Secure Application Continuity in
Intermittent Systems

Archanaa S. Krishnan
Virginia Tech
Blacksburg, VA, USA
archanaa@vt.edu

Charles Suslowicz
Virginia Tech
Blacksburg, VA, USA
cesuslow @vt.edu

Abstract—Intermittent systems operate embedded devices
without a source of constant reliable power, relying instead on
an unreliable source such as an energy harvester. They overcome
the limitation of intermittent power by retaining and restoring
system state as checkpoints across periods of power loss. Previous
works have addressed a multitude of problems created by the
intermittent paradigm, but do not consider securing intermittent
systems. In this paper, we address the security concerns created
through the introduction of checkpoints to an embedded device.
When the non-volatile memory that holds checkpoints can be
tampered, the checkpoints can be replayed or duplicated. We
propose secure application continuity as a defense against these
attacks. Secure application continuity provides assurance that
an application continues where it left off upon power loss.
In our secure continuity solution, we define a protocol that
adds integrity, authenticity, and freshness to checkpoints. We
develop two solutions for our secure checkpointing design. The
first solution uses a hardware accelerated implementation of
AES, while the second one is based on a software imple-
mentation of a lightweight cryptographic algorithm, Chaskey.
We analyze the feasibility and overhead of these designs in
terms of energy consumption, execution time, and code size
across several application configurations. Then, we compare this
overhead to a non-secure checkpointing system. We conclude that
securing application continuity does not come cheap and that it
increases the overhead of checkpoint restoration from 3.79 ..J
to 42.96 1J with the hardware accelerated solution and 57.02
wJ with the software based solution. To our knowledge, no one
has yet considered the cost to provide security guarantees for
intermittent operations. Our work provides future developers
with an empirical evaluation of this cost, and with a problem
statement for future research in this area.

Keywords-secure embedded systems; intermittent systems; ap-
plication continuity; energy harvesting

I. INTRODUCTION

Energy harvesters convert ambient energy into green energy
which can power up small devices. Improvements in energy
harvesting have created the potential for energy harvested
embedded systems that are not limited to a strict battery life
or grid connection [1]. Instead, new systems are now equipped
with an energy harvester, a small energy store, and intermittent
capability to allow continuous operation without the need
for frequent system maintenance. This creates opportunities
to deploy embedded systems to locations that are difficult
to support or manage, especially for sensor applications and
control applications in remote locations.

Patrick Schaumont
Virginia Tech
Blacksburg, VA, USA
schaum@vt.edu

Daniel Dinu
Virginia Tech
Blacksburg, VA, USA
ddinu@vt.edu

While offering sustainable energy and autonomy to embed-
ded computing systems, energy harvesters also bring a new
computing paradigm to these systems. Embedded devices now
operate within an intermittent computing model where they
continue their operations across periods of power loss through
the retention of their system state as checkpoints in non-
volatile memory (NVM). This is possible through the advent
of low energy NVM technologies such as ferroelectric RAM
(FRAM) and phase-change memory [2], [3].

A. Security Dimension

One aspect of intermittent systems has been ignored by the
current body of work, the security implications of intermittent
operation. The act of storing the complete system state in
NVM exposes critical pieces of system information to poten-
tial tampering by an adversary with access to the device.

Existing intermittent computing solutions operate on the
assumption that if a checkpoint exists, it is valid and will
properly restore the system [4], [5], [6]. This is a naive and po-
tentially dangerous assumption. Once in non-volatile memory,
the checkpoint is at risk of modification, copy, replacement, or
corruption by both malignant and erroneous actions. A small
number of NVM protection techniques have been proposed
which incorporate encryption into every memory access [7],
[8]. Unfortunately, these techniques are not energy efficient for
low-power devices. Ghosdi ef al. suggest securing intermittent
system checkpoints through the encryption of each checkpoint,
but their solution only provides confidentiality and fails to
account for checkpoint integrity, authenticity or freshness [9].

If a checkpoint is tampered, the system is exposed to a
host of problems. Secret information on the device, such as
private keys, could be exposed. Replay of old checkpoints
could trigger sensitive operations that enable side-channel
attacks on normally secure behaviors. Traditional security fea-
tures, control-flow integrity monitoring or memory protection
schemes, can be bypassed through the modification of their
data structures during the power-off period [10], [11]. Some
schemes, such as SANCUS [12], which include custom hard-
ware support for their security guarantees are also susceptible
if the checkpointing process exposes the values stored in
the protection mechanism’s custom registers or shadow stack
within a checkpoint [13]. The storage of this information
would be necessary to restore the correct system state, but

978-1-5386-7466-6/18/$31.00 (©2018 IEEE

it exposes otherwise protected information to tampering by an
adversary and creates a discontinuity in the security guarantees
provided by these protection mechanisms.

For intermittent devices to benefit from existing security
solutions and have application continuity, they must verify that
their stored state information is correct and unmodified. This
can be accomplished through the cryptographic verification
of the checkpoint’s integrity, authenticity, and freshness. By
verifying the integrity of the checkpoint, it is possible for the
intermittent system to ensure that no tampering has occurred
from the time the checkpoint was created.

Similarly, we must verify the authenticity of the checkpoint
to ensure that it was in fact created by the intermittent system
itself. Without authenticity, it is possible for an adversary to
create a valid checkpoint of a vulnerable or weakened state on
a test device and later load it onto the target device to facilitate
an attack.

Finally, the freshness of the checkpoint must be validated
to prevent previously created checkpoints from being reloaded
onto the device. Without this feature, it would be possible for
an adversary to ‘roll-back’ the state of a device to an arbitrary
previous checkpoint. By their nature, intermittent systems will
restore their most recent checkpoint during their operation.
But, allowing the restoration of any prior checkpoint, which
exposes the device to replay attacks, would undermine appli-
cation level security protections.

Naturally, security protection does not come for free, as
cryptographic operations consume energy and processor cy-
cles. Our goal is to evaluate, for a realistic scenario in intermit-
tent computing, the overhead of secure application continuity
and see if energy harvesting can support this overhead.

B. Contributions
We present the following contributions through our work:

o We highlight the need for protection against checkpoint
replay in intermittent systems and propose securing ap-
plication continuity with an anti-replay solution.

« We introduce a protocol that provides integrity, authentic-
ity, and freshness to an intermittent system’s checkpoints
and continuity to existing embedded security applications
across periods of power loss.

e« We provide a proof-of-concept implementation of the
protocol with both a software implementation utilizing
lightweight cryptography and a hardware solution using
a hardware accelerated standard cryptographic primitive
on an MSP430 device. We then empirically evaluate the
cost for securing application continuity across different
device configurations.

The remaining portions of this paper are structured as fol-
lows: Section II describes the details of our protocol to provide
secure application continuity. It outlines our implementation
of a basic intermittent system with integrity, authenticity,
freshness, and application continuity. Section III details the
the procedure to integrate security to the intermittent system
on our test platform. Section IV discusses our experimentation
strategy, evaluation, and results. Finally, we close with our
conclusions.

Algorithm 1 refresh and restore

Require: KEY,STATE,S;, CNT;, T;, where i € {A, B}
operation € {REFRESH, RESTORE}

1. if T :MAC(SA‘CNTA‘TA,KEY) then
2: if operation = RESTORE then

3 STATE < Su

4: end if

5: CNTg + CNTy+ 1

6 Sp < STATE

7 TA(*MAC(SB|CNTB|TB,KEY)

8: else

9: if Ty = MAC(Sg|CNTp|Tg, KEY) then
10: if operation = RESTORE then

11: STATE < Sg

12: end if

13: CNTy <+ CNTg + 1

14: Sa < STATE

15: TB%MAC(SAlcNTAlTA,KEY)
16: end if

17: else

18: abort()

19: end if

II. APPROACH

Our approach is to target the checkpoint system itself,
protect it, and thereby provide existing embedded solutions the
continuity necessary to securely operate on an intermittent de-
vice. Our protocol was designed based on the assumption that
the embedded system employs existing embedded solutions to
protects its execution integrity and memory when it is powered
on. This will enable the use of previously developed embedded
systems by ensuring their secure application continuity across
the periods of power loss and checkpointing behavior unique
to intermittent systems.

The design (Section II-A) and implementation (Sec-
tion II-B) of a secure protocol for application continuity in
intermittent systems powered by harvested energy is challeng-
ing for two reasons. First, these systems have to judiciously use
every fraction of the available energy. Second, adding security
to a checkpointing scheme requires a careful manipulation of
the system’s state in order to avoid inconsistencies or security
breaches as result of an uncontrollable power loss. In this
section we address these challenges, propose a secure protocol
for application continuity in intermittent systems and a proof-
of-concept implementation. Furthermore, our experimental re-
sults (Section IV) provide a unique perspective on the cost of
secure application continuity for devices powered by harvested
energy.

A. Secure Protocol

Algorithm 1 depicts the protocol we developed to achieve
application continuity in an intermittent system. It details
the two necessary functions: refresh for the creation of
checkpoints and restore for the restoration of checkpoints.
Both functions are essentially the same except for the extra

step of copying the stored system state, .5;, into the device’s
current state, STATE, in line 3 and 11 during checkpoint
restoration. We store the system checkpoint in one of the two
buffers, A or B. The buffers are updated in an alternating
manner to ensure that at least one secure checkpoint remains
valid in the event of power loss during the execution of
refresh or restore. This ensures that our protocol itself
is robust against power loss.

When stored, each secure checkpoint is a tuple of three
elements: the checkpointed state (.5;), a 128-bit nonce (CNT5;),
and a 128-bit authentication tag (73).

The checkpoint state, S;, is a copy of STATE, the current
state of the device. It includes three types of information.
First, the necessary application specific state required to re-
sume program execution after power loss. Second, the micro-
controller system state including the program counter, stack
pointer, status register and other general purpose registers. And
finally, the necessary microcontroller peripheral settings for
any peripherals in use.

A nonce is required to provide freshness to each checkpoint.
It is introduced to our checkpoints in the form of a counter,
CNT;, whenever the checkpoint is generated or restored.
The authentication tag, 7;, is computed over the current
checkpoint state and current counter value using a device
unique key, KE'Y, which is at least 128-bits long. A Message
Authentication Code (MAC) is used to securely generate the
authentication tag. The use of a device unique key, which is
kept secret, ensures that every checkpoint is tied to the device
and that the checkpoint cannot be replayed on another device.

When a checkpoint is generated, the entire control flow
of the microcontroller including the program counter, stack,
status register, and other system critical information, is stored
as data in NVM. To preserve the control flow integrity of
the program across power losses we introduce the concept
of tag-chaining. We include the authentication tag of the
previous secure checkpoint in the computation of the current
secure checkpoint’s authentication tag, creating a unique chain
of authentication tags which reflects the current state and
all the past states of the device. The current tag can only
be regenerated if the device’s current state is reached after
execution of the correct pattern of previous states. A valid
secure checkpoint will now contain the current system state,
the current counter value and the corresponding tag. The tag
authenticates the current system state and, because of the
chained values, the sequence of previously stored system states
and counter values.

When the system is powered on, the most recent checkpoint,
as determined by the tag chain, is used to restore the system
if it passes the authentication tag check. This execution of
the restore function occurs before any other operation, an
approach similar to the solution proposed for Quickrecall [5].

A part of the checkpoint, if not the whole, must be made
inaccessible to the adversary to prevent replay attacks. Apart
from the regular tamper-sensitive NVM, Algorithm 1 requires
a tamper-free NVM. It is a section of memory that cannot
be tampered with or accessed by the adversary even when
the device is powered off. Since tamper-free memory is small

in size, as demonstrated in the Zatara ZA9L1 [14], and
checkpoint size varies depending on the application, it is not
feasible to store an entire checkpoint in tamper-free memory.
Instead, we use it to store the smallest elements of our secure
checkpoints, the nonces and the device unique key. Since the
nonce is unavailable to the adversary, they cannot obtain a
copy of the entire checkpoint for the purpose of a replay attack.

Tamper-free memory is not currently a standard compo-
nent in most microcontroller platforms, but recent work in
attestation and isolation for microcontrollers demonstrates the
feasibility of tamper-free NVM in future devices and Texas
Instruments provides limited memory protection capabilities in
existing platforms [15], [16]. The vast majority of our device’s
NVM does not possess tamper resistance and is used to store
the rest of the secure checkpoint including the checkpoint
states and the authentication tags.

B. Implementation

We extended and modified an existing intermittent solution,
the Compute-Thru-Power-Loss (CTPL) library from Texas
Instruments [3], to validate our protocol using a software
solution. First, we modified the library to be compatible with
the msp430-elf-gcc compiler to work with our other
existing MSP430 code base and tools. Since the original CTPL
code only supported transitions to low power modes and the
creation of system checkpoints before shutdown, we extended
the CTPL feature set to include on-demand checkpointing,
a user identified secure data section, alternating checkpoint
storage, and integration of the security primitives required by
our protocol within the checkpoint creation and restoration
process.

Finally, we selected cryptographic algorithms based on
the available hardware modules and previously demonstrated
performance of existing lightweight MACs.

To integrate the necessary security features into CTPL, it
was necessary to rewrite the low-level assembly functions of
the library that relied on functionality unique to TI's c1430
compiler. This included changes to dependency resolution,
macros, and section declarations while maintaining the overall
functionality of each low-level function. The addition of se-
curity functions to the checkpoint process required significant
modification to the control flow of the checkpointing process.
Support was added to identify if the requested checkpoint
required the use of a security function and to execute the
identified function after a checkpoint was assembled. Finally,
the original ctpl_state flag used by the library was re-
purposed to prevent endless checkpoint loops during the
wakeup process rather than identify if a checkpoint existed
for the system.

1) Data Identification and Storage: Defining a separate
memory section, the .secure section, within the device’s
linker description file, provides a clear user defined secure
data section. The . secure section is located in a portion of
the device’s NVM and provides developers with the ability
to clearly declare variables that should be included within
the device’s checkpoints. It serves as a live snapshot of the
device’s current state and includes the allocated NVM to

store the device’s stack, register information, and peripheral
information during the checkpoint creation process. Using a
specified memory section simplifies the creation of check-
points by collating all of the necessary system data in one
contiguous memory region. The collection of the processor
state and peripheral information is completed through the
normal CTPL processes. To create a checkpoint, the device’s
peripherals are polled and their appropriate register states are
stored in their allocated portion of the .secure memory
section. The register information is then pushed onto the
system stack and a copy of the stack is stored in the . secure
section. Once all of the relevant data has been collected, the
secure checkpoint creation function, refresh, is invoked to
create the checkpoint.

2) Secure Checkpointing Functions: The refresh func-
tion implements the protocol we developed to store the new
checkpoint in the appropriate checkpoint storage slot. As
described in Section II, two secure checkpoint storage slots,
A and B, are defined in the implementation. The latest
checkpoint is identified through the verification of each stored
checkpoint’s MAC as described by Algorithm 1 and the new
checkpoint is stored in the alternate slot. The write of the
newly computed MAC serves as the transition to the new
checkpoint as the valid stored state. Any power loss prior
to the completion of this write will have the system restore
the previous checkpoint; once the write is complete, the new
checkpoint will pass validity checks and the old checkpoint
will fail.

The restoration of checkpoints is implemented in the
restore function. This is the same process as the one used
by refresh except for the additional step of copying the state
information stored in the latest checkpoint in the .secure
memory section to restore the system state. Once the copy
is complete, restore also updates the protocol counters
and recomputes the MAC of the stored checkpoint. This re-
computation is critical for any application level security that
needs to be aware of the restoration of checkpoints.

To securely start a new system, we implement an
initialize function that checks NVM for the device reset
memory pattern. This is the memory pattern written into NVM
by the device’s factory reset function, Oxf£ff in the case of
our test device. If the pattern is found, it is overwritten to
prevent multiple initializations, and an initial checkpoint of
the starting system is created. This bootstraps our chain of
checkpoints, and allows the refresh and restore func-
tions to be used throughout the rest of the device’s operation.

3) Cryptographic Primitives: For our evaluation, we chose
to employ two different cryptographic primitives, one software
based and one hardware based, for MAC operations. This
evaluation shows the viability of both approaches but primarily
highlights the computational cost to properly validate a sys-
tem’s checkpoints. Throughout the evaluation process, they are
referenced as HW—SIC, SW—SIC, and NON-SIC based on the
employed cryptographic operations.

HW-SIC, hardware supported secure intermittent comput-
ing, uses a hardware AES accelerator to compute checkpoint
MACs using CMAC. CMAC is a block cipher mode of

operation recommended by NIST to determine the integrity of
data against malicious modification [17]. Our implementation
was developed using the Cifra cryptographic library [18] and
required very few modifications to utilize the AES accelerator
for its block cipher operations instead of the Cifra AES
implementation. This structure provides an excellent baseline
for a hardware accelerated standard cryptographic primitive
supporting 64-bit collision resistance for MAC operations
and is representative of a solution for systems that either
contain cryptographic co-processors or need to employ a NIST
standard cryptographic primitive for compliance.

SW-SIC, software supported secure intermittent computing,
implements a software based MAC using Chaskey [19] to
measure the overhead that would be experienced by de-
vices that lack an AES accelerator. Chaskey is an efficient
lightweight MAC algorithm for use with 128-bit keys. It
specifically targets platforms that are not robust enough to
employ a standard hash-based authentication code (HMAC)
but still require effective security. We chose Chaskey as a
representative MAC for this category for two reasons: its
MSP430 performance in the FELICS test suite [20], where
it outperformed many other similar lightweight ciphers [21],
and its current consideration for standardization by ISO [22].
Combined, these qualities make it a reasonable representative
of lightweight cryptographic primitives that may be considered
for use in energy harvested intermittent systems.

Finally, we implemented our protocol without MAC support
in order to provide a baseline for a non-secure intermittent
computing system, NON-SIC. It uses the same functions
to create and restore checkpoints but does not secure the
checkpoints. It skips the verification steps and blindly copies
or updates the system state whenever requested. To be clear,
NON-SIC does not support any of our expected security
guarantees and is strictly used as a baseline of an unsecured
checkpointing system.

III. MEASUREMENT PLATFORM AND TEST STRUCTURE

With these elements identified and created, we were able
to integrate them into a fully operational secure intermittent
system for use in our evaluation.

A. Platform

To exercise our protocol and determine the overhead in-
curred by our approach we looked for a reasonable, low-
cost development device which is a representative of systems
that might be employed for sensitive operations while sup-
ported by an energy harvester. For our platform, we chose
an MSP430FR5994 Launchpad Development board which
provided the following benefits. First, we were able to exten-
sively modify TI’s Compute-Thru-Power-Loss (CTPL) library
to support our security protocol while retaining its original
board compatibility. Second, the MSP430FR5994 supports
256 kB of ferroelectric RAM (FRAM) providing a high-speed
NVM to store checkpoints. And last, it is an ultra-low power
platform reasonable for an energy harvested application.

The FRAM present on the MSP430FR5994 is an excel-
lent example of the new non-volatile memory technologies

e o
e o
P
DSO |e o E N ¢
| I | —_—
L EEEEEEE
©@P®® 7. T
EEEEEER
|
’U(t) tl,tg
Vap
I A A R~
VCC’W —|||||_
R IpuTk
GND

Fig. 1: The measurement circuit constructed to observe the
energy required for different device operations. The device
under test (DUT) was powered by an external power supply to
execute a continuous loop of operations including oscilloscope
triggers via GPIO.

enabling intermittent computing systems. It is efficient, with a
delay of 1 ps and consuming only 225 ;1A of current for each
FRAM read or write at 1 MHz operation [23]. Additionally,
the manufacturer guarantees byte-level write atomicity regard-
less of the current power condition for the chip. This allows
our system to assume that if a write to FRAM is executed,
the data is written correctly up to a single byte and does not
require additional error checking to detect partial writes at the
byte level [24]. The FRAM is capable of normal operation up
to 8 MHz, beyond which it is supported by processor wait-
states, which utilizes a 2-way associative 256-bit cache for
frequencies up to 16 MHz. The effect of processor wait states
and cache on the device’s energy consumption at 16 MHz is
observable in our evaluation and analyzed in Section I'V-B.

B. Testbed

Measurements were taken with a Tektronix DPO3034 os-
cilloscope operating at 50 kS/s across a shunt resistor of
1 k€ as depicted in Figure 1. We computed the energy
consumed by the target device during a function’s execution
using Equation 1.

E=V-I-At=Voc—Vag)-1-At

/ * Voo — (1)) - o) - dt

1

1 ey
R

The three critical functions for secure intermittent opera-
tions, HW—SIC, SW—SIC, and NON-SIC, were measured for
both energy consumption and execution time. Each execution
was identified within the testbench via a GPIO trigger on
the test board. Additional energy measurements were taken
with a second active GPIO trigger and subtracted from the
single trigger measurement to calculate the energy consumed
by a single GPIO trigger. This overhead was again subtracted

from the single trigger measurement to obtain accurate energy
measurements for every function.

Cycle counts were generated for each test case through
the use of the on board timer and an interrupt to catch
rollover events. Since this introduced slight variations in each
function’s execution time, 100 executions were measured to
produce an average cycle count. Portions of the checkpointing
process normally disable interrupts for real-world applications,
these were modified to leave interrupts enabled allowing
accurate measurement of the cycle count.

Because refresh and restore execute an additional
MAC computation if the first test is invalid, we forcibly tested
the functions an equal number of times for each condition.
These values were averaged to produce the data in Figure 2 and
Figure 3. To verify the stability of our test bench, we computed
the standard error for our energy measurements. Since these
values were less than 10~% J, we omitted them for clarity.

All the measurements were taken on a device powered by
an external power supply. We expect the same behaviors to
persist when the device is powered by an energy harvester.

IV. EVALUATION AND RESULTS

With an experimental setup established, we tested our
implementation and gathered measurements across a range
of feasible system configurations. We recorded the effect
of different system configurations on the overhead incurred
by the software and hardware secure intermittent computing
solutions in order to identify patterns that may be useful when
choosing operating conditions based on energy and cycle count
measurements.

All the performance figures reported are for the three
main functions required to provide security to an intermittent
system, namely initialize, refresh, and restore.
The number and placement of checkpoints in a particular
application are not considered since they are determined by
application-specific constraints and optimization goals. How-
ever, the energy consumption and execution time scale linearly
with the number of checkpoint operations executed.

A. Experimental Results

From our experiments, we were able to successfully observe
the energy consumption of the intermittent system across
all scenarios. The energy required for securing application
continuity highlights an interesting characteristic of our chosen
platform, a reduced energy consumption at the middle clock
frequencies in Figure 2, that we explore in more detail in
our analysis. The results from changes to the size of the
system state, depicted in Figure 3, were as expected when the
energy consumption increased linearly with increasing state
size. Finally, the code size also followed our expectations with
the software supported operations requiring more space than
the hardware supported primitive.

B. Analysis

The energy required to secure a 512 B state is 42.96 puJ
(HW-SIC) or 57.02 pJ (SW-SIC), an increase by a factor
of 11.33 or 15.04 over the NON-SIC solution at 8 MHz.

NON-SIC HW-SIC SW-SIC
600 1 :
<
2
> 400 1 .
& 900 - 1 :
O T T T T _l T T T _l T T T
1 4 8 161 4 8 161 4 8 16

Frequency (MHz)

—@— initialize —M- refresh —A— restore

Fig. 2: Energy consumption as a function of the operational
frequency shows the effect of our device’s larger static power
consumption, leading to a non-linear relationship between 1,
4, and 8 MHz operation. The dramatic spike in energy costs
for 16 MHz is tied to the increased minimum supply voltage
required for the testbed to operate and the introduction of

FRAM wait-states at frequencies above 8 MHz.

We recognize the high cost of securing a system’s intermit-
tent operation through checkpoint integrity. Algorithm 1 was
designed with security against replay attacks as its primary
and performance as its secondary objective, hence we focused
on evaluating a functionally secure protocol rather than an
optimized implementation. Further reducing this overhead
through more novel applications of established cryptographic
primitives or re-engineering of the overall system to better sup-
port the high computational requirements for the verification
operations is a worthwhile future endeavor to obtain efficient
secure application continuity.

An interesting behavior we observed in Figure 2 was
the dramatic reduction in energy required for the secure
intermittent computing solutions at 4 and 8 MHz. Typically,
when a device’s static power consumption is significantly
less than its dynamic power consumption, the overall energy
consumed per function at different frequencies is determined
by the dynamic power consumption. Hence, the overall energy
consumed at different frequencies grows as the frequency
increases, a relationship depicted in Equation 2. Instead, we
determined that the device under test had a significantly higher
static power consumption than dynamic power consumption,
allowing higher frequency operations to save more energy.
For example, according to Equation 2, we found « to be
152.44 and B to be 567.11 for the MSP430FR5994 in our
SW-SIC experiments at frequencies less than or equal to 8
MHz. Our calculations for « and (8 in our HW-SIC tests
were less consistent, an effect we attribute to the operation of
the AES co-processor during only portions of the function’s
execution.

den:a'f

E=T- (den + PsLal,ic) P o ﬁ
static —

2)

NON-SIC HW-SIC SW-SIC

Energy (1)

0 N2
o o
1 1
1 1
1 1

[S]
=
1
1

Time (kcycles)

[N)
=
1
1

405 1 2 405 1 2
State size (kbytes)

g

—@— initialize —M— refresh —A— restore

Fig. 3: The effect of system state size on the execution time
and energy consumption of the three security functions oper-
ating at 8 MHz is reasonable. SW—SIC requires slightly more
resources than HW-SIC and initialize is the cheapest

and simplest of the three operations.

This relationship did not continue to hold for the 16 MHz
cases. Instead, we saw a dramatic increase in the energy
required for our security operations. This increase is primarily
tied to the increased supply voltage required for the board
to operate at 16 MHz. At lower frequencies we were able
to successfully power the board with a supply voltage of
3.5 V; for successful operation at 16 MHz, it was necessary
to increase our supply voltage to 4 V, dramatically increasing
the power consumption of the testbed.

In addition to the increased power consumption from a
higher supply voltage, operation at 16 MHz introduced the
use of FRAM wait-states, limiting the benefit of the increased
operational frequency as cycles were wasted waiting for
FRAM operations to complete. Combined, these two effects
conspired to increase the power consumption of the testbed
at 16 MHz and highlight a potential design consideration for
future intermittent systems that have similar energy consump-
tion profiles. If the static power consumption of the device
is sufficiently larger than the dynamic power consumption,
increased operational frequency may yield reduced overall
energy consumption as long as the supply voltage can be kept
in line with lower frequency operation.

The code size overhead of our solution is shown in Table 1.
The SW-SIC code required the largest space as HW—-SIC was

TABLE I: Effect on Code Size, .text (B)

Optimization ‘ NON-SIC HW-SIC SW-SIC
-00! 11,936 18,516 35,728
-03! 6,932 14,556 21,432
-0s! 6,916 10,716 19,808

! Compiler optimization flags,~00: no optimizations,
—-03: highest level of optimization in terms of compile
time and memory usage, —Os: optimization for code size

able to omit the software AES functions implemented in Cifra
library using the AES accelerator available on-chip. Similarly,
the reduction in code size between —03 and —Os optimizations
is larger for HW—SIC than SW—-SIC because the more complex
structure of CMAC favors more implementation trade-offs.

Finally, we are able to show that these techniques are
feasible on devices that lack a hardware accelerator if an
appropriate lightweight cryptographic primitive is chosen.
Chaskey is able to provide an equivalent level of security
guarantee compared to the hardware accelerated AES based
CMAC computation with only 32.73% additional energy. This
may prove very useful on previously deployed platforms that
may lack an on board AES module but still benefit from secure
checkpoints.

C. Discussion

Although adding security to an intermittent system results
in a significant overhead, securing application continuity is
feasible, even for very constrained devices powered solely
from harvested energy.

The MSP430FR5994 Launchpad Development board we
used for our experiments has a supercapacitor of 0.22 F which
gives a total energy storage of 1.35 J at 3.5 V. With only 10%
of this energy allocated to secure application continuity, an
intermittent system can compute up to 3,136 or 2,363 secure
checkpoints when using HW—SIC and SW-SIC, respectively.
Therefore, secure application continuity can be supported
from harvested energy. Moreover, careful application-specific
optimizations can improve our experimental results further.

Although our study is limited to a single evaluation board,
it shows that security should and can be added to application
continuity in intermittent systems. Energy harvesters present
in current intermittent systems can support the overhead of
secure application continuity.

Finally, we stress that the proposed protocol is generic
and can be applied to secure application continuity of any
intermittent system. However, this work focused on the most
challenging case, namely intermittent systems powered by
harvested energy.

V. CONCLUSION

This paper demonstrated a simple protocol to verify the
integrity, authenticity, and freshness of an intermittent system’s
checkpoints which provides secure application continuity. Our
solution was measured and compared with a non-secure ver-
sion of the underlying checkpointing system across a variety
of system configurations to examine their effects on energy

consumption, execution time, and code size. Ultimately, we
show that verification of checkpoints is both necessary and
expensive but can be supported from harvested energy sources.
It is impossible to ignore the security requirements of the real
world, though previous works avoid the complication of secu-
rity in the intermittent computing space. We show that proper
protections against checkpoint replay can be implemented, but
the current cost is high and opens the door to future work in
improving the energy and performance overhead of checkpoint
verification.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grant 1704176 and
SRC GRC Task 2712.019.

REFERENCES

[11 V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava,
“Design considerations for solar energy harvesting wireless embedded
systems,” in Proceedings of the 4th International Symposium
on Information Processing in Sensor Networks, ser. IPSN ’05.
Piscataway, NJ, USA: IEEE Press, 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1147685.1147764

[2] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Ra-
jendran, M. Asheghi, and K. E. Goodson, “Phase change memory,”
Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, Dec 2010.

[3] MSP MCU FRAM Utilities, Texas Instruments, Jan. 2017.

[4] B. Lucia and B. Ransford, “A simpler, safer programming
and execution model for intermittent systems,” in Proceedings
of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI ’15. New
York, NY, USA: ACM, 2015, pp. 575-585. [Online]. Available:
http://doi.acm.org/10.1145/2737924.2737978
[5] H. Jayakumar, A. Raha, and V. Raghunathan, “Quickrecall: A low
overhead HW/SW approach for enabling computations across power
cycles in transiently powered computers,” in 2014 27th International
Conference on VLSI Design and 2014 13th International Conference on
Embedded Systems, Jan 2014, pp. 330-335.
[6] J. V. D. Woude and M. Hicks, “Intermittent computation without
hardware support or programmer intervention,” in [2th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 16). GA: USENIX Association, 2016, pp. 17-32. [On-
line]. Available: https://www.usenix.org/conference/osdil6/technical-
sessions/presentation/vanderwoude
S. Chhabra and Y. Solihin, “i-nvmm: A secure non-volatile main memory
system with incremental encryption,” in 38th International Symposium
on Computer Architecture (ISCA 2011), June 4-8, 2011, San Jose, CA,
USA, 2011, pp. 177-188.
[8] S. Kannan, N. Karimi, O. Sinanoglu, and R. Karri, “Security vulnera-
bilities of emerging nonvolatile main memories and countermeasures,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 1, pp. 2-15, Jan 2015.
Z. Ghodsi, S. Garg, and R. Karri, “Optimal checkpointing for secure
intermittently-powered iot devices,” in 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Nov 2017, pp. 376—
383.
N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
ACM Comput. Surv., vol. 50, no. 1, pp. 16:1-16:33, Apr. 2017.
S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“Softbound: Highly compatible and complete spatial memory safety
for c¢,” in Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI *09.
New York, NY, USA: ACM, 2009, pp. 245-258. [Online]. Available:
http://doi.acm.org/10.1145/1542476.1542504
J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus:
Low-cost trustworthy extensible networked devices with a zero-software
trusted computing base,” in Proceedings of the 22Nd USENIX Con-
ference on Security, ser. SEC’13. Berkeley, CA, USA: USENIX
Association, 2013, pp. 479—-494.

[7

—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

L. Davi, M. Hanreich, D. Paul, A. R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin, “Hafix: Hardware-assisted flow integrity extension,”
in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2015, pp. 1-6.

Zatara High-Performance, Secure, 32-Bit ARM Mi-
crocontroller, Maxim Integrated. [Online]. Available:
https://datasheets.maximintegrated.com/en/ds/ZA9L1.pdf

K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik, “SMART: Secure
and Minimal Architecture for (Establishing a Dynamic) Root of Trust,”
in NDSS 2012, 19th Annual Network and Distributed System Security
Symposium, February 5-8, San Diego, USA, 02 2012.

MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and
MSP430FR69xx Family User’s Guide, Texas Instruments, Jan.
2017.

M. J. Dworkin, “Recommendation for block cipher modes of operation:
The CMAC mode for authentication,” Tech. Rep., 2016. [Online].
Available: https://doi.org/10.6028/nist.sp.800-38b

J. Birr-Pixton, “Cifra: Cryptographic primitive collection,”
https://github.com/ctz/cifra, 2017.

N. Mouha, B. Mennink, A. V. Herrewege, D. Watanabe, B. Preneel,
and I. Verbauwhede, “Chaskey: An efficient mac algorithm for 32-bit
microcontrollers,” Cryptology ePrint Archive, Report 2014/386, 2014,
https://eprint.iacr.org/2014/386.

D. Dinu, A. Biryukov, J. GroBschéddl, D. Khovratovich, Y. Le Corre,
and L. Perrin, “FELICS — Fair evaluation of lightweight cryptographic
systems,” in NIST Workshop on Lightweight Cryptography, 2015.

D. Dinu, Y. Le Corre, D. Khovratovich, L. Perrin, J. GroBschédl, and
A. Biryukov, “Triathlon of lightweight block ciphers for the Internet of
Things,” Journal of Cryptographic Engineering, pp. 1-20, 2015.

N. Mouha, “Chaskey: A mac algorithm for microcontrollers — status
update and proposal of chaskey-12 —,” Cryptology ePrint Archive, Report
2015/1182, 2015, https://eprint.iacr.org/2015/1182.

MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers, Texas
Instruments, Jan. 2017.

MSP430 FRAM Quality and Reliability, Texas Instruments, Mar. 2012,
revised May 2014.

