Authenticating Micro-controllers

P. Schaumont

Bradley Department of Electrical and Computer Engineering
Virginia Tech
Blacksburg, VA

Design and Security of Cryptographic Functions, Algorithms
and Devices, 2013

Objectives of this presentation

@ How to support authenticity on microcontrollers?

e Firmware support for authentication protocols
e Signed firmware upgrades

@ Coding examples, sample projects

Introduction

@ Embedded Authentication

@ Preliminaries
@ Microcontroller Technologies
@ Basic authentication protocols
@ HOTP and TOTP

Q Authenticating Micro-controllers
@ Single-chip authentication (PIC32MX795F512L)
@ PCB-level authentication
@ Two-factor login on a watch (CC430F6137)

e Firmware signing and verification
e ECDSA
@ Design Flow
@ Example (ATMega2560)

e Outlook

Introduction

Embedded Authentication

(1) Ensure that server, environment, hardware is genuine

l SOFTWARE E —————— - AUTH? Tl
\\IAUTH? \N PCB “}_\
\4
INPUT/
= e < ouTPUT
(REMOTE)
HOST
PERIPHERAL(S)
MICRO <> ANDOTHER
CONTROLLER COMPONENTS

Introduction

Embedded Authentication

(2) Ensure that data items, firmware downloads, are genuine

—— ~_ genuine?
/f« -...___._‘*‘
/ vouch? S
- ‘=
;o —
SOFTWARE MEASUREMENTS, FIRMWARE UPDATE,
DATA PARAMETERS
PCB
INPUT/
ELASH OUTPUT
(REMOTE)
HOST
PERIPHERAL(S)
MICRO le—={ AND OTHER
CONTROLLER COMPONENTS

Preliminaries

@ Embedded Authentication

@ Preliminaries
@ Microcontroller Technologies
@ Basic authentication protocols
@ HOTP and TOTP

Q Authenticating Micro-controllers
@ Single-chip authentication (PIC32MX795F512L)
@ PCB-level authentication
@ Two-factor login on a watch (CC430F6137)

e Firmware signing and verification
e ECDSA
@ Design Flow
@ Example (ATMega2560)

e Outlook

Preliminaries
©0000

Microcontroller technologies

We develop authentication in the context of the following
technologies

@ Single-chip implementation with CPU, RAM, Flash,
Peripherals

@ Lightweight processing platform (8/16 bit)

@ Dedicated toolchain for bare-metal C programming

@ May or may not be always-on, which affects persistent
state

Security assumptions
@ Chip package is the trust boundary
@ Correctly-designed firmware prevents code injection
@ No implementation attacks

Preliminaries
0000

Example: ATMega2560

8-Bit Microcontroller

@ AVR CPU

@ 256KB Flash, 4KB EEPROM, 8KB RAM

@ Lock bits restrict access to non-volatile memory

@ Timers, PWM, ADC, SPI, UART, ...

@ AVR LibC (gcc) toolchain nttp://www.nongnu.org/avr-1ibe/

y

http://www.nongnu.org/avr-libc/

Preliminaries

[e]e] le]e}

Example: ATMega2560 (Support Hardware)

Bus Pirate (for 1/0)
JTAG ICE (for firmware

loading and debugging)

Preliminaries
00000

Example: CC430F6137

16-Bit Ultra-Low-Power MCU

@ MSP430 CPU

@ 32KB Flash, 4KB RAM

@ Timers, 12-bit A/D, T/V sensor, sub-1GHz RF
@ 32-bit Hardware Multiplier, AES

@ mspgcc toolchain
http://sourceforge.net/apps/mediawiki/mspgcc

http://sourceforge.net/apps/mediawiki/mspgcc

Preliminaries
ooooe

Example: PIC32MX795F512L

32-Bit Microcontroller
e MIPS CPU
@ 512+12KB Flash, 64KB RAM
@ Timers, USB, CAN, ADC, SPI, UART, ETH, 12C, ...
@ MSPlabX toolchain nttp://www.microchip.com/mplabx/

http://www.microchip.com/mplabx/

Preliminaries
0

Basic One-way Authentication

Prover P, Challenger c, pre-shared secret key K
C < P: ldentifier ID

Cc — P: Nonce N

C < P:encrypt (K, ID || N)

C verifies encryption of (ID || N)

Preliminaries
0

Basic One-way Authentication

@ Prover p, Challenger c, pre-shared secret key K
@ C « P: Identifier 1D

@ C — P: Nonce N

@ C<«+ Piencrypt (K, ID || N)

@ C verifies encryption of (ID || N)

Important Requirements

@ Nonce must be unique, otherwise replay is possible
@ Preshared key K is a system-wide secret (liability)

Preliminaries
oe

Basic Mutual Authentication

Prover/Challenger p1/C1, P2/C2, pre-shared secret key K
P1/C1 « P2/C2: Identifier ID2, Nonce N2

P1/Cl — P2/C2: Nonce N1, encrypt (ID1 || N2)
P1/Cl < P2/C2: encrypt (ID2 || NI1)
p2/c2 verifies encryption of (ID1 || N2)

P1/C1 verifies encryption of (ID2 || N1)

Preliminaries
000

HOTP and TOTP

Application Domain

@ Developed for user authentication
(as part of two-factor authentication)

@ http://www.openauthentication.org

Preliminaries
0®0

HOTP

One-way authentication with SHA1-HMAC

HMAC(K,C) =
SHA1((K xor 0x5¢5¢...) || SHA1((K xor 0x3636...) || C))

HOTP: HMAC-based one-time password

@ HOTP defined in IETF RFC 4226

@ HOTP(K,C) = Truncate(HMAC(K,C)) & Ox7FFFFFFF
with K a key and C a counter

@ Truncate is digest-dependent 4-byte substring of a 160-bit
SHA digest

@ Humans who can only recall d digits use instead
HOTP(K,C) mod 109

Preliminaries
ooe

One-way authentication with SHA1-HMAC

HMAC(K,C) =
SHA1((K xor 0x5c5c...) || SHA1((K xor 0x3636...) || C))

TOTP: Time based one-time password

@ TOTP: defined in IETF RFC 6238

@ TOTP(K,T) = HOTP(K,T)
with T = floor(Unix Time / Step)

@ Unix Time is the elapsed time in seconds since
00:00 UTC, 1 Jan, 1970

@ Step is a time window, typically 30 seconds

Authentication

@ Embedded Authentication

@ Preliminaries
@ Microcontroller Technologies
@ Basic authentication protocols
@ HOTP and TOTP

Q Authenticating Micro-controllers
@ Single-chip authentication (PIC32MX795F512L)
@ PCB-level authentication
@ Two-factor login on a watch (CC430F6137)

e Firmware signing and verification
e ECDSA
@ Design Flow
@ Example (ATMega2560)

e Outlook

Authentication
@0000

Single-chip scenario

HOST (Prover) PIC32 (Challenger)

‘cp’ bit

e T

Boot/Program
Flash

Requirements
@ Need persistent storage for counter
@ Need protected + persistent storage for secret

Authentication
(o] lele]e]

Basic protocol

__attribute_ ((aligned(4096)))

const unsigned char settings[4096] =
{0x01, 0x23,0x45,0x67,0x89, 0xAB, 0xCD, OxXEF,
0x10,0x32,0x54,0x76,0x98, 0xBA, 0xDC, OxXFE,
0x00, 0x00,0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

void main () {
hmac (settings, challenge, id, expect);
IncCounter () ;

putChallenge (challenge);
getResponse (response) ;

if (correctResponse (response, expect)) {
// authenticated

// secretL
// secretH
// counter

Authentication
00800

Writing Flash Memory

Authentication state variable stored in Flash

unsigned long long secret;
unsigned counter;

@ Flash memory is persistent and (optionally) protected
@ Flash memory resets to all-’1’ in a block-wise operation
@ Can write a’0’, but not a’1’ into Flash memory

@ Hence, a persistent counter is tricky to implement!

Authentication
[ee]e] o]

Counting in Flash Memory

__attribute__ ((aligned(4096)))

const unsigned char settings[4096] =
{0x01,0x23,0x45,0x67,0x89, 0xAB, 0xCD, OXEF, // secretl
0x10,0x32,0x54,0x76,0x98, 0xBA, 0xDC, OxXFE, // secretH
0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00}; // counter

void IncCounter () {
int xcp, v;
unsigned int buf[3];
memcpy (buf, settings, 12);
buf[2] = buf[2] + 1;
NVMErasePage ((void x) settings);
NVMWriteWord ((void x) settings, buf[0]);
NVMWriteWord ((void) & (settings[4]), buf[l]);
NVMWriteWord ((void x) & (settings[8]), buf[2])

’

Authentication
[ee]e]e]]

Protecting Flash Memory (PIC32)

REGISTER 28-1: DEVCFGO: DEVICE CONFIGURATION WORD 0

Bit Bit Bit Bit Bit Bit Bit Bit Bit
Range | 317231157 | 30122/14/6 | 291211375 | 28/2012/4 | 27191113 | 26118102 | 25117191 | 241167810
o &z = a3 = = = i
3124 — — — P — = BWP
=] 1 1 =] RP RP R RP
216 = = = = PWP<T:4>
~e ~" e " = = PER
158 PWP<3:0> — e
70 ~t [w1 [v [RP it RP | RP
=1 = 1T = ICESEL = DEBUG<1:0>

Device Configuration Registers 0 (PIC32)
@ CP = Code-protect bits
@ BWP = Boot-flash Write-protect bits
@ PWP = Program-flash Write-protect bits

C initialization (P1C32)

#pragma config PWP

OFF // allow program flash write

#pragma config CP = ON // prevent reading of secret

A

Authentication
[]

Two-chip solution

HOST (Prover) PIC32 (Challenger) ATSHA204
* re || &

Boot/Program RNG

Flash ;
SHA1 i

UART

Prerequisites
@ When the micro-controller non-volatile memory cannot be
protected, you will need a two-chip solution.

@ This solution authenticates the SHA chip (or PCB)!

Authentication
[Jele}

Google’s two-factor login

er the verification code generated by your mobile applicatia

code: (85441] w

" Remember this computer for 30 days.

t a verification code »

Authentication
(o] le}

TOTP on a watch

Recall that TOTP(K,T) = HOTP(K,T)

@ The watch is always running, so can keep state in RAM

@ Assuming watch is guarded, secure storage is less of an
issue

@ In a low-power implementation, compute TOTP only when
needed (event driven, once per 30 seconds)

Authentication
[e]e]]

TOTP on a watch

void set_totp(u8 line) {
// this function synchronizes the totp counter
// to the clock time
stotp.code = mktime(..)
- 2208988800 // adj for unix epoch
+ 18000; // adj for EST
stotp.code = stotp.code / 30;
stotp.togo 30; // recompute in 30 sec
stotp.run = 1;

void tick_totp() {
// this function is called once every second
// and adjusts the stotp time code every 30 seconds
if (stotp.run) {
stotp.togo = stotp.togo - 1;
if (stotp.togo == 0) {
stotp.code = stotp.code + 1;
stotp.togo = 30;

@ Embedded Authentication

@ Preliminaries
@ Microcontroller Technologies
@ Basic authentication protocols
@ HOTP and TOTP

Q Authenticating Micro-controllers
@ Single-chip authentication (PIC32MX795F512L)
@ PCB-level authentication
@ Two-factor login on a watch (CC430F6137)

e Firmware signing and verification
e ECDSA
@ Design Flow
@ Example (ATMega2560)

e Outlook

Signing

Code signing

@ Microcontroller authentication ensures that the
hardware/firmware is genuine

@ Dynamic data items or firmware plugins will need separate
verification

@ We will use electronic signatures (ECDSA) to verify signed
code downloads

Signing
0

Input: Message M (or a hash of it), private key d, public key Q = d.P

Signature Generation
Random k

kP=(xy)

r=x mod #E

s = k(M + d.r) mod #E

Message: M
Signature: (r, s)

Signature Verification
w = s mod #E

u, = M.w mod #E
U, =r.w mod #E

Up.P+ U, Q=(x,)

v =x mod #E

Check if v = r to verify signature

Signing
oe

ECDSA on code plugin

Development System Deployed Microcontroller

Signature
c £

CK
Binary Private

Key Online
or

Signing
€00

Creating signed plugins

Development Target System
System
i i ATy
void plugin() { Signature EEPROM
cl - 42) -
! Public Key
Length (2)
i FLASH
linker Entry (2)
script avr-gcc plugin
Code (Var)
Code + text
Length + Plugin load, verify,
e Binary Format execute
plugin
Reue
Private Signer m
ATmega 2560

e

Signing
0e0

Creating signed plugins

Development
System

void plugin() { Signature EEPROM
Cl - (42) i
Public Key

)
Length (2)
= FLASH
linker Entry (2) -
script avr-gce -plugin
—~

Code (Var)

Target System

Code + text
Length + Plugin load, verify,
Entry Binary Format execute
plugin
[Reuic

Signer
RELIC

ATmega 2560

Security Requirements

@ Confidentiality for private key in development system
@ Integrity for public key in target (protected flash)
@ Integrity for plugin signature verification code

Signing
ooe

Plugin strategy

@ Plugins will be signed with ECDSA NIST k-163. A
signature requires 42 bytes.

@ Remember that this is bare-metal programming. No OS,
no runtime linking. We will therefore design the plugin as
relocatable code, and use only absolute global references.

@ Plugin code is inserted at absolute target address 0x1056.
The first 0x56 bytes will contain the signature, the length of
the plugin, and the entry point.

Signing
€000

Example plugin: a blinker

#include <avr/io.h>
#include <util/delay.h>

void slow (unsigned a) {
_delay_ms(a);

}

void plugin() {

DDRB |= _BV(DDB7);

while (1) {
PORTB |= _BV(PORTR7);
slow (25);
PORTB &= ~_BV (PORTB7);

slow (300);

Signing
0000

Compiling the plugin

Commands

compile

avr-gcc -g -v -0Os -DF_CPU=16000000UL -mmcu=atmega2560 —-c \
-0 demo.o demo.c

link (to resolve references)

avr-gcc —g —-v -—nostartfiles -mmcu=atmega2560 demo.o \
-W1l, -Map=demo.map -Wl,-T avré6.custom -o demo

create binary image

avr-objcopy -O binary -R .eeprom demo demo.bin

TOTP

Uses a custom-link file, avré6.custom, to control location of
generated code (.text segment) to 0x1056.

| \

A

Signing
0000

Signing the plugin

@ The signer and the verifier will run on different host. The
signer runs on a development system (X86), the verifier
runs on an embedded system (AVR).

@ We need a portable code signing/verifying library. We used
RELIC (http://code.google.com/p/relic-toolkit/).

@ The signer takes the binary image of the plugin as input,
and generates a signed plugin in C.

Example signed plugin

__attribute_ ((__section__ (".plugin")))
unsigned char plugin([120] ={
0x33, 0x36, 0x42, 0x32,
0x44, 0x41, 0x35, 0x31, ...

Signing
oooe

Loading and Verifying the plugin

#include "../atmega2560_plugin_blinker/plugin.c" // plugin code

typedef void (xpluginptr_t) ();
pluginptr_t verifysignature() {
// read public key
for (chk=0; chk<42; chk++)
c[chk] = eeprom_read_byte (chk);
fb_read(g->x, c, 42, 16);

// read signature
for (chk=0; chk<41l; chk++)

cl[chk] = pgm_read_byte (& (pluginfchk]));
bn_read_str(r, c, 41, 16);

// verify signature
chk = code_cp_ecdsa_ver(r, s, (PGM_P) & (plugin[86]),
(unsigned) len, qg);
if (chk)
return (pluginptr_t) (&(plugin[86 + ofs]));
else
return O;

Outlook

@ Embedded Authentication

@ Preliminaries
@ Microcontroller Technologies
@ Basic authentication protocols
@ HOTP and TOTP

Q Authenticating Micro-controllers
@ Single-chip authentication (PIC32MX795F512L)
@ PCB-level authentication
@ Two-factor login on a watch (CC430F6137)

e Firmware signing and verification
e ECDSA
@ Design Flow
@ Example (ATMega2560)

e Outlook

Outlook

Outlook

@ Embedded authentication comprises (1) platform
authentication and (2) authenticity of code.

@ There are many implementation details that murk the
waters of cryptographic protocols

@ access control and tamper resistance of key storage
e persistent counting
o design flows that can handle keys

@ PUFs, TRNGs are just a tiny piece of the puzzle!
@ For example, some interesting avenues could be

e Embedded authentication with public-key implementation.
e Signatures that cover variants (eg relocated code).
o Lightweight signatures for data measurements.

Outlook

Sample Projects

@ P.Schaumont, "One-Time Passwords from Your Watch,"
Circuit Cellar 262, May 2012,

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar
/2012/262/Schaumont-262.zip.

@ P. Schaumont, "Electronic Signatures for Firmware
Updates," Circuit Cellar 264, July 2012,

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar
/2012/264/Schaumont-264.zip.

@ P. Schaumont, "Embedded Authentication," Circuit Cellar
270, February 2013,

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar
/2013/270/270-Schaumont.zip.

	Embedded Authentication
	Preliminaries
	Microcontroller Technologies
	Basic authentication protocols
	HOTP and TOTP

	Authenticating Micro-controllers
	Single-chip authentication (PIC32MX795F512L)
	PCB-level authentication
	Two-factor login on a watch (CC430F6137)

	Firmware signing and verification
	ECDSA
	Design Flow
	Example (ATMega2560)

	Outlook

