Challenges and Opportunities for Energy-Harvested Security

Patrick Schaumont

Associate Professor Bradley Department of ECE Virginia Tech

Acknowledgements National Science Foundation My Students: Aydin Aysu, Deepak Mane, Krishna Pabbuleti, Bilgiday Yuce

IoT, Energy Harvesting and Security?

The Internet of Things is a matter of

- .. making it scalable
- .. making it low-maintenance
- .. event-driven iso human-driven computing

1 head

IoT, Energy Harvesting and Security?

The Internet of Things is a matter of

- .. making it scalable
- .. making it low-maintenance
- .. event-driven iso human-driven computing

but security still has to come for 'free'

IoT, Energy Harvesting and Security?

The Internet of Things is a matter of

- .. making it scalable
- .. making it low-maintenance
- .. event-driven iso human-driven computing

but security still has to come for 'free'

This talk:

Energy harvesting delivers free security (and not only because of the free Joules)

Battery-operated vs Energy-Harvested

Battery Operation

limited by battery capacity

Energy Harvesting

<u>unlimited</u> energy at a throughput limited by harvesting process

How to reach Enlightenment?

- Almost every cryptographic algorithm extensively processes key material
 - Block Ciphers use Round Keys
 - Stream Ciphers create Key Streams
 - PK Ciphers generate Key pairs
 - (EC)DSA uses Per-message Keys
 - Hash-based Ciphers use Hash Chains
 - Lattice-based Signatures use a Verification Key
 - ...
- Preparing processed key material does *not* depend on the real-time input

Precomputing Mechanism (1)

Precomputing Mechanism (2)

Precomputing Mechanism (3)

Precomputing Mechanism (4)

Precomputing Mechanism (5)

Precomputing Mechanism (6)

Key Principle

- Never waste energy compute keys!
- Advantages
 - Significantly decreased latency
 - Smaller energy store
 - More work done under limited Energy Influx

	$(T_{p}+T_{0})/T_{0}$	(E _p +E ₀)/E ₀
Hash-based (Winternitz I=256, 128 bit)	23.5	12
Lattice-based (GLV, 128 bit)	14.7	2.5

Challenges

- Stored Key Material is Tamper Sensitive
- How to achieve Precomputed Integrity?
 - AE and Digests depend on input

A Jug Fills Drop by Drop

P. Schaumont (VT)