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Abstract. Hardware implementation quality is an important factor in
selecting the NIST SHA-3 competition finalists. However, a comprehen-
sive methodology to benchmark five final round SHA-3 candidates in
ASIC is challenging. Many factors need to be considered, including ap-
plication scenarios, target technologies and optimization goals. This work
describes detailed steps in the silicon implementation of a SHA-3 ASIC.
The plan of ASIC prototyping with all the SHA-3 finalists, as an integral
part of our SHA-3 ASIC evaluation project, is motivated by our previ-
ously proposed methodology, which defines a consistent and systematic
approach to move a SHA-3 hardware benchmark process from FPGA
prototyping to ASIC implementation. We have designed the remaining
five SHA-3 candidates in 0.13 µm IBM process using standard-cell CMOS
technology. The fabricated chip is due from foundry in May 2011. In
this submission, we discuss our proposed methodology for SHA-3 ASIC
evaluation and report the latest results based on pre-silicon post-layout
simulation of the five SHA-3 finalists with Round 3 tweaks.

1 Introduction

The SHA-3 competition organized by NIST aims to select, in three phases, a
successor for the mainstream SHA-2 hash algorithms in use today. By the com-
pletion of Phase II in December 2010, 5 out of the 14 Round 2 candidates were
identified for further evaluation as SHA-3 finalists. For the final round of the
competition, NIST is looking for additional cryptanalytic results, as well as for
performance evaluation data on hardware platforms.

eBACS is a well known benchmarking environment, including a scripting en-
vironment and a performance database, for the evaluation of crypto-software [5].
Compared to such a benchmarking environment, benchmarking crypto-hardware
is ad-hoc. There are several reasons why the same progress is not seen in the
hardware design community. This is due, in part, to the large heterogeneity
of the hardware design space, to the absence of standard metrics for cost and
performance, and to the absence of standard interfaces. To address the above
issues we designed a SHA-3 ASIC by following a fair SHA-3 hardware evaluation
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methodology. We started by defining a standard interface, and optimized the de-
signs with a single metric in mind, Throughput-per-Area. Next, we developed an
FPGA prototype that can provide a seamless transition into ASIC implementa-
tion. Finally, we designed an ASIC chip with all the five finalists with the latest
round 3 tweaks. This ASIC is the focus of this paper.

2 Related Work

The hardware evaluation of SHA-3 candidates has started shortly after the spec-
ifications and reference software implementations of 51 algorithms submitted to
the contest became available. The majority of initial comparisons were limited to
less than five candidates. More comprehensive efforts became feasible only after
NIST’s announcement of 14 candidates qualified to the second round of the com-
petition in July 2009. Since then, several comprehensive studies in SHA-3 ASIC
implementations have been reported [19,18,14,10,11,17,13]. Guo et al. [10] used
a consistent and systematic approach to move the SHA-3 hardware benchmark
process from the FPGA prototyping by [16] to ASIC implementations based
130nm CMOS standard cell technology. Tillich et al. [18] presented the first
ASIC post-synthesis results using 180nm CMOS standard cell technology with
high throughput as the optimization goal and further provided post-layout re-
sults [19]. Henzen et al. [14] implemented several architectures in a 90nm CMOS
standard cell technology, targeting high- and moderate-speed constraints sepa-
rately, and presented a complete benchmark of post-layout results.

Table 1 compares these benchmarking efforts, and demonstrates that a com-
parison between different ASIC benchmarks is hard because of several reasons.
First, most groups do not share the same source codes. Second, the ASIC bench-
marks do not use a common hardware interface. Third, the reported metrics and
optimization targets are different.

Table 1. Compare the related SHA-3 hardware benchmarking work in ASICs

Tillich [19,18] Guo [10] Henzen [14]

Technology Choices 180nm CMOS 130nm CMOS 90nm CMOS
Standard Cell Standard Cell Standard Cell

Hardware Interface Assume infinite Defined standard Assume infinite
bandwidth interface ‘handshake’ interface bandwidth interface

Chosen Metrics Area, Throughput, Area, Throughput, Area, Throughput,
Power, Energy Energy

Design Flow Post-layout/synthesis Post-layout Post-layout
simulation simulation simulation
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3 Methodology

In this section, we describe the overall design flow that combines FPGA pro-
totyping with ASIC design, and next elaborate the efforts to automate and
standardize the ASIC implementation process.

3.1 Overview

Figure 1 illustrates the hardware evaluation flow for our SHA-3 ASIC bench-
marking process. We developed the register transfer level (RTL) designs for the
5 Final Round candidates for the Round 3 tweaks. These hardware descriptions
are next mapped to FPGA technology or ASIC technology. We use the same RTL
descriptions for both types of design flow. Our objective is to use the FPGA as
a prototyping technology for the ASIC, rather than a direct technology target.
Hence, dedicated FPGA optimizations, such as the use of specialized multipliers
or memory cells, are not used.

The ASIC and FPGA design flows look very similar, and cover the same two
technology mapping steps. The first step is synthesis and maps the RTL code
(in Verilog or VHDL) to a netlist of technology primitives. The second step is
place and route, and this step decides the spatial relationships of technology
primitives in a layout. Both of these steps can be automated using scripts. The
results of technology mapping are performance estimates such as circuit area
and circuit delay. The performance delays obtained after place-and-route are
more accurate than those obtained after synthesis. With respect to the circuit
area, place-and-route will reveal the precise dimensions of the ASIC design.
With respect to the circuit delay, place-and-route reveals implementation effects
(annotated as parasitics in Fig. 1) which characterize delay effects caused by the
interconnections.

In the case of ASIC prototyping, we have taped out an ASIC for the 5 final
round candidates. During Phase II, we performed prototyping on FPGA only and
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Fig. 1. An overview of the SHA-3 ASIC evaluation project.
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reported ASIC post-layout numbers for individual candidates. The FPGA and
ASIC prototyping are very useful to accurately evaluate the power consumption,
such as the FPGA power measurement results discussed in the paper [16], which
is especially important for further side-channel analysis. In the next subsection,
we discuss the implementation details of the prototype design.

3.2 Platform for integrated FPGA prototyping and ASIC
performance evaluation

The experimental environment for FPGA prototyping contains a PC, a SASEBO-
GII [2] board and an oscilloscope as shown in Fig. 2. A SASEBO-GII board
contains two FPGAs: a control FPGA, which supports the interfacing activities
with a PC, and a cryptographic FPGA containing the hashing candidate. During
the ASIC prototyping phase, the cryptographic FPGA is replaced by the SHA-3
ASIC. A board from the SASEBO-R [2] series will be used for this purpose.

The SASEBO board was originally developed for side-channel analysis. Hence,
a potential research area for the future ASIC prototype is side-channel analysis
of SHA-3 candidates. In our experiments, we used the SASEBO series board for
a more obvious application, namely the measurement of power dissipation of the
SHA-3 candidates mapped to ASICs.

The interface of the SASEBO board on the PC side is a software driver
that can read test vectors and that can send messages to the SHA-3 FPGA
through USB. The Control FPGA manages the data flow of the messages and
generates control signals according to the timing requirements of the extended
hash interface based on [7]. After SHA-3 FPGA finishes hash operations, the
digest is returned to the PC through the Control FPGA.
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3.3 Standard Interface

So far, several research groups have proposed standard hardware interfaces with
well supported design flows, including proposals from [9,14,7,3]. A more detailed
discussion on hash interface issues can be found in [16]. The key issue for a
fair comparison is to use a common interface for all candidates. Therefore, we
selected the interface proposal of Chen et al. [7] (with a data I/O width of 16
bit) and extended it to add dual-clock support as shown in Fig. 8.

3.4 Design Strategy

There are three types of strategies used for SHA-3 hardware evaluation, namely
fully autonomous, external memory and core functionality. More details of the
differences between these three design strategies can be found at [8].

In this work we designed all the 5 finalists with a fully autonomous archi-
tecture. In this architecture, one transfers message data to a hash function over
multiple clock cycles until a complete message block is provided. The hash mod-
ule buffers a complete message block locally, before initiating the hash operation.
Therefore, this architecture can work autonomously, and the resulting hash mod-
ule is well suited for a hardware IP for system-on-chip integration.

3.5 Optimization Target

The use of Throughput-to-Area Ratio as the optimization target for SHA-3 hard-
ware evaluation was first proposed by Gaj et al. [9], and later appeared in NIST
Status Report on the Second Round of the SHA-3 Competition as a hardware
evaluation criterion. One of the obvious advantages of choosing this target rather
than Throughput alone is that it can avoid highly unrolled hash designs with
small throughput benefits but significant circuit area overhead.

3.6 Evaluation Metrics

In this work we have used Throughput-to-Area Ratio as a primary metric and also
reported other common metrics, including area, maximum frequency, maximum
throughput, and power/energy efficiency.

Area In this evaluation we will use the circuit area of each SHA-3 candidate
with both the interface and hash core after layout. The area will be reported
in kilo gate equivalents (kGE), where a gate equivalent corresponds to the area
of a standard NAND2 gate in the standard cell library. We divided the EDA
tools reported layout area with unit in µm2 by the area of an NAND2 gate for
conversion from the absolute circuit area to kGE.
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Throughput In general the time required to hash a message consists three parts:
the latency for loading one block of message, Lin , the hash core latency, Lcore,
the latency for finalization step, Lfinal, and the latency for outputting the mes-
sage digest, Lout. For short message hashing, all these four latencies are im-
portant performance factors. And the metric of Latency is frequently used to
characterize the short message hashing speed instead of Throughput. In the case
of hashing a long message, Lfinal and Lout can be neglected. Since Lin is depen-
dent on the system I/O throughput which may vary in different contexts, here
we report the Throughput results of the hash core function:

Tpcore =
WB × fmax

Lcore
, (1)

where WB is the block size of the hash and fmax is the maximum frequency
the circuit can run at.

Throughput-to-Area The Throughput-to-Area Ratio is an effective metric to mea-
sure the hardware efficiency, where the Throughput is the above defined Tpcore
and the Area is for the layout circuit area expressed in terms of kGE.

Power/Energy The power numbers are measured with fixed achievable clock
frequencies based on the average power of hashing long messages, and the capture
period is only for the core hashing operations (e.g. round function for each block
of input message). The energy metric is expressed as energy per bit of the input
message block compressed by the hash core function.

4 VLSI Implementation of SHA-3 Hash Functions

In this section we briefly review the implementations of each SHA-3 finalist.
For details on the SHA-3 candidates please refer to the related specification
documents on NIST SHA-3 web sites. For hardware architectures, we have looked
into several public available reference implementations [1,12,6] and optimized
them for our system architecture.

4.1 BLAKE

BLAKE follows a HAIFA iteration mode and operates on an inner state that can
be represented as a four by four matrix of words. The inner state is initialized
using an Initial Value (IV), a salt and a counter. The state is updated using the
G function, which is based on the ChaCha stream cipher [4]. The G function
mainly contains modular addition, XOR, and rotate operations.

As shown in Fig. 3, before the message block enters into the round function
it will first go through a permutation layer and XOR with predefined constants.
One stage of pipeline is inserted inside the permutation layer for higher through-
put. Four parallel G functions are implemented for one round. Eight G functions
or even fully unrolled structures are also possible high performance solutions if
there is no area constraint. Each G function instantiates two carry-save adders.
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4.2 Grøstl

Grøtl is a wide-pipe Merkle-D̊amgard hash algorithm with an output transfor-
mation. The compression function is a novel construction, using two fixed 2n-bit
permutations together. The output transformation processes the final chaining
state, and discards half the bits of the result, yielding an n-bit hash output. The
underlying fixed permutations are themselves based closely on the structure of
AES, reusing the S-box, but expanding the size of the block to 512 bits for
Grøtl-256 in a straightforward way.

Grøstl can be implemented with parallel computation of P and Q permu-
tations as well as a single permutation with iterations. As shown in Fig. 6, we
implement the parallel P and Q structure, which enables better Throughput-
to-Area ratio in our case since the hash core throughput can be doubled with-
out doubling the overall area when considering the hardware interface overhead.
Within the parallel P and Q structure, 128 AES SBoxes are used and all of them
are implemented in Galois field operations also for better hardware efficiency.

4.3 JH

The compression function of JH is constructed from a large block cipher with
constant key as fixed permutation. The large block cipher is based on a general-
ized AES design methodology and can be constructed with small components.
There are three components of the underlying permutation E8 : 4 bit SBoxes,
an 8 bit L-permutation, and a P-permutation.

As shown in Fig. 5, two similar round operations, R8 and R6, are used for
compression and round constant generation, respectively. R8 is used to update
the 1024 bit hash state, and R6 generates the round constant on-the-fly. As there
are only two 4 bit SBoxes are used, we simply used LUT-based implementations.

Hash MSG

Permutation

G G G GState

Finalization

IV Data

Hash Value

Fig. 3. Structure of the BLAKE-
256.

 State

Keccak-f[1600] 
(r=1024, c=576)
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Constant

Fig. 4. Structure of the Keccak-256.
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4.4 Keccak

Keccak follows the sponge construction model. The permutation can be con-
sidered as a substitution-permutation network with 5 bit wide SBoxes, or as
a combination of a linear mixing operation and a very simple nonlinear mix-
ing operation. The building block permutation is from a set of 7 permutations,
indicated by Keccak-f [b] (b is the width of Keccak-f with default value 1600).

We implement the Keccak-f [1600] with rate r = 1024, capacity c = 576, and
output digest size of 256 bits. The Keccak core design are based on the authors’
provided reference high speed core designs [6].

4.5 Skein

Skein is an iterative hash algorithm built on a tweakable block cipher C Threefish.
Threefish is used to build the compression function of Skein using a modified
Mateas-Meyer-Oseas construction, which is then iterated in a chaining mode
similar to HAIFA. The designers refer to the whole construction as a Unique
Block Iteration (UBI) mode. Threefish is a 72-round substitution-permutation
network using a 128-bit MIX function consisting of a 64-bit addition, rotate and
XOR operations.

As shown in Fig. 7, we implemented the Skein512-256 version and each
Threefish-512 round out of 72 rounds consists of four parallel MIX operation
and a permutation. Four rounds are unrolled and chained together in hardware.

M State

IVData
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S0, S1 Round

Const

R8 R6

degroup

Hash Value

H State

Fig. 5. Structure of the JH-256.
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4.6 Summary

Table 2 summarizes the major implementation aspects of each SHA-3 final-
ist. The design decisions are made to achieve the primary optimization for
Throughput-to-Area.

Table 2. The summary of design specifications of SHA-3 finalists

Algorithm Implementation Descriptions

Blake-256 4 parallel G functions; 1-stage pipeline in permutation

Grøstl-256 Parallel P and Q with 128 GF-based AES SBoxes

JH-256 SBoxes S0 and S1 are implemented in LUT

Keccak-256 One clock cycle per round

Skein512-256 Unrolled 4 Threefish rounds

5 ASIC Realization

Compared to other published work on SHA3 chip design [14], our chip has the
following benefits:

– Updated to Round-3 specifications. By the end of January 2011, all of the
SHA-3 final round candidate authors released their Round 3 specifications

Key State

Key Schedule

Hash Value

Mix and
Permute

Add 
SubKey

Data

IV

Add 
SubKey

Fig. 7. Structure of the Skein512-256.
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reflecting the feedbacks from the extensive security and performance evalua-
tion during the SHA-3 Round 2 competition. A summary of Round 3 tweaks
can be found in Table. 3. Some tradeoffs between security and performance
were made in several candidates and caused changes in the performance pro-
file (e.g. for BLAKE-256, the round number is increased from 10 to 14; for
JH, the round number is changed from 35.5 to 42). Depending on the way
how designers implement these algorithm (e.g. whether the round function
is unrolled), some of the changes including changing the round number may
not only affect the control logic but also the hash core logic.

– Single technology and consistent methodology. As discussed in [10], the im-
pact of technologies in benchmarking SHA-3 ASIC implementations when
shifting from 0.13 µm to 90 nm is non-trivial. Even under the same tech-
nology feature size, the impact of different standard-cell libraries, synthe-
sis/layout constraints, and tool flows can lead to biased comparison results.
We fabricated all the five finalists on the same die with uniform tool flow
and environmental settings, and this may enable a more fair comparison in
ASIC performance between each candidate.

Table 3. The summary of SHA-3 Round 3 tweaks

Algorithm Round 3 tweaks for 256 bit digest version

Blake-256 Number of rounds is changed from 10 to 14

Grøstl-256 Change shift values in Q;

Use ‘bigger’ round constants in P and Q

JH-256 Number of rounds is changed from 35.5 to 42

Keccak-256 Simplified and shortened padding rule

Skein512-256 Change the key schedule parity constant

For ASIC evaluation in general, the best way to follow is always to fabricate
an actual chip, measure it and explore its true potential. However, as mentioned
earlier the SHA-3 ASIC evaluation process is much more difficult due to the
lack of concrete application scenarios and requirements. In addition, our ASIC
design has constraints, too, including the area budget, the total number of avail-
able IOs for the chip socket on the testing platform, and the capabilities of the
testing infrastructure. In the following sections, we will discuss about how we
designed the SHA-3 ASIC to tackle all the above issues and how the final area
and performance results will be affected by those design decisions.



Silicon Implementation of SHA-3 Finalists 11

sCLK

RST

sLOAD

sFETCH

sDIN

sINIT

EXT_fClk

AlgSel    

sMode

fCLK_0CLK 
Gating

AlgSel

sACK

sDOUT

System Control
(input)

fCLK_5

Ring-Oscillators

CLK Divider

VCO

CLK_Switch

VCO_CLK_Sel

CLK_DIV_Sel

4

2

3

16

sCLK_0

RST

sLOAD_0

sFETCH_0

sACK_0 

sDIN_0

sDOUT_0

sINIT_0

sMode_0

16 16

slow
to

fast
sync

fast
to

slow
sync

JH
~250MHz

fCLK_0

sCLK_1

RST

sLOAD_1

sFETCH_1

sACK_1 

sDIN_1

sDOUT_1

sINIT_1

sMode_1

16 16

slow
to

fast
sync

fast
to

slow
sync

fCLK_1

sCLK_2

RST

sLOAD_2

sFETCH_2

sACK_2 

sDIN_2

sDOUT_2

sINIT_2

sMode_2

16 16

slow
to

fast
sync

fast
to

slow
sync

fCLK_2

sCLK_3

RST

sLOAD_3

sFETCH_3

sACK_3 

sDIN_3

sDOUT_3

sINIT_3

sMode_3

16 16

slow
to

fast
sync

fast
to

slow
sync

fCLK_3

sCLK_4

RST

sLOAD_4

sFETCH_4

sACK_4 

sDIN_4

sDOUT_4

sINIT_4

sMode_4

16 16

slow
to

fast
sync

fast
to

slow
sync

fCLK_4

sCLK_5

RST

sLOAD_5

sFETCH_5

sACK_5 

sDIN_5

sDOUT_5

sINIT_5

sMode_5

16 16

slow
to

fast
sync

fast
to

slow
sync

fCLK_5

Keccak
~250MHz

Grostl
~200MHz

SHA256
~200MHz

BLAKE
~125MHz

Skein
~125MHz

System Control
(output)

16

3

SHA-3 ASIC

VCO_CLK_MON

Clock Management

Fig. 8. The chip diagram of SHA-3 ASIC.

5.1 Chip Architecture

As shown in Fig. 8, besides the SHA-3 candidates modules our SHA-3 chip
contains an on-chip clock management module, a system control module, and a
synchronization module. All these features are integrated in order to fulfill the
needs of fitting the SHA-3 ASIC chip into the SASEBO-R platform and meet
our final chip testing requirements.

– Clock Management Module. This module has two functions: clock gating and
clock generation. The clock gating is used to isolate the impact of the other
candidates when measuring the power consumption of one candidate at a
time. As shown in Fig. 2, all the inputs to the SHA-3 ASIC are generated
from the control FPGA on board which connects to the SHA-3 ASIC. By
default the control FPGA runs at a relatively low frequency (e.g. 24 MHz ).
It is not recommended to transmit high frequency signals through on board
connections. For high frequency testing purpose, we used the custom-cell
design approach to integrate a ring oscillator based voltage-controlled oscil-
lator (VCO) into the chip together with a standard-cell implemented clock
divider, which can offer a good range of clock frequencies on chip. The on-
chip generated clocks are also MUXed with the external clock input and can
be configured through dedicated ports.

– System Control Module. The system control module is in charge of decoding
the control signals for algorithm selection, clock gating, clock division ratio
and hash mode from ports. The SHA-3 ASIC can support operation modes.
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The normal hashing mode loads 16 bit input data for each transfer until it
buffers a whole block of data to start compression. This I/O bottleneck makes
it very difficult for full speed testing since there is a relatively long message
loading period between two consecutive hashing. Therefore, we defined a
second mode of operation: full speed testing. Under this hash mode, the
input buffer of each candidate only stores 16 bit of input data per block, and
replicates this input data to fill an entire block.

– Cross-Clock Domain Synchronizer. There are two clock domains in our chip:
the slow one is for the interfacing logic and the fast one is for hash modules.
In order to avoid complex synchronizer designs based on asynchronous FIFOs
or feedback synchronization and alleviate the burden of the backend process
to deal with the two clock domains, we simplified the synchronizer design
by making a reasonable assumption that the internal hash clock working
frequency is always at least two times faster than the slow interface clock.
As a result, the slow interface can be deemed as a normal control signal and
the whole chip only has one single fast clock either input from external clock
or internal VCO generated clock. Within this approach we extended the
standard hash interface [7] of each candidate to integrate this synchronizer,
and the final reported layout area for each candidate will also include the
overhead of this extended hash interface.

5.2 Constraints

The timing constraints are selected to optimize Throughput-to-Area Ratio, using
the methodology described in [11]. Based on this analysis, we categorized the
five SHA-3 candidates plus the SHA256 based on their achievable frequencies
after layout into three groups: 250 MHz (JH and Keccak), 200 MHz (Grøstl and
SHA256), and 125 MHz (BLAKE and Skein).

With these timing constraints for each group of hash modules, we are able
to finish the layout of the SHA-3 ASIC with the chip core of 1.656 mm × 1.656
mm and overall chip area fitting in the die size of 5 mm2 including pad cells.

5.3 Design Environment

We used the Synopsys Design Compiler (C-2009.06-SP3) to map the SHA-3 RTL
codes to IBM MOSIS 0.13 µm CMOS Technology with CMR8SF-RVT standard
cell library. We use the typical case condition characterization of the standard
cell libraries. The 130nm technology uses 7 metal layers. In general, more metal
layers allow for a denser interconnect, and hence a more optimal use of die area.

The Synopsys IC Compiler (C-2009.06-SP5) is used for the back-end process.
The overall chip core area utilization ratio after layout is 73%. The utilization
is defined as the die area devoted to active components (standard cells) as com-
pared to the total die area. After place-and-route, design flow errors such as
timing and Design Rule Check (DRC) violations may occur. In some cases, the
initial utilization must be lowered in order to relax the constraints to the place-
and-route process.
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The timing results can be obtained from the post-synthesis and post-layout
steps. First, the Synopsys IC Compiler is used to extract the post-layout parasitic
and generate an SDF file containing the delays of all the interconnections and
instances. Second, Synopsys VCS can be used to do the post-simulation and
generate the VCD file that records all the switching activities of the netlist.
Finally, Synopsys Prime Time (C-2009.06-SP3) reads the final netlist, VCD file
and .spef parasitic file and does the power estimation.

5.4 ASIC Results and Analysis

From the post-layout results shown in Table 4, all the five SHA-3 candidates meet
the target maximum frequency and have a larger area but higher Throughput
than the reference SHA256; the maximum throughput of Grøstl and Keccak can
almost reach 10 Gbps; Keccak is the best in hardware and energy efficiency;
closely followed by BLAKE and Keccak, JH is the most power efficient SHA-3
but still less efficient than SHA256.

Although we have tried our best to ensure a fair methodology to guide our
ASIC benchmark process, there are still many factors that may affect the results.

– The limitations of absolute results numbers. We often see many papers cited
other papers’ area results (unit: kGE ) for direct comparisons. However,
we want to point out that the gate counts are strongly dependent on the
standard-cell libraries and tool settings even with the same technology node.
The comparison of absolute numbers is considered as fair ONLY if the same
library, same tools, and same settings are used. This is also one important
reason of why we intend to open-source all of our RTL designs and scripts.
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– Further optimizations of hash design. Due to the short period between the re-
leasing the Round 3 specifications of each SHA-3 candidate and deadline for
the chip tape-out run, we believed that fine grained optimizations are possi-
ble to better address the Throughput-to-Area Ratio optimization goals [15].
Since we have already optimized the designs based on some open-source
SHA-3 projects [1,6,12], the designs and results described in this paper can
be served as a good basis for future work.

6 Conclusions

In this paper we presented the methodology of evaluating SHA-3 ASIC imple-
mentations and reported the latest pre-silicon results for the SHA-3 final round
candidates. Our SHA-3 ASIC is very likely the first chip implementing five SHA-
3 finalists based on the Round-3 specifications published online in January, 2011.

Table 4. ASIC Characterization of the SHA-3 ASIC chip in IBM MOSIS
0.13 µm CMOS Technology with CMR8SF-RVT standard cell library, the Gate
Equivalent count is calculated by dividing the post-layout die area by the area
of a NAND2XLTF (5.76 µm2)

Block Size Core Latency Area Max Freq.

[bits] [cycles] [kGEs] [MHz ]

BLAKE-256 512 30 34.15 125

Grøstl-256 512 11 124.34 200

JH-256 512 42 49.29 250

Keccak-256 1024 24 42.49 250

Skein512-256 512 21 66.36 125

SHA256 512 68 21.67 200

Throughput Throughput-to-Area Power Energy

[Gbps] [kbps/GE ] [mW ] [mJ/Gbits]

BLAKE-256 2.13 62.47 15.65 36.67

Grøstl-256 9.31 74.87 99.59 85.58

JH-256 3.05 61.83 10.39 34.08

Keccak-256 10.67 251.05 15.68 14.70

Skein512-256 3.05 45.93 39.71 65.15

SHA256 1.51 69.54 3.72 19.75

*: NIST SHA-3 Round 3 Specifications by January, 2011.
**: The above numbers are from post-layout simulation with slow
chip interface clock at 10MHz and fast hash core clock at 25MHz.
***: Throughput and Power/Energy numbers are measured for
hash core operations.
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Despite the accuracy in characterization of an actual chip (e.g. power measure-
ment), we have also planed to use this SHA-3 chip for future security evaluation
of SCA attacks based on SASEBO-R board. We also intend to open-source the
RTL versions of the SHA-3 designs that we evaluated and the EDA tool scripts
we used for the backend process.
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