A Novel Profiled Side-Channel Attack
in Presence of High Algorithmic Noise

Mostafa Taha and Patrick Schaumont
Bradley Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg, VA 24061, USA
Email: mtaha, schaum@vt.edu

Abstract—Understanding the nature of hardware designs is a
vital element in a successful Side-Channel Analysis. The inherent
parallelism of these designs adds excessive Algorithmic Noise in
the power consumption trace, which makes it difficult to mount
a successful power attack against it. In this paper, we address
this high Algorithmic Noise with a novel profiled attack that is
generic and independent of any specific cryptographic algorithm.
We propose both a new profiling phase and two new insights in
the attack phase. The proposed profiling technique takes the
high design parallelism into consideration, which results in a
more accurate power model. In the attack phase, we first define
two new targeted regions in the power trace, then aggregate the
attack results from each of them to get a more powerful attack
phase. The proposed attack model has been tested on the 128-
bit AES of the widely known DPA Contest (V2) and achieved a
stable 80% Global Success Rate (GSR) at 2755 traces.

I. INTRODUCTION

Side-Channel Analysis (SCA) is a subfield of cryptanalysis,
where the attacker uses physical observations of the crypto-
graphic module to collect information about the secret key. The
instantaneous power consumption of the module depends on
the state of its internal registers. The internal registers depend
on the secret key. Hence, a link can be built between the power
consumption trace and the secret key. The power trace in this
context is a side-channel output. Side-Channel outputs are any
byproduct that reveal information about the internal state of the
hardware including power consumption [1], electromagnetic
radiation [2] and execution time [3].

A Side-Channel Attack at a high abstraction level consists
of building a model that mimics the power consumption of
the targeted module and using this model to estimate a key
that generates a similar power consumption as shown in Fig.1.
Practically speaking, a complete attack requires five steps.
First, the attacker collects a set of actual power traces at a
known (random or chosen) plaintext. Second, he analyzes the
algorithm searching for a sensitive intermediate variable that
depends on both the plaintext and a small segment of the key
(subkey). Then, he chooses a subkey guess and calculates
the intermediate variables using the same plaintexts. Then,
a power model is used to map the calculated intermediate
variable into an equivalent power consumption. Finally, he
uses a distinguisher to compare the modeled power trace to
the actual power trace searching for the subkey that results

This research was supported in part by the VI-MENA program of Egypt,
and by National Science Foundation Grant no. 1115839.

Change the guess
for best fit

Model A

M M
VAV

Guessed Key ——
> Distinguisher

Plaintext ‘i
Hardware| D

Secret Key ——f L

Fig. 1. SCA Attack Model

in the best match. The comparison should focus on the time
region where the intermediate variable is expected to show up
in the power trace. The attacker should repeat step three to
five for every subkey until all the subkeys are revealed.
There are two types of power models used in the literature.
Non-profiled models are the most simple and can be the
Hamming Weight or Hamming Distance. Performance analysis
of those two models along with other non-profiled models
can be found in [4]. Profiled models depend on extracting the
power model from an actual set of profiling traces collected
from an identical device. An overview of the common profiling
techniques will be presented in Section II.

The major challenge faced by SCA in plain implementations
(without countermeasures) is the noise in measured traces.
The dominant source of noise specially in hardware designs
of block ciphers is the Algorithmic Noise. Hardware designs
in ASIC’s and FPGA’s are inherently parallel. To achieve a
one round per clock, cryptographic algorithms are designed
so that all the input bits are processed simultaneously in small
parallel logic blocks. While guessing one subkey in the attack,
the power consumption of the other running logic blocks will
alter the measured trace by unknown values which represents
the Algorithmic Noise. Developing a profiled attack model for
this noisy environment is the objective of this paper.

In this paper, three of the five attack steps will be revised
in Section III. We will start with the definition of ‘Targeted
Operation’. Then, we propose a novel profiling technique that
takes high design parallelism into consideration. The attack
phase is also improved with two insights. First, we will define
two new targeted attack regions in the power trace. Second,
we will aggregate the attack results from each of them to get
a more powerful attack phase. The results for a case study are
presented in Section IV. Section V presents the conclusion.

II. RELATED WORK

The main contribution in this paper is to introduce a new
profiling technique. This section presents an overview of
the common profiling techniques that have been used in the
literature and how the proposed method is different and more
suitable in presence of high Algorithmic Noise.

Chari et al. presented the first profiling technique which is
the Template Attack [5]. Their main concern was to build a
noise model for the power traces. They used the average and
covariance matrix of a set of power traces measured at the
same input as a template for this input. The profiling set should
be used to build a template for every possible combination
of plaintext and subkey. The template will be the basis of a
multivariate normal distribution representing the noise model.
In the attack phase, the authors used the maximum likelihood
to find the template that best matches the attack traces which
will lead directly to the correct subkey. Typically, the size of
the profiling set should be multiple times of the size of all input
combinations which can be reduced by building templates with
respect to the intermediate variable directly [6]. The weak
point of the Template Attack is the limited number of trace
points that can be supported in the covariance matrix. The size
of each covariance matrix grows quadratically with the number
of trace points. Moreover, the complexity of calculating the
matrix inversion which is required in the attack phase, grows
almost cubically with the number of trace points (depending
on the algorithm used).

Schindler et al. proposed the Stochastic Attack [7] where they
used regression analysis to give a different weight to every bit
of the intermediate variable, as a way to improve the accuracy
of the Hamming Weight (or Hamming Distance) model. The
weights are estimated based on approximating the profiling
traces to a function of the bits of their corresponding inter-
mediate variables. Schindler et al. assumed that the leakage
of each bit is separable and that the system power trace is
the sum of the leakages of these individual bits. However, the
reality is more complicated and the leakage depends on the
relation between bits. This led to the extension of analysis
dimensions to cover the effect of each 2 bits (37 dimensions)
[8], 3 bits (93 dimensions), and so on up to all the 8 bits in
255 dimensions [9].

The difference between our proposed technique and the two
previously mentioned profiling techniques is highlighted with
an example in Fig.2. We assume that the targeted device uses
four parallel logic blocks, the data width is four bits and the
Algorithmic Noise (¢) is the dominant source of noise. The
source of Algorithmic Noise is the power consumption of other
logic blocks running simultaneously with the targeted block.
We also assume that:

e C: The ciphertext.

e KC: The correct key used to collect traces.

o [I,: The intermediate variable at logic block number z.
. biw: Bit number y of the intermediate variable 7.

e [(z): The leakage function of z.

Device Boundary

Stochastic

1(bg") +1(b1°) +
(0 + 1Bl +e

Algorithmic Noise (€) | (11) + 1(12) + 1(I3) | I(I1) + I(I2) + I(I3)

Leakage () Found by

Template Our Technique

I(Io) + (1) +
I(I2) +1(13)

None

System Power

1(Ip)+e

Averaging Regression Regression

Fig. 2. Comparison between how different profiling techniques expect the
system power trace. Profiling in the Template Attack expects the leakage
of one intermediate variable, and extracts an estimate of it using averaging.
Profiling in the Stochastic Attack expects the aggregate leakage of small
building blocks of one intermediate variable, and extracts an estimate of
each of them using regression. Our profiling technique expects the aggregate
leakage of all the used intermediate variables, and extracts an estimate of each
of them using regression.

The leakage function is the one-to-one mapping between the
intermediate variable and the corresponding power consump-
tion in the power model. The figure shows the intermediate
variable as a function of both a subkey and a small segment
of the ciphertext. The targeted device runs several logic blocks
simultaneously, and each of them creates one intermediate
variable and consumes a certain power. The system power
trace is the aggregated sum of the power consumption of all the
logic blocks. The Template Attack expects to see the leakage
of one intermediate variable. It extracts an estimate of it by
averaging over a large number of traces to cancel out the effect
of Algorithmic Noise. The averaging should be done with
respect to every possible intermediate variable. The Stochastic
Attack expects to see the aggregate leakage of individual
bits (or combination of bits) of one intermediate variable. It
extracts an estimate of the leakage of each bit by using the
linear least squares regression. The number of required traces
should be much larger than the number of unknown leakage
functions to cancel out the effect of Algorithmic Noise.

Note that, all subkeys used in different logic blocks are known
in the profiling set, and this information can be used to
build a more accurate power model. Our proposed technique
understands that the system trace is the aggregate leakage
of processing all the intermediate variables. We estimate the
leakage function of each intermediate variable (the value itself,
not the individual bits) by regression. Hence, our technique is
a mix between the previously two mentioned techniques. The
design of our profiling technique acknowledges the presence
of Algorithmic Noise, and uses it to get a more accurate power
model. It is worth mentioning that, the Algorithmic Noise is
removed in the profiling phase of our attack. However, this
noise will still affect the attack phase.

III. PROPOSED ATTACK MODEL

In this section, we first present several preliminaries that
are required by the proposed attack. The actual attack model
is presented later on.

A. Targeted Operation

The term of ‘Intermediate Variable’ is not generic enough,
because the Hamming Distance model (for example) uses the
XORing between two intermediate variables where the result
of XORing is not an intermediate variable by itself. Hence,
we propose to use the term ‘Targeted Operation’ which is
more generic and intuitive.

The Targeted Operation is an operation running in the module,
where the attacker searches for its power consumption in
the recorded trace. The Targeted Operation should depend
on both the plaintext and the key with as high diffusion and
low confusion as possible. Non-linear diffusion helps SCA
in finding the exact secret key as if one bit is miss-guessed,
the inspected power consumption will change entirely. Low
confusion between subkeys reduces the extensive search
space of the entire key to a smaller space of a single subkey.
Low confusion can typically be achieved by attacking the
first/last round of the cryptographic algorithm. The principle
of reducing the key search space and attacking small segments
of key is the so called the divide-and-conquer principle [10].
The Targeted Operation has an index and a dimension.
The operation index is a number that uniquely identifies
the leakage of a single instance of the operation, and that
differentiates it from other instances with different leakages.
The calculation of the index must be data dependent and
include the key as the sole unknown. If the same index
was given to more than one instance of the operation, the
attacker acknowledges that the leakage of these instances are
considered the same. For example, if we targeted the operation
of charging a byte register, with the Hamming Weight as
the index, we implicitly acknowledge that the instance of
charging the register to 0z0F" has the same leakage as the
instance of charging it to OxAA as they both have the same
Hamming Weight of 4. The best index size is the one that
allocates a different value to every possible leakage value.
Template Attack is therefore better than the Hamming Weight
as it assigns the byte value itself as the operation index, hence
it can differentiate between the aforementioned instances of
charging a byte register.

The operation dimension is the number of intermediate
variables used to evaluate the index. For example, if we
used the Hamming Distance as the index in the previous
example, we need to evaluate the input to the register in two
consecutive clock cycles in a 2-dimensional operation. The
best dimension is the one that represents the actual source of
power consumption. For example, if the power consumption
depends on switching activity, the 2-dimensional operation
should be used.

Considering the same example of charging a byte register as
above, if we used the Hamming Distance as the index, we
acknowledge that the instance of updating the register value

The
Same
Register
Y

1> Register
1> Register

Clock

Fig. 3. The Extra Round

Exlr‘a
()u(puﬁ Round
|

| | oz oot
i /VWV\/\WM \MW

Time Samples

Final
Round

Penultimate
Round

Power

Fig. 4. Attack Regions

from 020F to Ox1F has the same leakage as updating it from
0207 to 020F as they both have the same Hamming Distance
of 1. The index can be improved to the result of XORing
the two input values, where the index size will be 256 for
this example. This index can now differentiate between the
aforementioned two instances. The XORing has been used as
the index in the stochastic attack of [9], and will also be used
in this paper.

B. The Extra Round

Figure 3 shows an implementation of one round of a round-
based cryptographic algorithm utilizing one round per clock.
The combinational logic shown includes at least an XORing
with the key, a non-linear diffusion operation, and a mixing
operation for confusion. Once the input is ready in the register,
the signal will pass through the combinational logic to generate
the output and wait for the clock signal to store it in the
same register. In the final round, the circuit behavior will
still be the same. Once the final output is stored in the
register, the combinational logic will execute and evaluate
the output, which is never stored or used. This means that
the combinational logic runs on the ciphertext output in an
extra round, an operation that is not intended to happen. In
this paper, we exploit this point and target the 2-dimensional
switching activity of the register and the combinational logic
between final round and output. The new attack region is
marked at ‘Region 1° in Fig.4 along with the time of the last
two rounds in a symbolic representation of the power trace.
This wide attack region increases the amount of information
extracted from each trace for a more powerful attack.

C. Assumptions

In the proposed attack model, we define the unit as the
register and the combinational logic circuit following it. The
problem in extracting the power model is that the system

power trace is the aggregated sum of all the units. The
objective in this paper is to separate them out into different
power traces that represent different units.

We follow the same assumption used in Section II, and further
assume that:

o R: The output of the penultimate round.

e Ny: The number of parallel units.

e R,, Cy: The inputs to unit number u.

e I,: The index at unit number u, I, = R, ® C,.
e Nj: The size of the operation index.

e P: The system power trace.

e Np: The number of profiling traces.

The Targeted Operation is the 2-dimensional operation of
updating a unit input from R, to C,. The operation index
depends only on the unit inputs, hence we assume that the
leakage of every unit is the same if they were fed with the same
inputs regardless of the location of the unit within the chip.
This assumption is fairly reasonable as they were implemented
using the same RTL, and are different only for their place
and route. This means that we need to have only one set of
templates that are reusable over all the processing units.

In the following, we will use a set of profiling traces P to
extract an estimate of [for every instance of the unit, which
is the unknown leakage model. Then we will use the power
model to attack the set of attack traces at an unknown key.

D. Profiling Phase

In the profiling step, we assume that the attacker collects
a set of traces using known (chosen or random) keys. The
measured power trace will be the aggregated sum of the power
consumption of Ny different units

Ny—1

P= Y Ul) (1)
u=0

Now consider that, every unit can implement N; different
instances of the operation. We assume that g(¢) is the number
of units executing in an operation instance with I = 7. Hence,
the power consumption trace will be

Nr—1

P=)" g(i)(i) @)

i=0
Note that, the summation of g(7) over ¢ will always be equal

to Ny. For Np profiling traces, the power consumption can
be expressed in a matrix format as

P=GxL 3)

The size of matrix P is (Np x C), where C is the number of
samples covering the attack region. The size of G is (Np x
Ny). the size of L is (IN; x C). The best solution for L can
be found using the least squares equation

L=(G'G)"'G'xP)

In case of a large index size and relatively small number of
parallel units, the matrix G will be a sparse matrix with a

maximum of Ny /Ny non-zero elements. The first row of L
is 1(0), the second row is (1) and so on. The matrix L will
be used as the power model in the next section.

E. Attack Phase

In the attack phase, we target a single key byte and choose
a key guess. The key guess along with the input plaintexts
can be used to calculate the operation index. Next, the matrix
of modeled traces can be build by mapping every operation
index to its corresponding model out of the L matrix. Once
the matrix of modeled power traces is built, a distinguisher
will be used to compare modeled traces to measured ones. In
this work, we need to compare a large range of trace points
in the attack region hence, we will use the sum of point-by-
point correlation which reveals the complexity of calculating
the covariance matrix associated with Template Attack. We
assume that

o P: The matrix of attack traces.

o K: The subkey guess used to build the modeled traces.
o Pj: The matrix of modeled traces.

o Dy The distinguisher result using K as the key guess.

We also assume that P. and P &, are column number ¢ of P
and Pz respectively. The distinguisher will be

! cov(Py, f’f—(’c)

Dg=Y_

c=0

&)

OP.OPg

The distinguisher should be calculated for all the possible
key guesses. The correct key is the one that maximizes Dg.

F Two Regions

Every point of the power trace gives more information to the
attack, only if we know how to use it. The idea of aggregating
separate attacks against different points of the trace has been
proposed in [11]. In this paper, we will use a similar idea to
aggregate the attack against the extra round with the attack
against the final round. In this section, we will describe how
to build an attack against the final round (‘Region 2° in Fig.4),
and how to aggregate the attack results from the two regions.
Previously, we used the knowledge of the output of the penul-
timate round R in a 2-dimensional attack against the extra
round. Here, we will use the same value in a 1-dimensional
attack against the final round. A 2-dimensional attack can
not be used here, because calculating the previous value of
the register requires passing through another round up which
mostly involves a confusion step. Passing through a confusion
step requires the knowledge of all the subkeys involved, which
violates the divide-and-conquer principle and broadens the
search space.

The previously discussed analysis can still be used with only
minor changes

e [,: The index at unit number u, I, = R,,.

The Targeted Operation is the 1-dimensional operation of
storing R,, in a unit. The attack points involved in P should

4+— 128 bit ——» One

Unit
SubBytes
ShiftRows
MixColumns The
AddRoundKey '4 Riggtier

LoD EAEAEAE0E

Fig. 5. Last Round of AES

be those samples in time that correspond to the final round.
The combined distinguisher will be

Dg =Dlg+ D2 (6)

where D1y, is the result of attacking the extra round and
D2 is the result of attacking the final round. The interesting
point about attacking two different regions in the same trace
is that the noisy wrong result in a one region will not show up
(with high probability) in the other region as well however, the
correct key will give high correlation values in both of them.

IV. RESULTS OF A CASE STUDY: AES

The DPA contest [12] offers a common set of power traces
to make it possible to compare the performance of different
SCA attack models. The traces are collected for a hardware
128-bit AES encryption algorithm running on SASEBO-GII
board. There are two public sets of traces, a profiling set of
1 million traces, and an attack set of 20,000 traces for 32
different random keys (640,000 traces). Those keys are known,
and used by the researcher to characterize his own attack
model. In this section, we will target this implementation
(which is not our design) to demonstrate the existence of the
extra round and the efficiency of the overall attack.

A. The AES

The AES design runs at one round per clock using 16
parallel SBox combinational circuits as shown in Fig.5. More
information about the AES encryption algorithm can be found
in [13]. The location of MixColumn function is shown in
the figure with no effect on the data-path, as there is no
MixColumn function in the final round.

In this case, the targeted unit is a one byte register and the
SBox combinational logic following it where the number of
parallel units Ny will be 16. The targeted operation in the
extra round, will be the 2-dimensional operation of updating
the unit inputs with the ciphertext. The operation index will
be

I,=C, &S ' (SH ' (C. DKL) (7)

where S~! is the inverse of SBox function and SH ™" is the
inverse of ShiftRows function. The targeted operation in the
final round, will be the 1-dimensional operation of storing R,,
in the unit. The operation index will be

L, =S Y (SH ' (C,®Ky)) ®)

Attack

Register
°d Region

03f Update

S

Correlation

Regression Model /

Nomal HD

50 100 150 200
Time Instances

Fig. 6. Proposed Regression Model and the Hamming Distance Model

The size of the operation index Ny in both cases will be 256.
The attack regions are identified using the normal Correlation
Power Analysis [14] with Hamming Distance Model.

B. The Extra Round

A simple test was conducted to check the existence of the
extra round along with the effectiveness of the new modeling
method. In this test, we calculated the correlation between the
actual measured traces and the modeled traces in the attack
region of the extra round. The modeled traces were built
using the proposed regression model and the normal Hamming
Distance model as a reference. The test was applied to key 1
of the public set, with all the 20000 traces. Figure 6 shows the
result of this test. The peak correlation point in the Hamming
Distance model is the point of updating the register value with
the output ciphertext. The correlation goes down as the signal
passes through the SBox circuit. However, the correlation of
the proposed regression model achieves higher values in the
region of SBox circuit. The correlation values in the figure are
relatively high because we assume that we know the subkeys
of all the units and aggregate the power models of them to
cancel the Algorithmic Noise in this test. However, when we
target only one unit in an actual attack, the 15 other units will
be considered as Algorithmic Noise. As previously mentioned,
The Algorithmic Noise is removed in the proposed profiling
phase however, it still affects the attack phase.

C. Performance Metrics

The performance metrics used in this study are the same as
those in the DPA Contest (V2):

e Global Success Rate (GSR): The number of traces so that
all the subkey bytes are recovered concurrently.

o Partial Success Rate (PSR): The number of traces so that
a selected subkey is recovered correctly. Every subkey
byte will have its own PSR.

« Partial Guessing Entropy (PGE): The rank of the correct
subkey within the result. Every subkey byte will have its
own PGE.

0.7

0.6

GSR

0.3

0.2

1 T T T T
09Fr 4
0.8
05r

\ Proposed Attack 1
Proposed Attack with 2/3 byte search 1
0) .)

0.4
0 0.5 1 15 2
Number of Traces x10*

0.1

Fig. 7. Global Success Rate

D. Results

The proposed attack model has been used to attack the
public set of the DPA Contest (V2). The GSR is shown in
Fig.7. The figure shows that the proposed attack achieved 80%
GSR at 4641 traces, where the 80% is calculated over the 32
experiments i.e. at least 26 experiments have been recovered
completely by this number of traces.

This result reflects a side effect of using one power model to
attack all the 16 logic blocks. The extracted power model is
considered the average of all of them. However, there may be
one (or more) logic blocks that has a shifted model due to
differences in placing and routing. Hence, it will be difficult
for our proposed attack to recover the correct subkey of this
shifted logic block. As the GSR requires recovering all the
subkeys concurrently, this shifted subkey will pull the GSR
up.

To recover this side effect, we improved our attack with a
2/3 subkey byte search. In this improvement, we targeted the
penultimate round with a similar attack. The 2-dimensional
operation at the penultimate round involves at least 10 subkey
bytes because of the MixColumn step. In the 2/3 subkey byte
search, we test all the combinations of the best 3 guess of
the worst two bytes (a total of 10 tests). The choice of those
worst bytes is done as part of the profiling phase. The GSR
of the proposed attack including the 2/3 subkey byte search
is also shown in Fig.7. This simple key search improved the
80% GSR from 4641 traces to 2755 traces.

To demonstrate the performance of the proposed complete at-
tack, we compared its performance to the best two submissions
of the DPA Contest in Table I. The table shows the previously
discussed 80% GSR. It also shows the minimum PSR > 80%,
where the 80% is calculated over the 32 experiments and the
minimum reflects the worst case subkey out of the 16 subkey
bytes. Finally, the table shows the maximum PGE < 10, where
the maximum reflects the worst case subkey out of the 16
subkey bytes.

TABLE I
COMPARING RESULTS

Attack GSR>80% | min PSR>80% | max PGE<10
Our Attack 2,755 2,226 1,420

Li [15] 2,256 2,155 3,181
Heuser [9] 3,589 2,748 1,356

V. CONCLUSION

In this paper, we proposed a profiled attack model in pres-
ence of high Algorithmic Noise. We proposed a novel profiling
technique that acknowledges the high noise in these designs.
We also proposed two new insights in the attack phase. One
insight is to exploit the effect of the fixed connections of
combinational logic circuits. The other insight is to aggregate
the results of attacking two different regions in the same trace.

REFERENCES

[1]1 P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology CRYPTO’99, ser. Lecture Notes in Computer Science,
1999, vol. 1666, pp. 789-789.

[2] D. Agrawal, B. Archambeault, J. Rao, and P. Rohatgi, “The EM
SideChannel(s),” in Cryptographic Hardware and Embedded Systems
- CHES’02, ser. Lecture Notes in Computer Science, 2003, vol. 2523,
pp. 29-45.

[3] P. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems,” in Advances in Cryptology CRYPTO’96, ser.
Lecture Notes in Computer Science, 1996, vol. 1109, pp. 104-113.

[4] J. Doget, E. Prouff, M. Rivain, and F. Standaert, “Univariate side channel
attacks and leakage modeling,” Journal of Cryptographic Engineering,
vol. 1, no. 2, pp. 123-144, 2011.

[5] S. Chari, J. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems - CHES’02, ser. Lecture Notes in
Computer Science, 2003, vol. 2523, pp. 51-62.

[6] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks revealing
the secrets of smart cards. New York, N.Y.: Springer, 2007.

[71 W. Schindler, K. Lemke, and C. Paar, “A stochastic model for differential
side channel cryptanalysis,” in Cryptographic Hardware and Embedded
Systems CHES’05, ser. Lecture Notes in Computer Science, 2005, vol.
3659, pp. 30-46.

[8] A. Heuser, W. Schindler, and M. Stoettinger, “Revealing Side-Channel
issues of complex circuits by enhanced leakage models,” in ACM/IEEE
Design Automation and Test in Europe (DATE’12), Mar. 2012.

[9]1 A. Heuser, M. Kasper, W. Schindler, and M. Stttinger, “A new differ-
ence method for Side-Channel analysis with High-Dimensional leakage
models,” in Topics in Cryptology CIT-RSA’12, ser. Lecture Notes in
Computer Science, 2012, vol. 7178, pp. 365-382.

[10] F. Standaert, T. Malkin, and M. Yung, “A unified framework for
the analysis of Side-Channel key recovery attacks,” in Advances in
Cryptology - EUROCRYPT 09, ser. Lecture Notes in Computer Science,
2009, vol. 5479, pp. 443-461.

[11] L. Batina, B. Gierlichs, and K. Lemke-Rust, “Differential cluster anal-
ysis,” in Cryptographic Hardware and Embedded Systems - CHES 09,
ser. Lecture Notes in Computer Science, 2009, vol. 5747, pp. 112-127.

[12] DPA Contest v2 2009/2010. Telecom ParisTech french University,
2009. [Online]. Available: http://www.dpacontest.org/v2/index.php

[13] J. Daemen and V. Rijmen, The Design of Rijndael. Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2002.

E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a

leakage model,” in Cryptographic Hardware and Embedded Systems -

CHES’04, ser. Lecture Notes in Computer Science, 2004, vol. 3156, pp.

135-152.

Y. Li, D. Nakatsu, Q. Li, K. Ohta, and K. Sakiyama, “Clockwise

collision analysis — overlooked side-channel leakage inside your mea-

surements,” Cryptology ePrint Archive, Report 2011/579, 2011, http:

/leprint.iacr.org/.

[14]

[15]

