
Simulating Power/Energy Consumption of Sensor
Nodes with Flexible Hardware in Wireless Networks

Jingyao Zhang, Srikrishna Iyer, Patrick Schaumont, and Yaling Yang
Department of Electrical and Computer Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24060
Email: {jingyao, skr, schaum, yyang8}@vt.edu

Abstract—Energy consumption and real-time performance are
two important metrics for wireless sensor networks (WSNs). To
estimate these metrics, a number of simulation environments
have been developed. However, these environments were made
specifically for sensor nodes with fixed architectures. The re-
cent generation of sensor nodes often has flexible architectures
through the use of programmable hardware components, i.e.,
Field-programmable gate arrays (FPGAs). So far, no simulators
have been developed to evaluate the performance of such flexible
nodes in wireless networks. In this paper, we present PowerSUN-
SHINE, a power- and energy-estimation tool that fills the void.
PowerSUNSHINE is the first scalable power/energy estimation
tool for WSNs that provides an accurate prediction for both
fixed and flexible sensor nodes. In this paper, we first describe
requirements and challenges of building PowerSUNSHINE. Then,
we present power/energy models for both fixed and flexible
sensor nodes. Two testbeds, a MicaZ platform and a flexible
node consisting of a microcontroller, a radio and a FPGA based
co-processor, are provided to demonstrate the simulation fidelity
of PowerSUNSHINE. We also discuss several evaluation results
based on simulation and testbeds to show that PowerSUNSHINE
is a scalable simulation tool that provides accurate estimation
of power/energy consumption for both fixed and flexible sensor
nodes.

I. INTRODUCTION

Nowadays, WSNs are proposed to be used in many appli-
cations, such as structure and environment monitoring, health
care, and so forth. In the past, these WSNs were composed
of sensor nodes that mainly consist of a microcontroller
and a wireless transceiver. However, the microcontroller’s
processing capability may cause a real-time bottleneck when
sensor nodes have to execute compute-intensive tasks, such
as message encryption/decryption and large data compres-
sion/decompression. To accelerate the execution speed of the
sensor nodes, adding a hardware accelerator to form a flexible
sensor node has been recently proposed in [1] [2].

Apart from fixed components, such as a transceiver and a
microcontroller, a flexible sensor node has a programmable
hardware component, i.e., FPGA. In contrast to the fixed
sensor node whose hardware functionalities, such as circuitry,
clock frequency and I/O ports are fixed, the programmable
logic of FPGA can be configured to perform either complex
algorithms by programming thousands of logic cells or simple
calculations that just uses one AND or OR gate. Based on this
functionality, executing compute-intensive tasks in parallel on
FPGA instead of sequentially on microcontroller can make the

flexible sensor node’s execution speed orders of magnitude
faster than the fixed sensor node’s.

Due to the high cost of building, deploying and debugging
distributed sensor network prototypes in real environments, it
is better to evaluate applications in simulation before deploy-
ing applications on actual WSNs. Unfortunately, no simulators
have been developed to evaluate the real-time performance and
energy consumption of such flexible platforms. Therefore, it
is difficult to identify what specific applications can benefit
from flexible platforms in large WSNs.

To evaluate the real-time performance of flexible platforms,
in our previous work, we built SUNSHINE [3]. SUNSHINE
is a cycle-accurate simulator that can emulate the behaviors
of flexible sensor nodes in wireless networks. While we
have demonstrated that SUNSHINE can accurately capture the
timing behaviors of WSNs’ applications on flexible hardware
platforms, estimating their power/energy consumption has
turned out to be very challenging and has remained unsolved
until this paper.

Predicting the power consumption for flexible sensor
nodes is challenging for two reasons. First, predicting the
power/energy consumption of fixed (microcontroller) and flex-
ible (FPGA) components’ interactions in wireless network en-
vironment is difficult. Second, the power estimation processes
for fixed and flexible components are completely different
from each other. Because of the above challenges for esti-
mating power consumption of flexible nodes, existing power
estimation tools [6] [7] only support fixed sensor nodes. The
lack of capability on analyzing power consumption of flexible
nodes would result in restricting analysis and development of
flexible sensor platforms in large networks.

The focus of this paper is to describe our novel design of
a power/energy estimation tool called PowerSUNSHINE for
WSNs. PowerSUNSHINE is able to predict power/energy con-
sumption of not only fixed-platform sensor nodes, such as Mi-
caZ nodes, but also flexible sensor nodes with reconfigurable
FPGAs. To the best of our knowledge, PowerSUNSHINE is
the first to provide power/energy estimation of flexible sensor
nodes.

Our major contributions are summarized as follows.
1) We developed a methodology for estimating

power/energy consumption of flexible sensor platforms
in wireless network environment. Based on this method,

2012 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON)

978-1-4673-1905-8/12/$31.00 ©2012 IEEE 112

power/energy consumption models for each component,
including microprocessor, radio transceiver, and FPGA-
based component, are established, so that a wide range
of sensor platforms’ power/energy consumption can be
captured by combining the power/energy consumption
of their components.

2) Following our methodology, we built a power/energy
modeling extension, called PowerSUNSHINE, into the
SUNSHINE simulator. Unlike other power tools that
only evaluate fixed hardware platforms, PowerSUN-
SHINE supports both fixed and flexible sensor plat-
forms.

3) We set up two testbeds, a MicaZ platform and a flexible
sensor platform with a FPGA-based co-processor, to
evaluate the fidelity of PowerSUNSHINE.

The rest of the paper is organized as follows. Section II
presents related work of power tools for wireless sensor
networks. Section III first introduces the architecture of
SUNSHINE, and then presents PowerSUNSHINE’s charac-
teristics, architecture, and challenges. Section IV presents
power/energy models of fix-function components. Section V
discusses power/energy models of reconfigurable components.
Section VI provides the setup of actual hardware platforms.
Section VII offers evaluation results of PowerSUNSHINE.
Section VIII discusses future work. Finally, Section IX pro-
vides conclusions.

II. RELATED WORK

To measure actual sensor nodes’ power consumption di-
rectly, several papers [4] [5] measured actual sensor nodes’
current at real-time via specialized circuits. Even though these
methods have high-precision results, building hundreds of
circuits to measure large WSNs’ power/energy turns out to
be time-consuming and impractical. In such a case, building
a system to estimate the WSNs power/energy consumption is
crucial in the area of sensor networks.

Several simulation tools for energy profiling of sensor
nodes have been developed in existing work. For example,
PowerTOSSIM [6] has been built on top of TOSSIM simula-
tor to estimate Mica2’s energy consumption. Since TOSSIM
cannot emulate a microcontroller’s execution time, to estimate
the microcontroller’s power consumption, PowerTOSSIM has
to estimate microcontroller’s execution time based on the
intermediate C code generated by tinyOS applications. This es-
timation, however, may be fairly inaccurate in many cases. By
comparison, in PowerSUNSHINE, the microcontroller’s cycle
counts are precisely counted by SUNSHINE. Therefore, the
microcontroller’s energy consumption can be more accurately
captured.

AEON [7] is developed based on a cycle accurate simulator
AVRORA to profile Mica2’s energy. AEON breaks down
Mica2’s components and calculates each hardware’s energy
in the system. AEON is able to capture Mica2 nodes’ power
consumption accurately since AVRORA can simulate micro-
controller’s cycle-accurate behavior.

None of PowerTOSSIM or AEON is able to evaluate
the power consumption of flexible sensor nodes. They are
dedicated for fixed sensor nodes. PowerSUNSHINE is able
to capture both fixed and flexible sensor nodes’ power con-
sumption.

III. POWERSUNSHINE OVERVIEW

In this section, we first briefly introduce the architecture of
SUNSHINE, which is the foundation of PowerSUNSHINE.
Then, we describe the characteristics, architecture and chal-
lenges of PowerSUNSHINE.

A. SUNSHINE Simulator

PowerSUNSHINE’s ability to profile the power consump-
tion of fixed and flexible sensor nodes is based on SUN-
SHINE, a cycle-accurate hardware-software simulator for sen-
sor networks. SUNSHINE is developed by the authors in
their previous efforts and is the only existing simulator that
can simulate flexible sensor platforms. Other existing sensor
network simulators can only capture fixed hardware platforms
and do not support simulation of reconfigurable hardware
designs. In the following, we give an overview of SUNSHINE.

Fig. 1. SUNSHINE software architecture

Fig. 1 illustrates SUNSHINE’s software architecture [3]. A
sensor node can be simulated by SUNSHINE in two different
modes: co-sim mode or TOSSIM mode. For nodes simulated
in TOSSIM mode (called TOSSIM nodes), only high-level
functional behaviors are captured while for nodes in co-sim
mode (called co-sim nodes), the behaviors of hardware co-
processors are described by a hardware description language,
GEZEL [24] and are simulated at cycle-level accuracy. The
cycle-accurate behaviors of other components in co-sim nodes,
such as microcontrollers and transceivers, are also captured in
SUNSHINE.

With the support of SUNSHINE, especially its ability of
simulating accurate behaviors of co-sim nodes, building a
power/energy estimation tool for both fixed and flexible sensor
platforms in network environment becomes feasible. Further-
more, building PowerSUNSHINE over SUNSHINE simulator
has the following advantages:

Accuracy: SUNSHINE accurately captures the behaviors
of sensor nodes at cycle level. This provides the foundation
to ensure that the power/energy consumption of sensor nodes

113

estimated by PowerSUNSHINE is close to the measurement
results of actual boards.

Flexibility: Based on SUNSHINE’s capability to simulate
arbitrary hardware platforms, PowerSUNSHINE supports es-
timating power/energy consumption of different sensor plat-
forms.

Compatibility: Since TinyOS applications can run in SUN-
SHINE, PowerSUNSHINE can profile power/energy con-
sumption of sensor nodes running TinyOS applications di-
rectly. This is useful because TinyOS is the dominating
operating system for WSNs.

Path to Implementation: Both SUNSHINE and Power-
SUNSHINE bridges the gap between design and implemen-
tation of flexible sensor nodes’ applications. The applications
evaluated by SUNSHINE and PowerSUNSHINE in simulation
can be loaded and run on actual hardware.

B. PowerSUNSHINE Architecture

Building a power/energy simulation model for flexible hard-
ware platforms (with fixed hardware platform as a special
case) is a non-trivial task. PowerSUNSHINE aims to capture
a wide range of possible platform designs that are formed by
different combinations of hardware components. Thus, power
models based on measurement of the power consumption of
existing platforms as a whole will not work, since one platform
cannot represent the power consumption of another platform
with different hardware designs.

To solve this problem, PowerSUNSHINE decomposes the
power consumption of a sensor platform into a combination
of power consumption of individual hardware components.
Fig. 2 illustrates the block diagram of PowerSUNSHINE ar-
chitecture. PowerSUNSHINE is associated with co-sim nodes,
whose cycle accurate hardware-software behaviors are cap-
tured by SUNSHINE. When SUNSHINE is simulating appli-
cations of sensor nodes, PowerSUNSHINE breaks down sen-
sor nodes into components, calculates power/energy consump-
tion of each component, and then adds all the components
power/energy consumption together.

To be specific, if PowerSUNSHINE is applied for fixed
sensor nodes in the simulation, it tracks cycle accurate ac-
tivities of every component, and uses the power/energy model
to calculate the total power/energy consumption of the nodes
according to their components’ activities.

Compared with fixed nodes, a flexible node has an extra
programmable FPGA. If PowerSUNSHINE is applied for
the flexible node, the additional power/energy dissipation of
FPGA should be considered. Therefore, the total power/energy
profiling should contain the power/energy consumption of both
fixed hardware components and the reconfigurable FPGA.

By establishing a power/energy model for each hardware
component, PowerSUNSHINE can estimate the power/energy
consumption of arbitrary platform designs.

C. Challenges

Establishing power models for individual hardware com-
ponents is a fairly challenging task. First, hardware compo-
nents with fixed functions, such as microcontrollers and radio

Fig. 2. Block diagram of PowerSUNSHINE architecture

chips, have different operation states with different power
consumption. Hence, PowerSUNSHINE’s model of these fixed
hardware components must estimate the power consumption
of each operation state during the simulation of the sensor
platforms.

Second, reconfigurable hardware components like FPGA
chips do not have fixed operation states. The power consump-
tion of FPGA depends on how the FPGA is configured and
cannot be possibly known at the time of PowerSUNSHINE’s
development. Hence, PowerSUNSHINE must be able to derive
the power consumption of the FPGA based on the descriptions
of its functions at the simulation time.

In the following two sections, we illustrate PowerSUN-
SHINE’s methods to address the above two challenges by
showing how we model the power/energy consumption of
radio chip, microcontroller, LEDs, and FPGA chip. These
are common hardware components on sensor platforms. The
power consumption of other possible hardware components
can also be obtained with the same methods.

IV. POWER/ENERGY MODELS FOR FIX-FUNCTION

COMPONENTS

In this section, we first describe the power/energy model
of a fixed sensor node. Then, we present how we obtain the
power/energy consumption of each hardware component, such
as microcontroller, radio, and LEDs. In this paper, we use
MicaZ platform as an example of the fixed sensor nodes.

A. Power/Energy Model of Fixed Senor Node

Fixed sensor nodes’ energy consumption depends on their
hardware components. Therefore, the energy model can be
presented as shown below:

Etotal = Emcu + Eradio + Eotherperipherals

=
∑

devices(
∑

states V · istate · ncycles state).
(1)

where “devices” contain microcontroller, radio, and other
peripherals on the board, “states” represent different devices’
states in the simulation, istate is the current of a device at the
dedicated state, “ncycles states” is the microcontroller’s cycle
numbers spent on the state, and V is the constant voltage.

114

We describe how we calculate the power/energy consump-
tion of different components shown in formula (1) in the
following.

B. Measurement Setup and Results

Since sensor nodes’ current varies due to different environ-
ments, to accurately capture the nodes’ power consumption,
we measure the nodes current in our own environment. To
measure the individual power consumption of ATmeg128L
microcontroller, CC2420 radio chip, and LEDs on a MicaZ
platform, we use MicaZ OEM nodes [17], LeCroy WaveSurfer
24Xs-A Oscilloscope with a 2.5 GS/s sampling rate [18],
CADDOCK high performance 0.50 Ohm shunt resistors [19]
with a tolerance of ±1%, and a TENMA 72-6905 4CH
laboratory DC power supply [20]. We used similar method
as [6] to get the current of the sensor nodes. The current
can be obtained via measuring the voltage drop on the shunt
resistor by the oscilloscope. The measurement setup is shown
in Fig. 3(a). For MicaZ nodes, the programs are loaded via
MIB510 programmer to the microcontroller.

(a) (b)

Fig. 3. Testbeds for measuring power consumption of (a) MicaZ and (b)
flexible nodes.

Based on the measurement setup, the current draw of
applications running on MicaZ can be captured. To be spe-
cific, the current of CC2420 radio transceiver, ATmega128L
microcontroller and LEDs on a MicaZ sensor platform can
be obtained by the measurement setup using TinyOS codes.
To identify each component’s current from measurement, we
took the following steps. First, we measured the current draw
of microcontroller in different modes, including active, idle,
extended standby, power-down, power-save, ADC noise reduc-
tion and standby [21]. To measure the microcontroller’s current
on the sensor node, we only turned on the microcontroller of
the sensor node, and set the microcontroller in different modes
using TinyOS codes. We measured the corresponding micro-
controller’s current respectively, and recorded the relevant re-
sults as shown in Table I. Second, we captured the current draw
of LEDs on the sensor node. We let the microcontroller tweak
one LED at one time, and measured the corresponding LED’s
current. Then, we got each LED’s current by subtracting
the microcontroller’s current from the sensor node’s current.
Finally, we need to capture radio transceiver’s current. Since
the radio transceiver supports different transmission power
to send out packets, and different transmission power costs

different power consumption of the transceiver, it is essential
that the transceiver’s current with different transmission power
should be captured. In the following, we will show the methods
of capturing radio’s current with 0dBm transmission power
(default in TinyOS). Other transmission power’s current of the
transceiver is obtained using the same method except setting
different transmission power in TinyOS code.

To obtain the radio’s current, we turned on the radio and let
the sensor node transmit and receive packets from the wireless
channel. We captured the current of the whole sensor node
based on the measurement setup. The results are shown in
Fig. 4 to Fig. 6. Fig. 4 shows the current draw for transmitting
and receiving six packets between two nodes. As shown in
Fig. 4, as soon as sending out one packet to the air, the
transmitting node sends out another packet. When finishing
the transmission of six packets, both microcontroller and radio
on the transmitting node go to sleep. The receiving node keeps
listening to the channel to receive data. As Fig. 4 indicates,
by sampling the node’s current waveform over time, the time-
dependent power consumption of the sensor node becomes
obvious.

Fig. 5 and 6 show parts of Fig. 4 and present transmitting
and receiving one packet respectively. As Fig. 5 shows, a
transmitting node first calibrates the radio, let microcontroller
transfer packet data to the radio, and asks the radio to listen
to the channel. After getting a “send” command from the
microcontroller, the radio sends out the packet data when
the channel is available. As Fig. 6 shows, for a receiving
node, the radio keeps listening to the channel. When the
radio on the node receives data from the air, it wakes up the
microcontroller. After receiving one packet, the radio sends
the packet to the microcontroller [16].

After knowing the node’s behaviors and corresponding
current value shown in the Figures, it is feasible to get the
radio transceiver’s current by subtracting the microcontroller’s
current from the whole node’s current. The results shown in
Table I provide reference for PowerSUNSHINE to calculate
the power/energy consumption of sensor nodes.

Based on these results, the current of sensor node’s com-
ponents on different states are known. In order to predict the
power/energy consumption of individual components, we also
need to identify each component’s transitions at simulation
runtime so that we can derive the time duration of these states
during the execution of an application in simulation. In the
following, we present how PowerSUNSHINE profiles com-
ponents’ state transition and eventually derive power/energy
consumption of sensor nodes in simulation.

C. Power/Energy Estimation Method

1) Microcontroller: The estimation of microcontroller’s
power/energy consumption is achieved by identifying mi-
crocontroller’s states and time duration at cycle level. We
will present how PowerSUNSHINE predicts microcontroller’s
power/energy consumption in the following.

We assume that WSN applications’ software are written in
nesC [15] and run over TinyOS operating system. NesC is a

115

Fig. 4. Transmission & reception of six pack-
ets. After sending out all the six packets, the
radio voltage regulator is turned off.

Fig. 5. One packet transmission Fig. 6. One packet reception

TABLE I
MEASUREMENT RESULTS FOR THE MICAZ WITH A 3V POWER SUPPLY.

Device Current Device Current
(mA) (mA)

MCU Radio (2.4 GHz)
active 7.24 Rx 19.30
idle 3.98 Tx (0 dBm) 17.32

Ext standby 0.24 Tx (-3 dBm) 15.97
Power-down 0.09 Tx (-5 dBm) 13.8
Power-save 0.10 Tx (-7 dBm) 12.80
ADC Noise 1.2 Tx (-10 dBm) 11.3

Standby 0.23 Tx (-15 dBm) 9.7
Led Tx (-25 dBm) 8.2
Red 2.96

Green 2.64 Power down 0.22
Yellow 2.77 Idle 0.41
Device time Device time

CPU bootup 154.72 ms Radio bootup 2.138ms
timer0 duration 275.53 μs oscillator stabilization 247 μs

high-level programming language that can be compiled to C
file using ncc compiler. The compiled C file includes firmware
programs that reflect how actual hardware should behave.

In PowerSUNSHINE, instructions to toggle several unused
general Input/output pins (I/Os) of the microcontroller are
added to the C file right before every line of C code that
will change the state of the microcontroller during execution.
Different values of these I/Os (called state pins) after the tog-
gles are used to identify different states of the microcontroller.
During the simulation of the sensor node at cycle level, the
hardware cycles between the toggles are recorded so that the
time duration that the microcontroller spent on each state can
be computed.

Since the microcontroller needs to spend time on toggling
SUNSHINE state pins, the overhead of the toggling is com-
pensated in the calculation as follows. We calculate the number
of state pins’ toggles and subtract the number from the total
estimated clock cycles spent on the corresponding states.

By the above modeling, the time duration of the micro-
controller’s states and their corresponding current (shown in
table I) are known. As the sensor node is supplied by a
constant power supply in the experiments, according to the
energy formula E = V · I · t, where V , I , and t are voltage,
current and time duration respectively, the microcontroller’s
energy consumption can be accurately estimated using Pow-
erSUNSHINE.

2) Peripherals: Peripherals are any fixed sensor node com-
ponents apart from the microcontroller. These peripherals
include radio transceiver, LEDs and etc. PowerSUNSHINE
can also accurately predict these peripherals power/energy
consumption in simulation.

For radio transceiver, PowerSUNSHINE traces the CC2420
radio’s activities in simulation at cycle level. This is feasible
because the CC2420 radio is implemented inside SUNSHINE
as a hardware module of a transceiver, whose activities are
built according to CC2420’s datasheet [16]. In simulation, the
cycle-accurate behaviors of the radio can be captured. For
example, how the radio interconnects with microcontroller,
what packets the radio transmits and receives, when the radio
sleeps and wakes up, are all simulated. In addition, the time
duration of the radio’s different activities can be captured.
Combining with the measured power consumption for different
activities, the radio’s energy consumption can be profiled in
the simulation by PowerSUNSHINE.

Other peripherals, such as LEDs, which only have ON/OFF
states, can be modeled by recording the duration of ON states
in simulation. At the end of the simulation, the peripherals’
energy consumption can be calculated using the energy for-
mula E = V · I · t, where V , I , and t are voltage, current and
time duration respectively.

V. POWER/ENERGY MODELS OF RECONFIGURABLE

COMPONENTS

Since the power consumption of reconfigurable FPGA is
defined by its configuration, the power estimation method of
FPGA is different from other fixed hardware components, for
example, microcontroller and radio, whose power consumption
are constant at one certain state. For the flexible sensor node,
the power/energy consumption of the FPGA is due to the
FPGA core’s activities, i.e. executing tasks on the FPGA.
In this section, we present how we model the power/energy
consumption of flexible sensor nodes.

A. Power/Energy Consumption of FPGA Core

PowerSUNSHINE predicts power consumption of FPGA
core by leveraging existing power estimation tools. Almost
all of FPGA manufacturers provide power estimation tools
for their specific FPGAs. For example, IGLOO Power Calcu-
lator for IGLOO series FPGAs, ProASIC3 Power Calculator

116

for ProASIC3 series FPGAs [9], Power Analyzer for Altera
FPGAs [10] and XPower Analyzer [13] for Xilinx FPGAs.

In this paper, we use Spartan-3E XC3S500E-4FG320C
FPGA [11] on Xilinx Spartan-3E starter kit. In PowerSUN-
SHINE, XPower Analyzer [13] is incorporated to estimate
power consumption of the FPGA. XPower Analyzer supports
power estimation of different hardware blocks, for example,
registers, signals, clocks, etc.

To accurately profile FPGA’s power, several design files
should be provided [22]. In SUNSHINE simulation, we use
GEZEL [24] to describe the architecture of sensor nodes. Since
GEZEL code can be translated to synthesizable VHDL code,
it can also be used to generate the input files for FPGA power
estimation. Thus, we can use GEZEL and existing power
estimation tools to provide accurate power analysis of FPGA
component.

B. Power/Energy Model of Flexible Platform

With all the power/energy models established, PowerSUN-
SHINE can compute the energy consumption of a flexible
platform as follows:

Etotal =
∑

devices(
∑

states V · istate · ncycles state)
+ EFPGA core,

(2)
where the first element is the energy consumption of com-
ponents with fixed functions, EFPGA core is the energy
dissipation of FPGA core.

Based on the energy models described in Section IV and V,
the energy consumption of both fixed and flexible sensor nodes
can be estimated using PowerSUNSHINE.

VI. TEST PLATFORM SETUP

We evaluate the simulation fidelity of PowerSUNSHINE
by comparing its simulation results with two platforms. The
first is an off-the-shelf MicaZ OEM node, which is mainly
composed of an ATmega128L microcontroller, a CC2420 radio
and three LEDs. The testbed is shown in Fig. 3(a). The second
platform is a customized flexible platform, which mainly
consists of an ATmega128L microcontroller, a CC2420 radio
and a FPGA. In this section, we present the architecture and
setup of this flexible platform.

A. Flexible Platform Architecture

On the flexible hardware platform built for our validation
purpose, the FPGA is used as a co-processor that handles
compute-intensive tasks to speed up the node’s execution time.
The block diagram of the platform is shown in Fig. 7(a). In the
Figure, FPGA, microcontroller and radio are interconnected.
The interconnection between microcontroller and FPGA is via
communication protocols, such as SPI, UART, I2C, parallel,
and so on. SPI communication protocol was developed be-
tween FPGA and microcontroller in SUNSHINE environment
in our previous work [8], and is used in this paper. In
addition, SPI arbitration between SPI master, microcontroller,
and two SPI slaves, FPGA and radio chip is also implemented

in SUNSHINE. Therefore, the behaviors of flexible sensor
nodes can be emulated in simulation and evaluated on actual
hardware platforms.

�����������		
�

���
��
������
��
�

����
�
�
�

�

�
�
�
�
	
�

�
�����

���

��������
����
����

(a) (b)

Fig. 7. (a) Block diagram of flexible node (b) One flexible node setup

It is worth to note that the platform shown in Fig. 7(a) is
not the only possible flexible hardware platform design. Other
hardware architectures, for example, placing FPGA between
microcontroller and radio can also be simulated, and these
architectures’ power/energy consumption can be profiled by
PowerSUNSHINE. In addition, sensors on the node can be
added to either FPGA or microcontroller according to the
requirements of applications.

B. Flexible Platform Testbed

To validate simulation fidelity of PowerSUNSHINE, we
provide a real platform with Spartan-3E XC3S500E-4FG320C
FPGA on Xilinx Spartan-3E starter kit, Atmega128L and
CC2420 on the TI CC2420DBK [12] as shown in Fig. 7(b).

We choose Spartan-3E starter kit as the FPGA component
because it provides LCD display, eight individual LEDs, three
6-pin expansion connectors and JTAG interface [11] which
would be helpful for debugging on actual hardware. Note that
the estimation method of PowerSUNSHINE can be applied
to many different FPGA chips. We use Spartan-3E as a
demonstration for the validation of PowerSUNSHINE. Other
low-power FPGAs can be used in place of Spartan-3E.

We also use microcontroller and radio on CC2420DBK to
configure the flexible node as shown in Fig. 7(a). CC2420DBK
has similar hardware components as MicaZ node. The main
difference between them is that CC2420DBK provides in-
terface to connect FPGA with microcontroller, and it does
not have a 32.768 KHz external oscillator. With the external
oscillator, the microcontroller can go into power-save mode
while without the oscillator, the microcontroller can only stay
at power idle state that consumes much more power than
staying at power-save state as shown in Table I.

The communication between Spartan-3E FPGA and
CC2420DBK is based on SPI protocol. The FPGA and the
radio can work coordinately with the microcontroller based
on SPI arbitration. On the software side, we have modified
TinyOS codes to ensure that the codes can operate on the
new platform. When programming the flexible nodes, the
programs for the microcontroller are loaded via AVRISP mkII

117

TABLE II
ENERGY CONSUMPTION (IN mJ) OF TINYOS APPLICATIONS ON MICAZ. ESTIMATED WITH POWERSUNSHINE.

Application MCU MCU Radio Leds Total Measured Accuracy (%)
idle active in simulation

10
4 empty loops 0 2.172 0 0 2.172 2.193 99.0%

Blink 14.98 1.33 0 627.75 644.062 631.8 98.1%
RxCount 596.04 1.73 2895 0 3492.78 3450.8 98.8%

TxCntToAir 595.4 2.92 2894.75 0 3493.07 3398.4 97.3%
RxCntToLeds 596.04 1.73 2895 611.13 4103.91 3953.4 96.3%

programmer, while the programs for the FPGA are loaded via
a general USB cable.

C. Flexible Platform Measurement

The microcontroller and the radio on CC2420DBK are
the same as the components on MicaZ, hence the current
measurement method of these two components is similar to
the measurement of MicaZ as shown in Section IV-B. In
this section, the measurement of FPGA is addressed. Since
Spartan-3E starter kit provides current sense [11] for FPGA
core and I/O pins, a CADDOCK 0.50 Ohm shunt resistor is
connected to FPGA core’s voltage regulator to measure the
power of FPGA core.

Since the execution speed of FPGA is much faster than
microcontroller, a compute-intensive algorithm that takes a few
seconds to execute on the microcontroller only takes hundreds
of nanoseconds on the FPGA. To measure the power/energy
consumption in such a short time, we let the same algorithm be
continuously executed on FPGA millions of times in order to
prolong FPGA’s execution time. When executing the repeated
algorithm on FPGA, the oscilloscope is able to capture the
voltage drop on the shunt resistor that is connected with the
core and hence get the core’s current. In addition, to measure
the actual FPGA’s elapsed time on executing the algorithm, we
toggle one I/O pin at the beginning point and the end point
of the algorithm execution. Then, the energy consumption of
FPGA core can be captured.

By the measurement discussed above, the total energy con-
sumption of the actual flexible hardware platform is obtained
by the sum of all the components measurement results.

VII. EVALUATION

In this section, evaluation results of PowerSUNSHINE are
provided. First, the validation of the simulated results of
energy consumption against actual hardware on both fixed
and flexible sensor nodes are examined. Second, the scala-
bility of PowerSUNSHINE on simulating fixed and flexible
sensor nodes is described. The applications are simulated in
SUNSHINE simulator. The testbeds are presented in Fig. 3.

A. Simulation Fidelity for Fixed Platform

To evaluate PowerSUNSHINE’s power/energy model of
fixed platform, we ran several TinyOS applications both on
MicaZ OEM boards and in PowerSUNSHINE simulation. All
the applications’ source code can be checked at [23].

Table II shows both simulation and measurement results
of MicaZ nodes running TinyOS applications. The simulation

results also provide energy consumption of every hardware
component in each application. The first empty-loops appli-
cation is used to demonstrate that PowerSUNSHINE provides
accurate energy consumption of the microcontroller in sim-
ulation. In the experiment, the application ends as soon as
the microcontroller finishes executing 104 empty loops. Other
applications are executed for a period of 50 second run. As
the table indicates, both simulation and measurement results
are within 3.7%. The noise of radio channel, measurement
temperature and other testbed’s uncertainties may cause the
difference between measurement and simulation. This demon-
strates that PowerSUNSHINE provides accurate estimation of
power/energy consumption for fixed sensor nodes compared
with actual hardware. Compared with PowerTOSSIM [6],
PowerSUNSHINE offers more reliable results because it uses
accurate cycle counts to predict the power/energy consumption
of the microcontroller.

B. Simulation Fidelity for Flexible Platform

The power/energy model of PowerSUNSHINE is based
on calculating power/energy consumption of separate compo-
nents. For flexible sensor node, it contains microcontroller,
radio, and FPGA. Since the power/energy consumption of
microcontroller and radio can be accurately profiled by Pow-
erSUNSHINE as shown in Section VII-A, to clearly show the
effectiveness of the power/energy model on flexible sensor
nodes, we focus on validating the power/energy consumption
of FPGA in the following. The power/energy consumption of
FPGA core is estimated by incorporating XPower Analyzer.

PowerSUNSHINE’s ability of estimating power/energy con-
sumption of FPGA is evaluated via three algorithms: Ad-
vanced Encryption Standard (AES) [25] with 128-bit key
(AES-128), CubeHash [26] with 512 output bits (CubeHash-
512), and Cordic (Coordinate Rotation Digital Computer Al-
gorithm) [27]. Both AES and CubeHash are cryptographic al-
gorithms. Cordic is an algorithm using additions, subtractions
and shift operations to switch between polar coordinates and
rectangular coordinates in two-dimensional coordinate system.

To validate the simulation results, both AES-128 and
Cordic algorithms are continuously executed 107 times, and
Cubehash-512 is repeatedly executed 105 times in simulation
and actual hardware. The reason of executing algorithms
repeatedly is described in Section VI-C. Fig. 8 presents the
simulation and measurement results of the flexible node’s en-
ergy consumption. As the figure shows, the power/energy dis-
sipation of FPGA consists of static and dynamic power/energy
consumption. Static power is related to the device’s transistor
leakage current while dynamic power results from the actual

118

AES−128 CubeHash−512 Cordic
0

50

100

150

200

250

300

350

400

450

Applications

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

quiescent energy in sim
dynamic energy in sim
total sim results
measurement results

Fig. 8. Validation results of flexible component

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

50

number of nodes
w

a
ll
 c

lo
c
k
 t
im

e
 (

s
)

100% co−sim nodes: SUNSHINE
100% co−sim nodes: PowerSUNSHINE
50% co−sim nodes: SUNSHINE
50% co−sim nodes: PowerSUNSHINE
25% co−sim nodes: SUNSHINE
25% co−sim nodes: PowerSUNSHINE

Fig. 9. Scalability of PowerSUNSHINE on
simulating MicaZ nodes

4 8 32 64 128
0

50

100

150

200

250

300

number of nodes

W
a
ll

cl
o
ck

 t
im

e
 (

s)

co−sim nodes run aes in SUNSHINE
in PowerSUNSHINE

Fig. 10. Scalability of PowerSUNSHINE on
simulating flexible sensor nodes

core’s activities, such as toggles of gates and signals, value
changes of registers, etc.

Fig. 8 shows the power/energy estimation results for FPGA
on the flexible nodes. The reason why the simulation results
are not as accurate as fixed nodes is due to the different
working schemes between microcontroller and FPGA. The
current of a microcontroller depends on the microcontroller’s
states. The microcontroller’s different states have correspond-
ing current values; each state’s current value has small varia-
tions when executing tasks in that state and thus the current
value of each state can be optimized as a fixed value. As
a result, the power consumption can be easily obtained by
the multiplication of the microcontroller’s voltage, current and
execution time. However, FPGA’s power consumption is quite
different. FPGA contains logic blocks which are composed
of low level circuits. When executing tasks, FPGA’s power
consumption is due to the current draw of the occupied cir-
cuits, especially, charging and discharging of the capacitors. In
other words, the current of the FPGA has large variations when
the FPGA is executing tasks. Thus, even the most advanced
existing FPGA power estimation tools can only give a much
rougher prediction comparing to power estimation of fixed
components. Since PowerSUNSHINE leverages these existing
power estimation tools, it is expected that PowerSUNSHINE’s
power estimation for FPGA component is not as accurate to
the measurement results as its estimation of fixed compo-
nents. Despite the inaccuracy due to the current limitation
of technology, PowerSUNSHINE’s slight overestimation for
flexible FPGA components is still accurate enough to serve as
a conservative guideline for flexible sensor platform designs
as shown in Fig. 8.

C. Scalability

Since PowerSUNSHINE is built on top of SUNSHINE,
in order to show PowerSUNSHINE’s scalability, it is wise
to show the scalability of PowerSUNSHINE together with
SUNSHINE. As PowerSUNSHINE can estimate both fixed
and flexible sensor nodes’ power consumption, we used two
applications to show PowerSUNSHINE’s scalability.

The first application is used to evaluate MicaZ’s
power/energy consumption. The application is same as the one
setup in our previous described in [3]: nodes are randomly
distributed from 2 to 128 and are paired to communicate
with each other. The simulation ends when all the reception
nodes receive a packet from its neighbor. The number of
co-sim nodes is varied from 25% to 100%. In Fig. 9, wall
clock time represents the simulator’s run time. The time
overhead of PowerSUNSHINE is very small compared to
SUNSHINE. Therefore, it is feasible to use PowerSUNSHINE
to estimate fixed nodes power/energy consumption in large
sensor networks.

The second application is to demonstrate PowerSUN-
SHINE’s scalability on simulating flexible sensor nodes. The
application is similar as the first one except only 25% nodes
are emulated as flexible co-sim nodes. In addition, these
co-sim nodes let their FPGAs run AES-128 algorithm to
encrypt the packet and then send the encrypted packet to their
neighbors. The simulation ends when all the neighbors receive
the packet. As shown in Fig. 10, both SUNSHINE and Power-
SUNSHINE are a little slow when simulating 128 nodes. This
is reasonable because SUNSHINE needs to simulate the sensor
nodes’ behaviors of both software (microcontroller and radio)
and hardware (FPGA). SUNSHINE has to spend much time
on capturing detailed and accurate information of the flexible
sensor nodes. Fig. 10 also indicates that PowerSUNSHINE
only takes a little more time than SUNSHINE when capturing
the power/energy consumption of flexible sensor nodes.

VIII. DISCUSSION AND FUTURE WORK

In this paper, we provide one flexible sensor platform for
validation. However, PowerSUNSHINE is not limited to this
particular platform. Other flexible hardware architecture can
also be configured and emulated in PowerSUNSHINE, such
as placing FPGA between microcontroller and radio, using
a different microcontroller, radio and FPGA, etc. In addition,
while in our current simulation and testbed, the communication
protocol between microcontroller and FPGA is SPI, other
protocols such as I2C, UART, and parallel, can also be used in

119

platform construction and be evaluated by PowerSUNSHINE.
Currently, we connect Spartan-3E with CC2420DBK to

validate PowerSUNSHINE. It is worth to note that Spartan-
3E FPGA is SRAM-based which is not low-power oriented. If
we change Spartan-3E FPGA to low-power oriented antifuse-
based FPGA, the total energy would be significantly decreased.
In addition, the communication energy consumption would be
much smaller if all the hardware components are placed on
one printed circuit board (PCB), and are connected with each
other through etched wires. In the next step, we will make our
own PCB that mainly contains a microcontroller, a radio and
a low power FPGA. We will use PowerSUNSHINE to explore
potential power savings from flexible sensor platforms and use
the designed board to do validation.

We used constant power supply to measure the nodes power
consumption. For accurately predicting the lifetime of a node,
PowerSUNSHINE would need a model for the battery voltage
as a function of energy consumption and time. We will study
the battery’s characteristics to investigate how to prolong the
network’s lifetime.

In this paper, several applications are developed to demon-
strate that using flexible sensor nodes can help network meet
real-time requirement. These applications are working in both
simulation and real hardware. We are working on developing
more applications and show more advantages of flexible sensor
nodes.

IX. CONCLUSION

In this paper, we developed PowerSUNSHINE to accurately
estimate the power/energy consumption of both fixed and flex-
ible sensor nodes in wireless networks. PowerSUNSHINE is
based on SUNSHINE, a flexible hardware-software emulator
for WSNs. To estimate power/energy consumption of flexible
sensor platforms, PowerSUNSHINE establishes power/energy
models of fixed components, incorporates hardware power
analyzer for reconfigurable hardware components and finally
utilizes the simulation data provided by SUNSHINE to eventu-
ally derive accurate power estimation results. Two testbeds of
MicaZ and a flexible sensor node are built for validation. Our
extensive experiments on the testbeds show that PowerSUN-
SHINE provides accurate simulation results for power/energy
consumption. PowerSUNSHINE also scales to simulate large
sensor networks and hence serves as an effective tool for
wireless sensor network design.

ACKNOWLEDGMENT

This work is supported by National Science Foundation
award CCF-0916763.

REFERENCES

[1] J. Portilla, T. Riesgo, and A. de Castro. A Reconfigurable Fpga-based
Architecture for Modular Nodes in Wireless Sensor Networks. 3rd
Southern Conference on Programmable Logic, 2007.

[2] Y. E. Krasteva. J. Portilla, E. de la Torre, and T. Riesgo. Embedded
Run-time Reconfigurable Nodes for Wireless Sensor Networks Appli-
cations. IEEE Sensors Journal, to be published during 2011.

[3] J. Zhang, Y. Tang, S. Hirve, S. Iyer, P. Schaumont, and Y. Yang.
A Software-Hardware Emulator for Sensor Networks. In IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON), 2011.

[4] C. C. Chang, D. J. Nagel, and S. Muftic. Assessment of Energy
Consumption in Wireless Sensor Networks: A Case Study for Security
Algorithms. In IEEE International Conference on Mobile Adhoc and
Sensor Systems (MASS), 2007.

[5] M. Tancreti, M. S. Hossain, S. Bagchi, and V. Raghunathan. Avek-
sha: A Hardware-Software Approach for Non-intrusive Tracing and
Profiling of Wireless Embedded Systems. In 9th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2011.

[6] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and M. Welsh.
Simulaitng the power consumption of large-scale sensor network appli-
cations. In Proc. the Second ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2004.

[7] O. Landsiedel, K. Wehrle, and S. Gotz. Accurate Prediction of Power
Consumption in Sensor Networks. In IEEE Workshop on Embedded
Networked Sensors (EmNets), 2005.

[8] S. Iyer, J. Zhang, Y. Yang, and P. Schaumont. A Unifying Interface Ab-
straction for Accelerated Computing in Sensor Nodes. 2011 Electronic
System Level Synthesis Conference, 2011.

[9] Power Calculators for Actel FPGAs.
http://www.actel.com/techdocs/calculators.aspx.

[10] PowerPlay Early Power Estimators (EPE) and Power Analyzer.
http://www.altera.com/support/devices/estimator/pow-powerplay.jsp.

[11] Spartan-3E.
http://www.xilinx.com/support/documentation/spartan-3e.htm.

[12] CC2420DBK user manual.
http://focus.ti.com/lit/ug/swru043/swru043.pdf.

[13] Xilinx Logic Design: XPower.
http://www.xilinx.com/products/technology/power/index.htm.

[14] B. L. Titzer, K. D. Lee, and J. Palsberg. Avrora: Scalable sensor
network simulation with precise timing. In Proc. of the 4th Intl. Conf.
on Information Processing in Sensor Networks (IPSN), pages 477–482,
2005.

[15] nesC: A Programming Language for Deeply Networked Systems.
http://nescc.sourceforge.net.

[16] Texas instruments cc2420 radio transceiver.
http://focus.ti.com/docs/prod/folders/print/cc2420.html.

[17] OEM development kit.
http://bullseye.xbow.com:81/Products/Product pdf files
/Wireless pdf/OEM Development Kit dis.pdf.

[18] WaveSurfer 24Xs-A. http://www.lecroy.com/files/pdf/LeCroy
WaveSurfer XS-a Datasheet.pdf.

[19] MP900 and MP9000 Series Kool-Pak Power Film
Resistors TO-126, TO-220 and TO-247 Style.
http://www.caddock.com/Online catalog/Mrktg Lit/MP9000 Series.pdf.

[20] Tenma 72-6905 datasheet. http://datasheet.octopart.com/72-6905-
Tenma-datasheet-92910.pdf.

[21] Atmega128/L Datasheet.
http://www.atmel.com/dyn/resources/prod documents/doc2467.pdf.

[22] Xilinx Power Tools Tutorial. http://www.xilinx.com/support/documentation
/sw manuals/xilinx11/ug733.pdf.

[23] SUNSHINE simulator source codes.
http://sourceforge.net/projects/sunshine-sim/.

[24] GEZEL: Hardware/Software Codesign Environment.
http://rijndael.ece.vt.edu/gezel2/.

[25] Advanced Encryption Standard.
http://en.wikipedia.org/wiki/Advanced Encryption Standard.

[26] CubeHash. http://en.wikipedia.org/wiki/CubeHash.
[27] The Cordic Algorithm. http://www.andraka.com/cordic.htm.

120

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

