
Teaching Cyber Physical Systems in Layers

Patrick Schaumont
schaum@vt.edu

Abstract—Computer Engineering, as a field of knowledge,
relies on a large number of abstractions to hide design details
in hardware and software. However, the heterogeneous nature
of CPS requires that students work across abstraction levels
(hardware, software, physical). Contemporary technologies are
not well adapted to this. This means that design abstractions,
generally thought of as an advantage, may become a liability
to learning. In a sophomore-level microcontroller-interfacing
class, we identified complex and poor technology abstraction
as one of the major difficulties faced by students. From that
experience, we propose that CPS education places special
emphasis on defining proper design abstraction levels. This is
the basis for appreciating the importance of efficient modeling
and sound methodology. We share some initial ideas on how
this can be applied in the context of a microcontroller lab with
a roving bot.

I. INTRODUCTION

The design of embedded computing systems is profoundly
based on abstractions. They are an essential tool to master
complexity. They hide unnecessary detail, and they en-
able engineers to focus on the essence of the problem. C
programs, finite state machines, data-flow process models,
memory-maps, and handshake protocols are all examples of
abstractions in the toolkit of computer engineers. Abstrac-
tions also work as a safety net, and they help engineers to
achieve a reasonable level of success towards correct design.

Unfortunately, it’s not always possible to keep design
details hidden with abstraction. The design of embedded
computing systems, and of cyber-physical systems in partic-
ular, relies on abstractions that straddle different domains.
As a first example, consider a memory-write to a special-
function register of a micro-controller peripheral. In soft-
ware, this looks like a simple memory-access. In hardware,
this may trigger a specific operation within the peripheral.
As a second example, consider a UART that communicates
with a motor controller to set the motor speed. In software,
this merely looks like the transmission of a byte using a
specific serial protocol. In the physical world, this means
that a motor will change its speed.

In our experience with teaching a microcontroller inter-
facing class, we found that students have great difficulty
with these abstractions that really aren’t abstractions. A
memory-write to control a peripheral does not serve the
purpose of variable storage; it controls hardware. A UART
transmission to set the motor speed does not serve the
purpose of communication; it controls motor speed. In our
experience, it seems that the translation of design problems

across different domains (software, hardware, physical) may
require so much effort from students that they tend to forget
about the convenience and power offered by abstraction
in the first place. When students finally get the hardware
peripheral to work using a magic sequence of software
commands, they have lost the energy to think about finite
state machines, reliability, exception handling, and all the
other things that make software cool.

To address this issue, we propose that CPS education
places special emphasis on abstractions, and how they
connect different domains together. We believe that CPS
are very well suited for this because they are partly based
on physics. Hence, design concepts can be explained to
students in terms of physical-world phenomena (turning
wheels, spinning rotors, ..). Abstractions can then be created
in a bottom-up fashion to capture the CPS application logic
(the ’cyber-part’).

The paper is structured as follows. In the next section, we
illustrate the complexity of abstractions with an example
from our microcontroller interfacing course. We then pro-
pose to approach CPS design as a layering of abstractions.
We show how design experiments with a roving bot can
be formulated as a decomposition of the design over the
different layers of abstraction.

II. COMPLEXITY OF ABSTRACTIONS: AN EXAMPLE

To illustrate how abstractions can become a burden,
we discuss an example from a spring 2012 class on mi-
crocontroller interfacing. Figure 1 shows a picture of the
microcontroller kit that is used in this class: a Cerebot
MX7ck board from Digilent [1]. This highly flexible kit
comes with multiple additional modules that plug into
connectors on the side of the board. The photograph shows
an accelerometer module and a display module. In this
lab assignment, the students had to implement tap-detection
using the accelerometer, and call a specific interrupt service
routine upon detection of a tap. In the following, we analyze,
in a bottom-up fashion, the number and nature of the
abstraction levels that students have to master in order to
correctly implement this assignment.

• Physical: The 3D-accelerometer requires a specific
orientation; the assignment asks for tap detection in the
X-direction (towards the main PCB).

• Platform: This lab used an accelerometer module and a
display module. Each has their own datasheet (40 pages

OLED Display

Accelerometer

I2C Interface

PIC32
Pmod Interfaces

Tap!

Figure 1. Hardware Setup of a lab using Cerebot MX7ck. Students need
to implement a tap-detection mechanism using the accelerometer.

and 65 pages, respectively), specifying its electrical and
logical connectivity.

• Board: The platform needs to be configured by fitting
the accelerometer and display modules into header
slots (’Pmod interfaces’) on the board. The slots in
Figure 1 appear to be uniform, but each of them
carries a different set of connections (IO-ports, Timer
capture/generation pins, interrupt input, analog inputs,
..). A separate 34-page board user manual explains the
functionality of each slot. The accelerometer needs an
I2C interface, unavailable on any of the slots. The I2C
connection is therefore jumper-wired to a header on the
board.

• SoC: The board includes a PIC32MX795F512L mi-
crocontroller, which contains multiple peripherals to
control the display and the accelerometer. The dis-
play is controlled through an SPI port and several
general-purpose I/O pins. The accelerometer is con-
trolled through an I2C port, and a change-notification
interrupt input pin. The large variety of PIC mi-
crocontrollers has prompted the manufacturer (Mi-
crochip) to create a modular documentation format. The
PIC32MX795F512L is summarized in a 256-page core
manual, while each peripheral has a separate manual
to explain its operation. The I2C and SPI peripherals
each have their own 60-page manual.

• HAL: The PIC32 is based on the MIPS architecture. The
PIC32 peripherals are memory-mapped and integrated
into the interrupt vector table. Based on this mapping
and the processor application binary interface, driver
software can be developed. This process is greatly aided
through a compiler; Microchip’s XC32 compiler is free
and easy to use, although it still comes with a 238-
page user manual (needed, in part, to document non-
standard-C coding specifics).

• Firmware: Microchip provides a peripheral program-
ming library called PLIB. PLIB provides easy C-based
API’s for each peripheral, but its documentation is
limited to a 314-page listing of headers and macro’s.
The mapping from API to low-level peripheral pro-
gramming (as documented in the datasheets) is not
obvious, and requires studying the PLIB source code.
Hence, PLIB is both a boon and a burden for the
students.

• Application Logic: At the apex of this stack of abstrac-
tions sits the C program that controls tap detection.
Ideally, at this level all abstractions should converge,
and the application should decompose into a suitable
set of period tasks and interrupts, captured in clear
state-machine logic. In practice, we have observed very
few students who are able to achieve this. Instead,
they are switching back and forth between abstraction
levels, browsing documentation and hacking the lab to
completion.

As an instructor, one wishes it was possible to hide all
of this detail and have the students focus on the essentials.
Unfortunately, there is very little hiding available. The point
of a class on microcontroller interfacing is precisely to learn
about these abstraction levels and their associations.

One could argue that there should be fewer abstraction
levels. For example, by assuming a standard computing
architecture, it may be possible to merge the levels of
HAL, SoC and board. Furthermore, by assuming a standard
input/output architecture, we could remove or integrate the
platform level. But would this really help? In our opinion,
it may hurt the purpose of the course. Training a computer
engineer with predefined libraries and standard computing
platforms is like training a cook with instant-meals. By
reducing the number of abstraction levels, the flexibility
of the system design reduces as well. The objective of
this course - microprocessor interfacing - is not just to
train (embedded) computer scientists, but rather, to train
engineers that can integrate embedded computing systems
into physical platforms. They need to know what it takes to
integrate a new chip (eg a gyro) in their embedded computer.

Instead of reducing the abstraction levels, we believe that
more educational effort is needed at the level of composition.
How can we reduce the heterogeneity and quantity of
documentation while still supporting multiple and flexible
levels of design abstraction? How can we build meaningful
links between abstraction levels? For example, how can
we teach design methods to link physical events (tapping
an accelerometer) to logical exceptions (interrupts)? And,
given a physical problem (detecting taps), how can we teach
how to select the right peripherals, peripheral configurations,
interrupts, task structures and task logic?

In the following section, we enumerate a few preliminary
ideas in the context of the microcontroller interfacing class.

Table I
SEVEN RELEVANT ABSTRACTION LEVELS, ENUMERATED BOTTOM-UP, IN THE DESIGN OF A CPS CONTROLLER.

Design Abstraction Level Interfaces and Constraints Reference Documentation
1. Physical Environment terrain, obstacles, environment, path problem specification
2. Platform encoders, sensors, switches, motors, gyro, accel datasheet
3. Board wiring, chip pinout, on-board communications, wireless board user guide
4. System-on-Chip (SoC) peripherals for sensor decoding, data conversion, communication (I2C,

SPI, UART, CAN, ETH), timing and time capture, ADC
data sheet

5. Hardware Abstraction (HAL) memory map and organization, interrupt vector table, register map,
low-level API (bit-banging) for peripheral access

compiler backend, library source code

6. Firmware high-level API (application-specific) manual, library source code
7. Application Logic computations, Finite State Machines, tasks and task communication textbook, theory

III. CPS DESIGN IN LAYERS

Table I shows the seven levels of abstraction relevant to
the integration of an embedded controller in a CPS. The
learning objective for students is to understand the role of
each layer in Table I in the overall implementation. There’s
great value in learning-by-doing. We therefore illustrate
layered design by means of a roving-bot lab. This lab has
not been used in a class yet, but is meant as an experiment
to make CPS education tangible.

We use a Lynxmotion 4WD rover, shown in Figure 2 [2].
This rover has 4 independent motor drives but is controlled
with a two-channel Sabertooth controller (left- and right-
drive). The Sabertooth controller has a serial input that
accepts various control commands for left/right motor power.
Each wheel has a quadrature encoder. The Cerebot board,
used in our microcontroller class, is serving as the rover
controller.

In a roving bot controller design, a designer seeks to
achieve a motion objective by writing a feasible program:
a program that achieves real-time operation within the im-
plementation constraints of the controller. Let’s evaluate the
layered design space of this roving bot. Figure 3 illustrates
how the design space requires decisions at every layer of
abstraction. Some of them, such as the decision to control
either wheel speed or else wheel position, have a direct
relationship to the motion objective, and they are easy. Other
decisions are less straightforward, as they are only indirectly
related to the motion objective. For example, consider the
processing of encoder inputs. Speed measurement of slow-
turning wheels can be done by direct polling of the encoders,
or by a change-notification interrupt for each encoder step.
Speed measurement of fast-spinning wheels, on the other
hand, requires the use of input-capture with a timer, since the
software can no longer keep up with the encoder events in
real-time. Hence, the motion objective (wheel speed) affects
peripheral selection, which in turns affects configuration of
the Board, SoC, and HAL layer.

By working in layers, students will learn how some design
decisions in the roving bot design will have only local effect,
while other design decisions have repercussions across all
abstraction levels. Although decisions will often still be ad
hoc, they are made within the correct context, and they can

Platform:
 LynxMotion 4WD Rover
 Sabertooth 2x12 Motor Control
 Quadrature Encoder on each wheel

Board
 Cerebot MX7ck
 UART Control of Sabertooth
 Sensing on Wheel Encoders
 Speed Display on OLED

Figure 2. Hardware Setup of a Cerebot MX7ck on a Lynxmotion roving
bot.

be related to the overall design. The major expected outcome
is that students will learn to keep system-level concerns
(such as design of system-level application logic) separate
from architectural concerns (such as sensor integration).

A concrete example shows how students could navigate
this design space. We’d like to write a program that lets the
bot drive in circles, at half speed. Figure 4 shows the design
process leading up to the development of the application
logic. We use a bottom-up approach as it seems quite natural
to start a circle-driver design with the motion objective.

• Physical: Driving in circles is easy enough if you
can control the wheel speed. Knowing the physical
dimensions of the roving bot and the radius of the circle
leads to the set-speed for the left and right wheel.

• Platform: The left and right motor speeds are indepen-
dently controlled by the Sabertooth controller, which
itself is steered through a UART input. We also measure
speed of the left- and right-front wheel.

• Board: To define the proper connections from the

Physical

Platform

Board

SoC

HAL

Firmware

Motion
Objective

Feasible
Program Application

• Motor Controller with {Serial, Serial Packetized} Control
• {1,2} control channels and {1 to 4} encoders

• Control of Wheel {Speed, Position}
• Control of Path

• Encoder connects to { Input Capture {1 from 3} or
 Change Notification {1 from 11}}
• Motor Controller uses UART Channel {1 from 2}

• Peripheral Configuration Parameters: Baudrate,

{Input Capture or Change Notification} Mode
• {Polled or Interrupt Driven} Encoder Sensing
• {Timer Period, {Polled or Interrupt}}

• {Interrupt Vectors for {Timer, Encoder Sensing}}
• {Interrupt Priority for {Timer, Encoder Sensing}}

• API for Initialization, Parameter Setting, Status Sensing
• Global Variables
• Interrupt Service Routines

• Real Time Control of Wheel
• Feasible Exception Handling (no stack overflow)
• Fits within Memory Constraints

Figure 3. Design Space of the Roving Bot Controller; intermediate design
decisions are captured in bold-italics.

platform to the controller board, we need to select the
peripherals that will be used in this application. We
select UART1 for the motor control, input-capture 2
for the left wheel, input-capture 3 for the right wheel.
This defines the proper board connections.

• SoC: The peripherals require appropriate configura-
tion, including the system clock speed, the UART
transmission format, the timer period and the capture
parameters. The parameters have been chosen such
that the fastest wheel speed does not overwhelm the
microcontroller with input events. We’ve also defined
interrupts for both input-capture peripherals.

• HAL: We’ve used independent interrupt vectors for
each wheel, and we chose interrupt priority levels for
each of them.

• Firmware: We developed an API to take care of mo-
tor control and motor speed measurement. Figure 4
shows the set of functions that were created. The inter-
rupt service routines will update two global variables
(frontLeftTPR and frontRightTPR) with the
latest measurement from the encoders. TPR stands for
timer ticks per revolution: a larger number means a
slower speed.

After the structured development of this API, we can now
write the application logic. For a student, who worked step
by step through each of the abstraction layers, we think the
program shown on the right should pose no problem to write.

IV. CONCLUSIONS

This paper argued for a layered approach to CPS educa-
tion. It shows students the value of abstractions, while at the
same time, it enables them to see across the abstractions in
a structured manner. There are many interesting points left
to cover, including design methodology, verification, perfor-
mance analysis, and more. Such issues seem appropriate for

VA

VR VL

0.5 VA = 0.5 VMAX
VL = 0.35 VMAX
VR = 0.65 VMAX

Physical

Platform

Board

SoC

HAL

Firmware

Set Left, Right Motor Speed using Sabertooth UART (38400 8N1)
Measure Left, Right Wheel Speed using Quadrature Encoder

100 µs
At VMAX, QE Output is

Sabertooth UART to UART1 (Connector JE pin 2)
QELeft to Timer Capture 2 (Connector JD pin 1)
QERight to Timer Capture 3 (Connector JD pin 4)

System Clock 80Mhz, PBClk 10MHz
UART1 at Baud 38400 8N1, TX enable, no interrupt
Timer3 prescale 256, period 0xFFFF, no interrupt
Input Capture 2 at 16-bit capture, prescale 16, rising edge, interrupt enable
Input Capture 3 at 16-bit capture, prescale 16, rising edge, interrupt enable

Multi-vector Interrupt
Input Capture 2 ISR vector 8 priority 1
Input Capture 3 ISR vector 9 priority 1

void initSaber(); void initWheelCounters(); IC2Interrupt();
void saberLeft(u8); int frontLeftTPR; IC3Interrupt();
void saberRight(u8); int frontRightTPR;

Figure 4. Design of the Circle Driver.

a more advanced CPS course. In any case, the advent of CPS
in courses brings an incredibly exciting time for students. At
very few occasions before, has computer engineering had the
opportunity to gain this level of visibility in daily life.

void main() {
int leftspeed, rightspeed;
initSaber();
delayInit();
initWheelCounters();
enableWheelCounters();
INTEnableSystemMultiVectoredInt();
leftspeed = SETLEFT;
rightspeed = SETRIGHT;
while (1) {
saberLeft(leftspeed);
saberRight(rightspeed);
delayMs(100); // adjust speed 10 times per sec
if (frontLeftTPR > SETLEFTTPR) // too slow
leftspeed = (leftspeed < MAX) ? leftspeed+1 :

leftspeed;
if (frontLeftTPR < SETLEFTTPR) // too fast
leftspeed = (leftspeed > 0) ? leftspeed-1 :

leftspeed;
if (frontRightTPR > SETRIGHTTPR) // too slow
rightspeed = (rightspeed < MAX)? rightspeed+1 :

rightspeed;
if (frontRightTPR < SETRIGHTTPR) // too fast
rightspeed = (rightspeed > 0) ? rightspeed-1 :

rightspeed;
}

}

REFERENCES

[1] Cerebot MX7ck, http://www.digilentinc.com/Products/Detail.
cfm?NavPath=2,396,986&Prod=CEREBOT-MX7CK.

[2] Lynxmotion 4WD, http://www.lynxmotion.com/
c-111-no-electronics-kit.aspx.

