Specialized Cryptanalytic Machines: Two examples, 60 years apart

Patrick Schaumont

ECE Department
Virginia Tech

What is cryptanalysis?

- Cryptography aims to defeat cryptanalysis
- Cryptanalysis aims to defeat cryptography
- Not just for the purpose of making movies ..

Why do we need it?

- Cryptanalysis essential to understand the strength of an encryption algorithm

Enabled through mathematical analysis, brute force search, or a combination of both

What will I talk about?

Cryptanalysis of the

Enigma (1940)

ECC2K-130 (2000)

======== ECC2K-130 ========
$\mathrm{m}=131$
$\mathrm{f}=\mathrm{x} 131+\mathrm{x} 13+\mathrm{x} 2+\mathrm{x}+1$
seedE $=$ NO
$a=0000000000000000000000000000000000$
b $=0000000000000000000000000000000001$
seedP $=092 F E 1$ A8 9014D696 E6768756 1517586A A17BF123
U_x = 02 B8CB4816 38A7BB32 A5214816 621C9B9E
U_y = 07 CC4AAFC3 5046760A 6EF92D38 BFB9F5E1
P_x $=05$ 1C99BFA6 F18DE467 C80C23B9 8C7994AA
P_y = 04 2EA2D112 ECEC71FC F7E000D7 EFC978BD
$\mathrm{h}=04$
$\mathrm{n}=20000000000000000$ 4D4FDD57 03A3F269
seedQ $=$ 328D0AE9 E6124D69 6E676875 61517565 06A34A25
V_x = 07 04AA2F3B 92953C63 B8CBB577 A6F83F07
V_y = 03 94249E7F 29B33ADE 47ABEE95 27EEE974
Q_x = 06 C997F3E7 F2C66A4A 5D2FDA13 756A37B1
Q_y = 04 A38D1182 9D32D347 BD0C0F58 4D546E9A

Example 1: Enigma

- Used in Nazi Germany before/during World War II
- Initially broken by Polish Cipher Bureau (1932)
- Cryptanalysis refined by British/French Military Intelligence
- Enigma Cryptanalysis had a major influence on the outcome of WW-II

Enigma Cipher

Enigma Cipher

Lampboard Plugboard Keyboard

Enigma Cipher

Enigma Cipher

Each setting of the machine results in a reciprocal mapping

 of the plaintext alphabet into the ciphertext alphabetLampboard Plugboard Rotors Reflector

Enigma Cipher

- After each letter of ciphertext, the rotors step in an odometer-like fashion

Left-side View

Enigma Strength

- The Enigma machine itself was not secret
- Secrecy is in the initial setting
- Number of initial positions: 1.07410^{23}
- Rotor positions: $26 \times 26 \times 26$ 17576
- Rotor selection ($\mathbf{3}$ out of 5): $5 \times 4 \times 3$ 60
- Ringstellung (notch): 26×26
- PlugBoard (10 plugs):
- Equivalent strength:

76 bit key

Breaking the Enigma

- An 80-bit key is hard to identify by bruteforce search, especially in a time without electronic computers
- Cryptanalysis by Rejewski (Polish Cipher Bureau), and Turing (GCCS) reduced complexity to a 30-bit search !
- They also build a machine to perform this 30-bit search: the Bombe

Known-Plaintext Attack

Received ciphertext from a weather ship:

RWIVTYRESXBFOGKUHQBAISE

Crib (= guess at its meaning)
W E T T E R V ORHERSAGEBISKAYA

Find Loops in Ciphertext and Crib

$$
\begin{array}{lllllllllllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \\
\hline
\end{array}
$$

Parallel Search with Enigma Machines

Take 3 Enigma's and wire them up as follows

Next, try all rotor positions until a closed loop is found. A closed loop indicates a possible match

Dealing with the Plugboard

Dealing with the Plugboard

The Bombe

Bombe Efficiency

- Number of initial positions:
- Rotor positions: $26 \times 26 \times 26$
1.07410^{23}
- Rotor selection (3 out of 5): $5 \times 4 \times 3$

17576

- Ringstellung (carry): 26×26
- PlugBoard (10 plugs):

1504012

- Need to test only $712 \mathbf{1 0}^{6}$ positions
- Easy to run in parallel on up to 60 Bombes, each with a different Rotor selection

Example 2: ECC Challenge

- Elliptic Curve Cryptography uses Elliptic Curves over Finite Fields

$$
y^{2}=x^{3}+a x+b \text { over GF(p) }
$$

- Prime Field GF(p)
- integers 0 up to $\mathrm{p}-1$
- addition mod p , multiplication $\bmod \mathrm{p}$
- The EC Curve contains all points (X,Y) in $G F(p)$ for which the equation holds

Example Curve over GF(p)

- Points of $\mathrm{y}^{2}=\mathrm{x}^{3}+4 \mathrm{x}+20$ over $\mathrm{GF}(29)$

Point Operations

- EC points related through Point operations
- Point addition: Q = P1 + P2
- With proper choice of curve parameters, all points from a group
- $\{\infty, P, 2 P=P+P, 3 P=P+P+P, 4 P, \ldots,(\# E-1) . P\}$

Example Curve over GF(p)

- Points of $\mathrm{y}^{2}=\mathrm{x}^{3}+4 \mathrm{x}+20$ over $\mathrm{GF}(29)$

Example Curve over GF(p)

- Points of $y^{2}=x^{3}+4 x+20$ over $G F(29)$

Cryptography using EC Points

- Given P and $Q=n . P$, what is n ?

Certicom Challenge

- Certicom has defined (1997) a "challenge": Given Q, P and curve. Find n?

Broken	Challenge	Field size (in bits)	Estimated number of machine days	$\begin{aligned} & \text { Prize } \\ & \text { (US\$) } \end{aligned}$
	ECC2K-108	109	1.3×10^{6}	\$10,000
	ECC2-109	109	2.1×10^{7}	\$10,000
	ECC2K-130	131	2.7×10^{9}	\$20,000
Current	ECC2-131	131	6.6×10^{10}	\$20,000

(Additional Challenges up to 358 bit field size (and $\$ 100 \mathrm{~K}$ reward) exist)

Solving ECDLP

- Best known mechanism to solve $\mathbf{Q}=\mathrm{n} . \mathrm{P}$ is an efficient randomized search (!)
- Generate random points V_{i} :

$$
V_{i}=a_{i} \cdot P+b_{i} \cdot Q
$$

- Until a collision occurs:

$$
v_{i}=v_{i} \quad \text { but } \quad\left(a_{i}, b_{i}\right) \neq\left(a_{j}, b_{j}\right)
$$

- Then solve for n :

$$
n=\left(a_{i}-a_{j}\right) \cdot\left(b_{j}-b_{i}\right)^{-1}
$$

$$
\sqrt{2^{130}} \rightarrow 2^{65!!}
$$

- Picking random (\mathbf{a}, b), a collision is expected after considering sqrt(p) points

Pollard rho: Efficient Search

- [Pollard 1976] To avoid excessive storage requirements, generate random points using a random walk
- Finite number of EC points, so random walk will be a cycle

Parallelized Random Search

- [Van Oorschot 94] Execute multiple random walks at a time
- Collect subset of points on a server

Estimated Efficiency

- How fast can we walk?

http://www.ecc-challenge.info

| Platform | Steps per
 Second | \# Machines
 to break ECC130K
 in one year |
| :--- | ---: | ---: | ---: |
| Opteron 875
 $(2$ core, 2.2GHz) | 4.17 million | 16,360 |
| Core 2 Q6850
 (4 core, 3 GHz) | 22.45 million | 4054 |
| Playstation 3
 (CELL with 6 SPE) | 27.67 million | 2466 |
| GTX 295 GPU
 $(60$ core, 1.24GHz) | 54.03 million | 1263 |

Breaking ECC2k-130

http://eprint.iacr.org/2009/541.pdf

Daniel V. Bailey ${ }^{1,10}$, Lejla Batina ${ }^{2}$, Daniel J. Bernstein ${ }^{3}$, Peter Birkner ${ }^{4}$, Joppe W. Bos ${ }^{5}$, Hsieh-Chung Chen ${ }^{6}$, Chen-Mou Cheng ${ }^{7}$, Gauthier Van Damme ${ }^{2}$, Giacomo de Meulenaer ${ }^{8}$, Luis Julian Dominguez Perez ${ }^{9}$, Junfeng Fan ${ }^{2}$, Tim Güneysu ${ }^{10}$, Frank Gürkaynak ${ }^{11}$, Thorsten Kleinjung ${ }^{5}$, Tanja Lange ${ }^{4}$, Nele Mentens ${ }^{2}$, Ruben Niederhagen ${ }^{12}$, Christof Paar ${ }^{10}$, Francesco Regazzoni ${ }^{8}$, Peter Schwabe ${ }^{4}$, Leif Uhsadel ${ }^{2}$, Anthony Van Herrewege ${ }^{2}$, and Bo-Yin Yang ${ }^{6 \star}$
${ }^{1}$ RSA, the Security Division of EMC, USA
dbaileyorsa.com
${ }^{2}$ ESAT/SCD-COSIC, Katholieke Universiteit Leuven and IBBT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
${ }^{3}$ Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607-7045, USA
djbocr.yp.to
${ }^{4}$ Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513,5600 MB Eindhoven, Netherlands
p.birkner@tue.nl, tanja@hyperelliptic.org, peter@cryptojedi.org
${ }^{5}$ EPFL IC IIF LACAL, Station 14, CH-1015 Lausanne, Switzerland
\{joppe.bos, thorsten.kleinjung\}@epfl.ch
${ }^{6}$ Academia Sinica, Taiwan
\{kc, by\}@crypto.tw
${ }^{7}$ National Taiwan University, Taiwan doug0 crypto.tw
${ }^{8}$ UCL Crypto Group, Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium \{giacomo.demeulenaer, francesco.regazzoni\}@uclouvain.be
${ }^{9}$ Claude Shannon Institute for Discrete Mathematics, Coding and Cryptography
School of Computing, Dublin City University, Ireland
ldominguez@computing.dcu.ie
${ }^{10}$ Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
\{gueneysu, cpaar\}@crypto.rub.de
${ }^{11}$ Microelectronics Design Center, ETH Zürich, Switzerland
kgf0ee.ethz.ch
${ }^{12}$ Lehrstuhl für Betriebssysteme, RWTH Aachen, Germany
ruben0polycephaly.org

Other Efforts: COPACOBANA

http://www.copacobana.org
20 modules with 6 (XC3S5000) FPGA per module 56 -bit DES brute force search: 6.4 days
ECCP-97 in 3 months ECCP-109 in 24 years

Conclusions

1940 - Enigma

- Analysis Target: 80 bit key
- Search complexity 30 bit
- Weight:
- Bombe: 1000 Kg
- Enigma: 5 Kg
- Electromechanical Analysis
- 120 keys per minute
- Time to success
- One day

2000 - ECC2K-130

- Analysis Target: 130 bit key
- Search complexity 65 bit
- Weight:
- Distributed CPU: 1000 Kg
- ECC: 100 g (98 g battery)
- Electronical Analysis (2010)
- 3 Gkeys per minute (on GPU)
- Time to success
- One year

Conclusions

1940 - Enigma

- Analysis Target: 80 bit key
- Search complexity 30 bit
- Weight:
- Bombe: 1000 Kg
- Enigma: 5 Kg
- Electromechanical Analysis
- 120 keys per minute
- Time to success
- One day

2000 - ECC2K-130

- Analysis Target: 130 bit key
- Search complexity 65 bit
- Weight:
- Distributed CPU: 1000 Kg
- ECC: 100 g (98 g battery)
- Electronical Analysis
- 3 Gkeys per minute (on GPU)
- Time to success
- One year

Despite the wonders of Moore, Advanced VLSI design, Cryptanalytic machines did not hold up to the improvements in Cryptography
this is good news :)

Learning more

- Enigma
- D. Rijmenants: http://users.telenet.be/d.rijmenants
- T Sale: http://codesandciphers.org.uk
- G. Ellsbury: http://ellsbury.com
- F. Weierud: http://cryptocellar.web.cern.ch
- ECC2K-130
- Certicom Challenge: http://www.certicom.com
- Search: http://ecc-challenge.org
- Search: http://eprint.iacr.org/2009/541

