
Side-Channel Analysis of MAC-Keccak
Mostafa Taha and Patrick Schaumont

Bradley Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg, VA 24061, USA

Email: mtaha, schaum@vt.edu

Abstract—NIST recently completed the SHA-3 competition
with the selection of Keccak as the new standard for crypto-
graphic hashing. In this paper, we present a comprehensive Side-
Channel Analysis of Keccak, when it is used with a secret key to
generate a Message Authentication Code (MAC) (MAC-Keccak).
Our analysis covers all the variations of the algorithm. We show
that the side-channel resistance of the MAC-Keccak depends on
the key-length used, and we derive the optimum key-length as
((n ∗ rate) − 1), where (n ∈ [2 : ∞]) and rate is the Keccak
input block size. Finally, the paper demonstrates the feasibility
of our side-channel analysis with a practical attack against MAC-
Keccak implemented on a 32-bit Microblaze processor.

I. INTRODUCTION

A hash function is a one-way function that converts arbitrary
length messages into fixed-length digests. Hash functions are
generally used in cryptography to ensure the integrity of a
message. If the received message generates the same digest as
the original one, the message should be correct, can never be
altered. The United States National Institute of Standards and
Technology (NIST) recently concluded a competition to select
a new successor standard for SHA-1 and SHA-2. Keccak [1]
was selected for the new standard SHA-3.

When hashing the combination of a secret key and a mes-
sage, a Message Authentication Code (MAC) is obtained. A
MAC ensures integrity as well as authenticity of the message,
as the verification of a MAC implies testing knowledge of
the secret key. However, MACs can be computed in several
alternative forms, depending on how the message and the
secret key are combined. In this paper, we will study the pop-
ular hash-based MAC (HMAC) [2] and the MAC construction
recommended for Keccak [3] (MAC-Keccak).

We are specifically interested in side-channel analysis
(SCA) of the MAC computation. Indeed, by exploiting side-
channel leakage, the adversary may attempt to extract the
secret key, which enables her to forge a MAC. Even partial
disclosure of the internal, secret state of a hash algorithm
may lead to forged messages. In this paper, we will study the
side-channel leakage properties of MAC-Keccak, and we will
show how the parameters of the algorithm can be configured
to minimize harmful side-channel leakage.

The SCA of some of the previous SHA-3 candidates was
studied in [4], [5] and [6]. Only Zohner et al describe SCA
of MAC-Keccak [7]. They presented an analysis step based
on the Correlation Power Analysis (CPA) [8] to identify the

This research was supported in part by the VT-MENA program of Egypt,
and by National Science Foundation Grant no. 1115839.

key-length used. They also proposed using the XORs of the
θ step (discussed later) as the targeted point in the attack.
In this paper, we will show that in most cases of MAC-
Keccak, attacking the θ step is insufficient for a complete
key recovery. We therefore take the analysis of Zohner et al
one step further. We start from their method for identifying
the key-length and assume that the key-length is variable but
known upfront. We then do a comprehensive analysis of the
effect of different key-lengths, which leads to the so-called
optimum key-length: the length of a MAC-Keccak key that
results in the most difficult side-channel analysis. We also
study all possible attack points in the algorithm and address
complete attack scenarios. Finally, we present the results of
practical attacks against MAC-Keccak implemented in 32-bit
Microblaze processor.

The paper is organized as follows. Section II presents
several preliminaries on Keccak and MAC calculation. The
analysis of MAC-Keccak is presented in Section III. The
practical Attack and its results is presented in Section IV. The
paper concludes in Section V.

II. BACKGROUND

For completeness, we introduce a brief description of the
Keccak hashing algorithm and the targeted MAC construc-
tions. The discussion in this section is meant to be simple and
intuitive. Further details can be consulted in [1].

A. Keccak

Keccak is a family of functions with a sponge construction,
which is a generalized hash function that accepts arbitrary
length messages and generates digests of any desired size.
Keccak has several parameters:

• The state-size b, which is the size in bits of the internal
state of the sponge. In Keccak, b = 25∗2l and l ∈ [0 : 6].
l = 6 and b = 1600 are the default values.

• The rate r, which is the number of message bits that the
sponge absorbs in every run (the input block).

• The capacity c, which is the number of zero bits that
are appended to every r bits of the message to form the
input state. The state-size equals the rate plus the capacity
(b = r + c).

• The output length o, which is the size of the required
digest in bits.

The rate, capacity and the output length can be set to any value
depending on the required security level. To match the NIST
output length requirements, the designers of Keccak proposed

Fig. 1. Keccak hash algorithm and the padding rules

r = 1152, 1088, 832 and 576 for output length of 224, 256,
384 and 512 respectively [9]. The default rate for arbitrary
length output is r = 1024.

The hashing is done in three steps:
Padding and Initializing : The input message is appended

with a number of bits so that the total length is multiple of the
rate. The padding starts with ‘1’ and ends with ‘1’ with all 0’s
in-between. Padding is mandatory, and therefore the minimum
padding length is 2 and the maximum length is (r+1). Padding
is shown in the first step of Fig. 1. Initialization is done by
setting the initial state to all zeros.

Absorbing : Every r-bit message bits (block) are appended
with c (capacity) bits of zeros to be of the same size as the
state. Then, the bits get arranged in a (5 ∗ 5 ∗ 2l) 3-D array
form (called the state) starting from (x = 0, y = 0, z = 0) and
filling in the z direction, then x direction, then y direction. This
filling sequence puts the new message bits in the lower planes
(from y = 0) leaving the zero bits at the upper planes, which
is indicated by the shaded part in each state of Fig. 1. The
state is XORed with the previous state. The result is used as
the input to the Keccak function, which outputs a new state.
The absorbing operation continues for every block of message
bits as shown in the figure.

Squeezing : The digest is the first o bits of the output state.
The Keccak function (represented by ‘Hash’ in the figure)

consists of nr rounds of five sequential operations. The
number of rounds depends on the value of l used to define
the state size with nr = 12+ 2l. A single round of Keccak is
represented as follows:

Output = ι ◦ χ ◦ π ◦ ρ ◦ θ(Input) (1)

We will describe these operations briefly:
• θ is a binary XOR operation with 11 inputs and a single

output. Every bit of the output state is the result of XOR
between itself, and the bits of two neighbor columns as
shown in Fig. 2, more precisely:

s[x][y][z] = s[x][y][z]⊕
(
⊕4

i=0s[x− 1][i][z]
)

⊕
(
⊕4

i=0s[x+ 1][i][z − 1]
)

(2)

• ρ and π are simple permutations over the bits of the state.
• χ is a mix between XOR, AND and NOT binary opera-

tions. Every bit of the output state is the result of XOR

Fig. 2. (Partially from [1]), Keccak construction and the operation of θ

between itself and the AND between one neighbor and
the NOT of another neighbor, more precisely:

s[x][y][z] = s[x][y][z]⊕
(
s[x+ 1][y][z] · s[x+ 2][y][z]

)
(3)

• ι is a binary XOR with a round constant.

B. HMAC and MAC-Keccak

A widely known MAC construction is the HMAC [2].
HMAC accepts a message M and a key K and generates
the digest as following:

HMAC(M,K) = H((K⊕opad)||H((K⊕ ipad)||M)) (4)

Simply speaking, HMAC prepares a key variant (K ⊕ ipad)
of the same size as the hash input block. It prepends the key
variant to the message and hashes the resulting block. At the
output, HMAC prepends the digest with another key variant
(K ⊕ opad) and hash them one more time. The output key-
padding in HMAC eliminates some security vulnerabilities
related to retuning the hash state directly as the output. In
Sponge constructions however, the output is only a small
part of the final state. Hence, Keccak is protected by design
from such vulnerabilities and we can use the direct MAC
construction:

MAC(M,K) = H(K||M) (5)

This method is recommended by Keccak designers and the
recommended output length should be smaller than the capac-
ity [3]. We will refer to the first method by HMAC, and to
the second method by MAC-Keccak.

The goal of the adversary is to generate the correct digest
without the knowledge of the legitimate key. For this pur-
pose, the adversary can recover the actual secret key (Key
Recovery), or recover the hash state after processing the
key (MAC Forgery). In HMAC, MAC Forgery is the typical
target. However, in MAC-Keccak we will need either of them
depending on the key-length as will be discussed later.

III. SCA OF MAC-KECCAK

Keccak is a flexible algorithm with several parameters.
Moreover, the MAC-Keccak does not specify a fixed key-
length which adds more flexibility to the algorithm. In this
section, we will analyze the MAC-Keccak algorithm from
SCA point of view. We will start with the effect of key-length
on the difficulty of the attack. Then, we will study the possible

attack points and the leakage of each point. Finally, we will
present a complete attack strategy. The analysis in this section
is generic to any rate and capacity parameters.

A. Effect of changing the key-length

To study the effect of changing the key-length, we define
the following quantities:

Number of Controlled Bits : The number of message bits in
the input block that are variable and known to the adversary.

Number of Unknown Bits : The number of unknown bits
that are required to forge a MAC digest. Depending on the
key-length, this can match the number of bits in the key or
the number of bits in the hash state.

Attack Difficulty : The ratio of the number of unknown bits
over the number of controlled bits.

We will assume that the key-length can be any number of
bits greater than zero. Small lengths are an easy target for
brute force, but there is no fixed minimum length. So, we will
keep it general to study the problem from SCA point of view.
For this analysis, we will assume that the total number of
message bits is larger than the rate. In other words, whatever
the key-length was, the message will fill up the rest of the input
block with no effect of padding bits. This is a very reasonable
assumption in typical applications of cryptographic hashing.
There are two cases of the key-length (lK):

key-length < rate : In this case, the key will be part of
the input block and the message will fill up the rest of the
block. The number of unknown bits will be the key-length.
The process of extracting these bits is called Key Recovery.
The number of controlled bits will be the rate minus the key-
length (r − lK). The attack difficulty will be (lK/(r − lK))
ranging from (1/(r − 1)) to ((r − 1)/1.

key-length ≥ rate : In this case, the key will fill up the first
input block and part of the second block. The message will fill
up the rest of the second input block. The number of unknown
bits will be size of the previous state (b). Note that the recovery
of the rest of key bits in the second input block is not required
where; the key bits in the second block will be XORed with
the previous state. The knowledge of the output of the XOR
operation is sufficient to mount a MAC Forgery. Hence, the
number of unknown bits will not increase beyond the state-
size. The process of extracting these unknown bits is called
MAC Forgery, as the adversary is not required to recover the
original key. He will only recover the required information to
forge a MAC digest. The number of controlled bits will be the
rate minus the key-length modulus the rate (r−(lK(mod r))).
The attack difficulty will be (b/(r − (lK(mod r)))) ranging
from (b/r) to (b/1).

Figure 3 shows the number of controlled bits and the
number of unknown bits as a function of the key-length.
The number of controlled bits in every block decreases by
increasing the key-length where the sum of them will always
be the rate. The number of unknown bits will be equal to the
key-length while the key-length is less than the rate. Once
the key fills up a complete input block (lK = r), the required

Fig. 3. Effect of key-length on the number of controlled bits and the number
of unknown bits

Fig. 4. Effect of key-length on the attack difficulty

unknown will be the previous state and the number of required
unknown bits will be fixed at the state-size.

Figure 4 shows the attack difficulty as a function of the
key-length. The figure also shows that the optimum key-length
from SCA point of view is ((n ∗ r)− 1), where (n ∈ [2 :∞]).
Any increase of the key-length beyond ((2 ∗ r)− 1) does not
increase the security from SCA point of view.

From SCA point of view, HMAC-Keccak is a special case
of MAC-Keccak when key-length match the rate. In the rest
of the paper, we will focus on MAC-Keccak as the general
case.

B. Targeted Operation

The Targeted Operation is an internal operation running
within the module, where the adversary searches for its
signature in the recorded leakage. The Targeted Operation
must depend on both the controlled bits and the key as the
adversary will search for the key that correctly links the
change in the controlled input to the change in the power
consumption. Hence, we assume that the adversary targets the
first hash operation that manipulates the message. That is the
first hash operation if (lK < r) and the n+ 1 hash operation
if (lK ≥ n ∗ r).

Fig. 5. Column XOR of θ operation

In this paper, we assume that the key prepends the message.
The analysis can be easily ported to cases where the key is
appended to the message. Following that assumption and that
the state filling is bottom-up, the key bits will be in the lower
planes and the controlled bits will be in the middle planes.
If the key-length is less than the rate, the upper planes will
be filled with zeros. Otherwise, the upper planes will be filled
with the previous state (key-state).

Due to the flexibility of the key-length in MAC-Keccak, no
single targeted operation will be sufficient for all the cases. We
will study all the targeted operations that will be sufficient
to mount an attack in any key-length. The operations are
studied in the same order of the algorithm. The success of
attacking a later operation depends on the success of attacking
the previous operations, as the previous results will be used
as assumptions in later attacks.

State XOR : The XOR operation between the new input
block and the previous state is the first targeted operation.
This operation is useful only if the (lK ≥ r), where the
previous state is the required unknown. In this case, the
State XOR operation can recover the bits that are XORed
with the controlled bits (r − (lK(mod r))) out of the State-
Size bits (b). The number of bits that are XORed in parallel
depends on the implementation ranging from all-at-once in
hardware modules (FPGAs, and ASICs) to the processor width
in software modules.

The θ operation : Understanding the implementation of this
step is critical in SCA. Typically, θ is done in two steps,
first the module calculates the XOR between the elements of
each column (five elements) and generates what can be called
θplane. Then, it calculates the XOR between every element in
the state, and two neighbor locations of the θplane as indicated
earlier (Fig. 2).

The first step of θ : The analysis of the first operation
(generation of the θplane) depends on the order of XORing the
five elements as shown in Fig. 5 where we assumed that the
key-length is greater than the rate as a general case. The key-
state bits (Ks) can be replaced by 0’s otherwise. Generation
of the θplane can be done all-at-once in hardware modules
(FPGAs, and ASICs), or bottom-up or top-down in software
modules, where the first method (bottom-up) is used in the
reference software implementation [10].

• In all-at-once implementations, the output of the gate will
take the effect of all the unknown bits at once. Hence,
SCA cannot recover the value of individual unknown bits
however; it can only get the result of XORing all of them.

Targeting this operation can be a complete attack only if
there is one unknown bit in every column, that there will
be only one unknown bit in every operation i.e. lK ≤ p;
where p is the size of one plane (320 bits).

• In bottom-up implementations, all key bits will be XORed
with each other before being XORed with a controlled
bit. Then, the result will be XORed with key-state (Ks)
bits (if there are any) in sequential steps. Similarly, SCA
can only reveal the result of XORing all the key bits.
However in this implementation, SCA can recover all
the key-state bits by monitoring the result of each XOR
operation (recover one key-state bit at every operation).
Targeting this operation can be a complete attack only
if there is only one key bit in every column (lK(mod
r) ≤ p).

• In top-down implementations, the situation is exactly
reversed from that in bottom-up implementations. SCA
can only reveal the result of XORing all the key-state bits
and it can recover the individual values of all the key bits.
The role of bottom-up and top-down will be switched if
MAC construction is built with the key appending the
message.

Figure 5 shows the possible attack points in every imple-
mentation. In every case discussed above, if there is at least
one controlled bit in every column (r − lK(mod r) ≥ p), the
targeted operation will be enough to get the θplane which is a
valuable information for attacking the second step of θ.

The second step of θ : In this step, the algorithm calculates
the XOR between every element of the state and two neighbor
elements of the θplane. If the θplane is correctly found in the
previous step, SCA can recover all the unknown elements of
the state.

To conclude, the two steps of θ can be used to build a
complete attack only if there is at least one controlled bit
in every column. For smaller number of controlled bits, the
adversary will have to follow the Keccak function in the later
operations.
ρ and π operations : These permutation operations cannot

be used as an SCA target because they do not involve any
mixing between known and unknown parts.

The χ operation : This operation is a good SCA target.
Every bit involved in this operation carries information from
11 controlled or unknown bits. Since it is a 3 input operation,
the output will depend on 33 controlled or unknown bits.

The ι operation : Similar to permutation operations, this
operation does not reveal any SCA leakage because it does
not involve any mixing between known and unknown parts.

Operation Width : One last note in the analysis of the
targeted operations is the width of the operation (the number
of parallel bits included in the SCA). All Keccak functions are
binary operations, which makes the adversary free in choosing
the suitable width i.e. he can build the CPA software to search
for 1-unknown bit at a time, 2-unknown bits or 8-unknown bits
(byte) etc... However, the choice of the operation width is a
trade-off. If the adversary chooses a one bit width, he will get

Fig. 6. Complete Attack Scenarios

a small search space of only 21 = 2 but increased algorithmic
noise where the power consumption of all the other parallel
bits will contribute to noise. On the other hand, if the adversary
targets all the parallel bits at once (higher operation width),
he will get zero algorithmic noise, but the search space will
be huge 2 to the power of number of parallel bits.

C. Complete Attack Scenarios
After analyzing the elements of MAC-Keccak, now it is the

time to glue the previous two sections together in complete
attack scenarios. Fig. 6 shows all possible variations of the
key-length and the required attack steps in each case where p
in the figure refers to the size of one plane. We assume that
the first step of θ is implemented bottom-up.

Key-length less than the rate :
1) lK ≤ p : There is at-most one key bit in every column.

The first step of θ is enough to complete the attack.
2) p < lK ≤ (r− p) : There are two or more key bits and

at least one controlled bit in every column. The first step
of θ will be used to get the θplane, and the second step
of θ will be used to get the values of individual key bits.

3) lK > (r − p) : There are some columns without any
controlled bit. θ operation will not be enough, and the
adversary will have to track down the χ operation.

Key-length greater or equal to the rate :
4) lK(mod r) = 0 : The State-XOR will be used to reveal

some bits of the key-state (equal to the rate). The first
step of θ will be used to get the rest of key-state.

5) lK(mod r) ≤ p : The State-XOR will be used first to
get some key-state bits (equal to the controlled bits). The
first step of θ will be used to get the key bits and the
rest of key-state bits.

6) plane < lK(mod r) ≤ (r − p) : There is at least one
controlled bit in every column. The State-XOR and θ
will be enough.

7) lK(mod r) > (r−p) : There are some columns without
any controlled bits. The State-XOR, θ and χ will be
needed.

In the following section, we will present two insights in
the analysis of θ operation. Then, we will show results for a
complete attack.

IV. PRACTICAL ATTACKS

In the practical experiments, we used the reference software
implementation of Keccak [10] on a 32-bit Microblaze proces-

Fig. 7. SCA of an XOR operation

sor [11] running on top of a Xilinx Spartan-3e FPGA. We used
a Tektronix CT-2 current probe as an indication of the power
consumption. In the analysis, we used the Hamming Weight
power model. We build the power model for 8-bit of the key at
a time which is a reasonable choice between increased search
space and increased algorithmic noise. We used the Pearson
Correlation Coefficient [8] to measure the similarity between
the actual and the modeled power consumption.

A. SCA of XOR operation

Before conducting a complete attack, we first start with
analyzing the side-channel leakage of one XOR operation. We
targeted the last XOR operation of generating the θplane with
50,000 power traces. Figure 7 shows the result of this analysis.
The red plot is for the correct key guess, the black plot is for
the complement of the correct key and the green plots are for
all other key guesses.

The figure clearly shows the effect of attacking simple XOR
binary operations. If the key is miss-guessed by one bit, the
result power model will differ for only one bit. This is the
reason for the high correlation in many of the green plots.
In order to get over the high correlation of incorrect key
guesses, the adversary needs to collect increased number of
power traces. The correct key guess shows up clearly after
around 10,000 traces. Moreover, if the key is guessed to the
complement of the correct key, the result will show a strong
negative correlation. This means that, the adversary needs to
consider only the positive correlation.

B. SCA of generating the θplane
Another interesting observation found in the analysis of

generating the θplane is that the peak positive correlation is
always found in triple spikes, as shown in Fig. 8. The reason
of this can be explained with the help of the XOR operation on
the right hand side of the figure. We first assume that the key-
length equals to the rate. The required unknown in this case
will be the entire hash state before processing the message.
We further assume that the key-bits that are directly XORed
with the input message in the State-XOR operation could be
recovered successfully. This means that, the first three planes

Fig. 8. SCA of generating the θplane operation

TABLE I
PRACTICAL EXPERIMENTS

Key-length 320 640 1088 1408 1728
in bits 1 plane 2 planes rate rate+1 plane rate+2 planes

Scenario 1 2 4 5 6

will be filled with known variables while the upper two planes
are filled with the unknown previous key-state. The attack is
meant to recover the first unknown (Ks1). The correct key-state
bit at the output of the third XOR is the required unknown
(Ks1) which shows up as the middle spike. Keeping in mind
that, the power traces show all the operations sequentially.
The second XOR operation shows up at the left spike with
high correlation at a false key ‘0’. Similarly, the fourth XOR
operation shows up at the right spike with high correlation at a
false key Ks1 ⊕ Ks2. This observation is critical for a correct
attack. The three results represent actual operations running
within the module that, the three correlation spikes should be
of the same value. If the CPA is applied blindly without time
profiling, the best guess will be uniformly distributed between
‘0’, the correct key-state bit, and the XOR of the rest of key-
state bits. Based on this observation, we used a precise time
profiling to target only the intended operation.

C. Complete Attack

The practical experiments was conducted with these Keccak
parameters: state-size (b = 1600), rate (r = 1088) capacity (c
= 512). In this configuration, the plane size (p = 320), and the
input block covers 3 planes and 2 lanes. We tested five cases
with different key-lengths as shown in Table I. We chose these
cases to cover all the scenarios discussed in Fig. 6 except for
those that requires χ operation (case 3 and 7) which we will
leave for future work. The steps involved in the analysis of
each case can be recalled from Fig. 6.

Figure 9 shows the success rate of each experiment as a
function of the number of traces. The figure clearly validates
the effect of changing the key-length on the SCA difficulty. For
a fixed number of attack traces (e.g 15,000 traces), every case
will achieve a different success rate. The 1 Plane case involved
only one SCA task (1st of θ), and achieved the highest success
rate. The Rate + 2 Planes case involved three SCA tasks
(State-XOR, 1st of θ and 2nd of θ) and achieved the worst
success rate.

Fig. 9. The effect of changing the key-length on the SCA success rate

V. CONCLUSION

In this paper we presented a comprehensive analysis for
Keccak hash algorithm in MAC construction. We presented
analysis of the effect of changing the key-length, all the
possible attack points and complete attack scenarios. We
supported the analysis with practical experiments on a 32-bit
Microblaze processor. The paper concluded that the optimum
key-length from SCA point of view is ((n ∗ rate)− 1), where
(n ∈ [2 :∞]).

REFERENCES

[1] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The keccak
reference,” Submission to NIST (Round 3), vol. 3.0, 2011. [Online].
Available: http://keccak.noekeon.org/Keccak-reference-3.0.pdf

[2] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication,” in Advances in Cryptology CRYPTO 96, ser.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
1996, vol. 1109, pp. 1–15.

[3] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Cryptographic
sponge functions,” vol. 0.1, 2011. [Online]. Available: http://sponge.
noekeon.org/CSF-0.1.pdf

[4] P. Gauravaram and K. Okeya, “Side channel analysis of some hash
based MACs: a response to SHA-3 requirements,” in Information and
Communications Security, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008, vol. 5308, pp. 111–127.

[5] O. Benoı̂t and T. Peyrin, “Side-channel analysis of six SHA-3 candi-
dates,” in Cryptographic Hardware and Embedded Systems, CHES 2010,
ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2010, vol. 6225, pp. 140–157.

[6] C. Boura, S. Lévêque, and D. Vigilant, “Side-channel analysis of Grøstl
and Skein,” in Security and Privacy Workshops (SPW), 2012 IEEE
Symposium on, May 2012, pp. 16 –26.

[7] M. Zohner, M. Kasper, M. Stöttinger, and S. Huss, “Side channel
analysis of the SHA-3 finalists,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2012, Mar. 2012, pp. 1012 –1017.

[8] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in Cryptographic Hardware and Embedded Systems -
CHES 2004, ser. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2004, vol. 3156, pp. 135–152.

[9] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The keccak
sha-3 submission,” Submission to NIST (Round 3), 2011.

[10] “Keccak reference code submission to NIST (round 3),” http://csrc.nist.
gov/groups/ST/hash/sha-3/Round3/documents/Keccak FinalRnd.zip.

[11] “Xilinx microblaze soft processor core,” http://www.xilinx.com/tools/
microblaze.htm.

