored value

4546 sw ra ,108(sp) # store xored value

4548 jal ra,fe4 <P12 >

00000 fe4 <P12 >:

Root-cause Analysis of ASCON Implementations 15

...

10bc sw s5 ,68(sp)

...

10d0 sw s9 ,52(sp)

...

112e sw s10 ,48(sp)

...

1150 sw s1 ,24(sp)

...

1192 sw s7 ,60(sp)

...

11a0 sw s6 ,64(sp)

Time(ms)

ACA Leakage Time Interval

N
um

 o
f L

ea
ky

 G
at

es
rh

o

Time(ms)

PC Counter
452e … 4546 10bc

10d0
112e
1150

1192
11a0

KeyXOR 1st Round of FINAL

Leaky Gates Over Time

Fig. 8. ACA LTI Results (top) and Num of Leaky Gates over Simulation Time
(bottom) on SWASCON-128 Key-XOR and 1st round of Finalization Phase with PC
counter values in Red and ASCON Program Status in Green

SWASCON 12th round of FINAL and Key-XOR Finally, we present the
root-cause analysis during the 12th round of finalization phase and Key-XOR. In
this selected region, the entire simulation takes 922 clock cycles to complete. We
identify the LTI with a ρthreshold of 0.2, which only flags 26 clock cycles out of
the 922 clock cycles as containing potentially leaky samples. Figure 9 shows the
root-cause analysis results from ACA. We find 14 instructions (highlighted in
red in Listing 6 and Figure 9’s PC Counter) that are responsible for a significant
amount of leaky gates (key-dependent SCL), but still a tiny fraction of the overall
57,671 cells in the chip. We only see a few clock cycles marked as leaky at the end
of finalization and this is expected. Leaky instructions include loading the final
state registers values (Instr. 285a ... 28ac), loading a 128-bit key (Instr. 4558,

16 Z. Liu et al.

455a, 455c, 455e), and performing the Key-XOR operation (Instr. 4560, 4562).
We see significant amount of leaky gates being flagged during the Key-XOR,
and majority of the leaky gates are originated from the PicoRV.

Time(ms)

ACA Leakage Time Interval

N
um

 o
f L

ea
ky

 G
at

es
rh

o

Time(ms)

PC Counter
285a

Leaky Gates Over Time

2876, 2878, 287a
2888, 288a

28aa, 28ac

4558…4652

Final Round of FINAL Load
Key

Key
XOR

Fig. 9. ACA LTI Results (top) and Num of Leaky Gates over Simulation Time (bot-
tom) on SWASCON-128 12th round of Finalization and Key-XOR Phase with PC
counter values in Red and ASCON Program Status in Green

Listing 6. Software ASCON 12th Round of FINAL and Key-XOR. Refer to Fig. 9’s
X-axis
...

285a lw s0 ,88(sp) # load state_reg

...

2876 lw s5 ,68(sp) # load state_reg

2878 lw s6 ,64(sp) # load state_reg

287a lw s7 ,60(sp) # load state_reg

...

2888 lw s4 ,72(sp) # load state_reg

288a lw s3 ,76(sp) # load state_reg

...

28aa lw s10 ,48(sp) # load state_reg

28ac lw s11 ,44(sp) # load state_reg

...
28b0: ret

4554: jal ra ,fe4 <P12 >

4558 lw a5 ,124(sp) # load key

455a lw s5 ,116(sp) # load key

Root-cause Analysis of ASCON Implementations 17

455c lw s2 ,112(sp) # load key

455e lw s1 ,120(sp) # load key

4560 xor s0 ,s0,a5 # key xor

4562 xor s5 ,s5,s6 # key xor

5 Validating Simulation against Measurement

In our final experiment, we compared the simulation results that drive the root-
cause analysis with measurements taken from a prototype implementation from
the same design [KLE+21]. To take the higher noise levels of the physical mea-
surement into account, we increased the number of traces used in the measure-
ment campaign to 50,000 (a 50x increase). The number of traces was chosen such
that we identified clear positive peaks in the t-test results. The board is running
at 4MHz, the sampling rate for HWASCON-128 and SWASCON-128 are 64Mhz
(16 samples per clock cycle) and 16Mhz (4 samples per clock cycle).

We concluded that our t-test results for the implementation are a subset
of the t-test results for the simulation. When the simulation model identifies an
ACA t-test peak that corresponds to a large number of leaky gates (500 or more),
then that peak is also present in the t-test on the measurements. However, the
converse is not true: a t-test peak in the simulation may remain undetectable in
the measurement. This happens when only very few leaky gates are involved in
the t-test peak, which corresponds to minuscule power variations that remain
invisible in the measurements.

Figure 10 compares the t-values for measured HWASCON-128 traces with
the t-values for simulated HWASCON-128 traces. The presence of the key is
clearly picked up in the simulation at KeyLoad and during the Initialization
phase after KeyLoad. The t-test on the simulated traces show a similar peak
pattern. Because simulated traces contain only 1000 samples, each simulated
t-score graph only covers a small portion of the overall measured t-score graph.

Figure 11 compares the t-values from measured and simulated SWASCON-
128 traces during the ASCON Initialization phase. The key dependence is identi-
fied in the measurements as well as in the simulation during KeyLoad, KeyXOR,
first-round processing, and 12th-round processing.

Figure 12 compares the t-values from measured and simulated SWASCON-
128 traces during the ASCON Finalization phase. The key dependence is identi-
fied in the measurements as well as in the simulation during KeyXOR processing
befre the first-round and after the 12th-round processing.

These three examples illustrate that a meaningful connection can be made,
between simulation traces and root-cause analysis (ACA) on the one hand, and
between leakage patterns on simulated traces and measured traces on the other
hand.

18 Z. Liu et al.

HWASCON Simulation KeyLoad t-score

HWASCON Measurement NonceLoad + KeyLoad
+ INIT + AD + FINAL t-score

HWASCON Simulation INIT t-score

Samples

Sample
s

Samples

T-
sc
or
e

T-
sc
or
e

T-
sc
or
e

Fig. 10. Measurement and Simulation T-Test Results on HWASCON-128 KeyLoad
and Initialization

SWASCON Simulation
NonceLoad+KeyLoad+1stR_INIT t-score

SWASCON Measurement NonceLoad+KeyLoad
+12RoundsINIT+ KeyXor t-score

SWASCON Simulation
12thR_INIT+KeyXor t-score

Samples

Samples

Samples

T-
sc
or
e

T-
sc
or
e

T-
sc
or
e

Fig. 11. Measurement and Simulation T-Test Results on SWASCON-128 Initialization

SWASCON Simulation
KeyXor+1stR_FINAL t-score

SWASCON Measurement
KeyXor+12RoundsFINAL+KeyXor t-score

SWASCON Simulation
12thR_FINAL+KeyXor t-score

Samples

Samples

Samples

T-
sc
or
e

T-
sc
or
e

T-
sc
or
e

Fig. 12. Measurement and Simulation T-Test Results on SWASCON-128 Finalization

Root-cause Analysis of ASCON Implementations 19

6 Conclusions

Root-Cause Analysis of Side-Channel Leakage constitutes a vital component of
Pre-Silicon security analysis. It explains where and how the leakage comes from a
implementation, thereby enabling designers to develop effective countermeasures
or diagnose Side-Channel Leakage related defects. In this context, we present a
comprehensive Root-Cause Analysis using Architecture Correlation Analysis on
two ASCON implementations, a ASCON Coprocessor on a RISC-V SoC and
a SWASCON on RISC-V (RV32IMC). These implementations have received
limited attention from the research community in terms of side-channel analysis,
and our study aims to address this gap by expressing the leakage pattern as a
root-cause set of leaky instructions by back-annotating leaky gates and cycles to
software instructions. Moreover, we validate our analysis by seeing a meaningful
connection between Pre-Silicon simulation and Post-Silicon measurement traces.

References

AFM18. Alexandre Adomnicai, Jacques J. A. Fournier, and Laurent Masson. Mask-
ing the lightweight authenticated ciphers acorn and ascon in software.
Cryptology ePrint Archive, Paper 2018/708, 2018. https://eprint.iacr.
org/2018/708.

asc23. C Reference Implementation of ASCON128v12, 2023.
BBYS21. Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont. Sok:

Design tools for side-channel-aware implementations. IACR Cryptol.
ePrint Arch., page 497, 2021.

BIBB21. Omid Bazangani, Alexandre Iooss, Ileana Buhan, and Lejla Batina. Abby:
Automating leakage modeling for side-channels analysis. Cryptology
ePrint Archive, Paper 2021/1569, 2021. https://eprint.iacr.org/2021/
1569.

DCBG+17. Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov,
Svetla Nikova, and Vincent Rijmen. Does coupling affect the security of
masked implementations? In Sylvain Guilley, editor, Constructive Side-
Channel Analysis and Secure Design, pages 1–18, Cham, 2017. Springer
International Publishing.

Fiv16. Michael Fivez. Energy efficient hardware implementations of caesar sub-
missions. Master’s thesis, ESAT COSIC, KULeuven, 2016. https:

//www.esat.kuleuven.be/cosic/publications/thesis-279.pdf.
GGB+23. Ofek Gur, Tomer Gross, Davide Bellizia, François-Xavier Standaert, and

Itamar Levi. An in-depth evaluation of externally amplified coupling
(EAC) attacks - A concrete threat for masked cryptographic implementa-
tions. IEEE Trans. Circuits Syst. I Regul. Pap., 70(2):783–796, 2023.

GS20. Ilias Giechaskiel and Jakub Szefer. Information leakage from FPGA rout-
ing and logic elements. In IEEE/ACM International Conference On Com-
puter Aided Design, ICCAD 2020, San Diego, CA, USA, November 2-5,
2020, pages 63:1–63:9. IEEE, 2020.

GWDE17. Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph
Ehrenhöfer. Ascon hardware implementations and side-channel evalua-
tion. Microprocess. Microsystems, 52:470–479, 2017.

https://eprint.iacr.org/2018/708
https://eprint.iacr.org/2018/708
https://eprint.iacr.org/2021/1569
https://eprint.iacr.org/2021/1569
https://www.esat.kuleuven.be/cosic/publications/thesis-279.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-279.pdf

20 Z. Liu et al.

HPN+19. Miao Tony He, Jungmin Park, Adib Nahiyan, Apostol Vassilev, Yier Jin,
and Mark M. Tehranipoor. RTL-PSC: automated power side-channel leak-
age assessment at register-transfer level. In 37th IEEE VLSI Test Sym-
posium, VTS 2019, Monterey, CA, USA, April 23-25, 2019, pages 1–6.
IEEE, 2019.

ISO16. Testing methods for the mitigation of non-invasive attack classes against
cryptographic modules. Standard, International Organization for Stan-
dardization, Geneva, CH, 2016.

KLE+21. Pantea Kiaei, Zhenyuan Liu, Ramazan Kaan Eren, Yuan Yao, and Patrick
Schaumont. Saidoyoki: Evaluating side-channel leakage in pre- and post-
silicon setting. IACR Cryptol. ePrint Arch., page 1235, 2021.

KS22. Pantea Kiaei and Patrick Schaumont. Soc root canal! root cause analysis
of power side-channel leakage in system-on-chip designs. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2022(4):751–773, 2022.

KYL+22. Pantea Kiaei, Yuan Yao, Zhenyuan Liu, Nicole Fern, Cees-Bart Breunesse,
Jasper Van Woudenberg, Kate Gillis, Alex Dich, Peter Grossmann, and
Patrick Schaumont. Gate-level side-channel leakage assessment with ar-
chitecture correlation analysis. CoRR, abs/2204.11972, 2022.

LCGD18. Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-architectural
power simulator for leakage assessment of cryptographic software on
arm cortex-m3 processors. In Junfeng Fan and Benedikt Gierlichs, edi-
tors, Constructive Side-Channel Analysis and Secure Design, pages 82–98,
Cham, 2018. Springer International Publishing.

MBA+23. Kamyar Mohajerani, Luke Beckwith, Abubakr Abdulgadir, Eduardo Fer-
rufino, Jens-Peter Kaps, and Kris Gaj. Sca evaluation and benchmarking
of finalists in the nist lightweight cryptography standardization process.
Cryptology ePrint Archive, Paper 2023/484, 2023. https://eprint.iacr.
org/2023/484.

MMR20. Thorben Moos, Amir Moradi, and Bastian Richter. Static power side-
channel analysis - an investigation of measurement factors. IEEE Trans.
Very Large Scale Integr. Syst., 28(2):376–389, 2020.

PGA+22. Kostas Papagiannopoulos, Ognjen Glamocanin, Melissa Azouaoui, Dorian
Ros, Francesco Regazzoni, and Mirjana Stojilovic. The side-channel metric
cheat sheet, 2022.

PRP+19. George Provelengios, Chethan Ramesh, Shivukumar B. Patil, Ken Eguro,
Russell Tessier, and Daniel E. Holcomb. Characterization of long wire
data leakage in deep submicron fpgas. In Kia Bazargan and Stephen
Neuendorffer, editors, Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA 2019, Seaside,
CA, USA, February 24-26, 2019, pages 292–297. ACM, 2019.

RAD20. Keyvan Ramezanpour, Paul Ampadu, and William Diehl. SCARL: side-
channel analysis with reinforcement learning on the ascon authenticated
cipher. CoRR, abs/2006.03995, 2020.

SD17. Niels Samwel and Joan Daemen. DPA on hardware implementations of
ascon and keyak. In Proceedings of the Computing Frontiers Conference,
CF’17, Siena, Italy, May 15-17, 2017, pages 415–424. ACM, 2017.

SS23. Dillibabu Shanmugam and Patrick Schaumont. Improving side-channel
leakage assessment using pre-silicon leakage models. In Elif Bilge Kavun
and Michael Pehl, editors, Constructive Side-Channel Analysis and Secure
Design - 14th International Workshop, COSADE 2023, Munich, Germany,

https://eprint.iacr.org/2023/484
https://eprint.iacr.org/2023/484

Root-cause Analysis of ASCON Implementations 21

April 3-4, 2023, Proceedings, volume 13979 of Lecture Notes in Computer
Science, pages 105–124. Springer, 2023.

YSW+20. Yuan Yao, Patrick Schaumont, Jasper Van Woudenberg, Cees-Bart Bre-
unesse, Edgar Mateos Santillan, and Steve Stecyk. Verification of power-
based side-channel leakage through simulation. In 63rd IEEE International
Midwest Symposium on Circuits and Systems, MWSCAS 2020, Spring-
field, MA, USA, August 9-12, 2020, pages 1112–1115. IEEE, 2020.

	Root-cause Analysis of the Side Channel Leakage from ASCON Implementations

