

Specialized Cryptanalytic Machines: Two examples, 60 years apart

Patrick Schaumont ECE Department Virginia Tech

What is cryptanalysis?

- Cryptography aims to defeat cryptanalysis
- Cryptanalysis aims to defeat cryptography
- Not just for the purpose of making movies ..

Why do we need it?

 Cryptanalysis essential to understand the strength of an encryption algorithm

What will I talk about?

Cryptanalysis of the

Enigma (1940)

ECC2K-130 (2000)

- V_y = 03 94249E7F 29B33ADE 47ABEE95 27EEE974
- Q x = 06 C997F3E7 F2C66A4A 5D2FDA13 756A37B1
- Q_y = 04 A38D1182 9D32D347 BD0C0F58 4D546E9A

Example 1: Enigma

- Used in Nazi Germany before/during World War II
- Initially broken by Polish Cipher Bureau (1932)
 - Cryptanalysis refined by British/French Military Intelligence
 - Enigma Cryptanalysis had a major influence on the outcome of WW-II

Each setting of the machine results in a reciprocal mapping of the plaintext alphabet into the ciphertext alphabet

• After each letter of ciphertext, the rotors step in an odometer-like fashion

Right-side View

Exploded View

Left-side View

Enigma Strength

- The Enigma machine itself was not secret
 - Secrecy is in the initial setting
- Number of initial positions: 1.074 10²³
 - Rotor positions: 26 x 26 x 26 x 26 17576
 - Rotor selection (3 out of 5): 5 x 4 x 3 60
 - Ringstellung (notch): 26 x 26 676
 - PlugBoard (10 plugs): 150 10¹²
- Equivalent strength: 76 bit key

Breaking the Enigma

- An 80-bit key is hard to identify by bruteforce search, especially in a time without electronic computers
- Cryptanalysis by Rejewski (Polish Cipher Bureau), and Turing (GCCS) reduced complexity to a 30-bit search !
- They also build a machine to perform this 30-bit search: the <u>Bombe</u>

Known-Plaintext Attack

Received ciphertext from a weather ship:

RWIVTYRESXBFOGKUHQBAISE

Crib (= guess at its meaning)

WETTERVORHERSAGEBISKAYA

Find Loops in Ciphertext and Crib

Parallel Search with Enigma Machines

Take 3 Enigma's and wire them up as follows

Next, try all rotor positions until a closed loop is found. A closed loop indicates a possible match

Dealing with the Plugboard

Dealing with the Plugboard

The Bombe

Bombe Efficiency

• Number of initial positions: $1.074 \ 10^{23}$ • Rotor positions: 26 x 26 x 26 17576 • Rotor selection (3 out of 5): 5 x 4 x 3 60 • Ringstellung (carry): 26 x 26 676 • PlugBoard (10 plugs): $150 \ 10^{12}$

• Need to test only 712 10⁶ positions

 Easy to run in parallel on up to 60 Bombes, each with a different Rotor selection

Example 2: ECC Challenge

- Elliptic Curve Cryptography uses Elliptic Curves over Finite Fields
 y² = x³ + ax + b over GF(p)
- Prime Field GF(p)
 - integers 0 up to p-1
 - addition mod p, multiplication mod p
- The EC Curve contains all points (X,Y) in GF(p) for which the equation holds

Example Curve over GF(p)

• Points of $y^2 = x^3 + 4x + 20$ over GF(29)

Point Operations

- EC points related through Point operations
 - Point addition: Q = P1 + P2
- With proper choice of curve parameters, all points from a group
 - {∞, P, 2P=P+P, 3P=P+P, 4P, ..., (#E-1).P}

Example Curve over GF(p)

• Points of $y^2 = x^3 + 4x + 20$ over GF(29)

Example Curve over GF(p)

• Points of $y^2 = x^3 + 4x + 20$ over GF(29)

Cryptography using EC Points

• Given P and Q = n.P, what is n?

Certicom Challenge

 Certicom has defined (1997) a "challenge": Given Q, P and curve. Find n?

	Challenge	Field size	Estimated number	Prize
Broken		(in bits)	of machine days	(US\$)
	ECC2K-108	109	$1.3 imes10^6$	\$10,000
	ECC2-109	109	$2.1 imes 10^7$	\$10,000
Current	ECC2K-130	131	$2.7 imes10^9$	\$20,000
	ECC2-131	131	$6.6 imes10^{10}$	\$20,000
larget				

(Additional Challenges up to 358 bit field size (and \$100K reward) exist)

Solving ECDLP

- Best known mechanism to solve Q = n.P is an efficient randomized search (!)
 - Generate random points V_i:
 V_i = a_i .P + b_i .Q
 - Until a collision occurs: $V_i = V_j$ but $(a_i, b_i) \neq (a_j, b_j)$
 - Then solve for n:
 n = (a_i a_j). (b_j b_i)⁻¹

 $2^{130} \rightarrow 2^{65} !!$

 Picking random (a, b), a collision is expected after considering sqrt(p) points

Pollard rho: Efficient Search

- [Pollard 1976] To avoid excessive storage requirements, generate random points using a random walk
- Finite number of EC points, so random walk will be a cycle

Parallelized Random Search

- [Van Oorschot 94] Execute multiple random walks at a time
- Collect subset of points on a server

Estimated Efficiency

How fast can we walk?

http://www.ecc-challenge.info

Platform	Steps per Second	# Machines to break ECC130K in one year
Opteron 875 (2 core, 2.2GHz)	4.17 million	16,360
Core 2 Q6850 (4 core, 3 GHz)	22.45 million	4054
Playstation 3 (CELL with 6 SPE)	27.67 million	2466
GTX 295 GPU (60 core, 1.24GHz)	54.03 million	1263

Breaking ECC2k-130

http://eprint.iacr.org/2009/541.pdf

Daniel V. Bailey^{1,10}, Lejla Batina², Daniel J. Bernstein³, Peter Birkner⁴, Joppe W. Bos⁵, Hsieh-Chung Chen⁶, Chen-Mou Cheng⁷, Gauthier Van Damme², Giacomo de Meulenaer⁸, Luis Julian Dominguez Perez⁹, Junfeng Fan², Tim Güneysu¹⁰, Frank Gürkaynak¹¹, Thorsten Kleinjung⁵, Tanja Lange⁴, Nele Mentens², Ruben Niederhagen¹², Christof Paar¹⁰, Francesco Regazzoni⁸, Peter Schwabe⁴, Leif Uhsadel², Anthony Van Herrewege², and Bo-Yin Yang⁶*

> ¹ RSA, the Security Division of EMC, USA dbailev@rsa.com ² ESAT/SCD-COSIC, Katholieke Universiteit Leuven and IBBT Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee. Belgium ³ Department of Computer Science University of Illinois at Chicago, Chicago, IL 60607-7045, USA djb@cr.yp.to ⁴ Department of Mathematics and Computer Science Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands p.birkner@tue.nl, tanja@hyperelliptic.org, peter@cryptojedi.org ⁵ EPFL IC IIF LACAL, Station 14, CH-1015 Lausanne, Switzerland {joppe.bos, thorsten.kleinjung}@epfl.ch ⁶ Academia Sinica, Taiwan {kc,by}@crypto.tw ⁷ National Taiwan University, Taiwan doug@crypto.tw ⁸ UCL Crypto Group, Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium {giacomo.demeulenaer, francesco.regazzoni}@uclouvain.be ⁹ Claude Shannon Institute for Discrete Mathematics, Coding and Cryptography. School of Computing, Dublin City University, Ireland ldominguez@computing.dcu.ie ¹⁰ Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany {gueneysu, cpaar}@crypto.rub.de ¹¹ Microelectronics Design Center, ETH Zürich, Switzerland kgf@ee.ethz.ch ¹² Lehrstuhl für Betriebssysteme, RWTH Aachen, Germany ruben@polycephaly.org

Other Efforts: COPACOBANA

http://www.copacobana.org

20 modules with 6 (XC3S5000) FPGA per module 56-bit DES brute force search: 6.4 days ECCP-97 in 3 months ECCP-109 in 24 years

Conclusions

1940 - Enigma

- Analysis Target: 80 bit key
 - Search complexity 30 bit
- Weight:
 - Bombe: 1000 Kg
 - Enigma: 5 Kg
- Electromechanical Analysis
 - 120 keys per minute
- Time to success
 - One day

2000 - ECC2K-130

- Analysis Target: 130 bit key
 - Search complexity 65 bit
- Weight:

•

- Distributed CPU: 1000 Kg
- ECC: 100 g (98 g battery)
- Electronical Analysis (2010)
 - 3 Gkeys per minute (on GPU)
- Time to success
 - One year

Conclusions

1940 - Enigma

- Analysis Target: 80 bit key
 - Search complexity 30 bit
- Weight:
 - Bombe: 1000 Kg
 - Enigma: 5 Kg
- Electromechanical Analysis
 - 120 keys per minute
- Time to success
 - One day

2000 - ECC2K-130

- Analysis Target: 130 bit key
 - Search complexity 65 bit
- Weight:
 - Distributed CPU: 1000 Kg
 - ECC: 100 g (98 g battery)
- Electronical Analysis
 - 3 Gkeys per minute (on GPU)
- Time to success
 - One year

Despite the wonders of Moore, Advanced VLSI design, Cryptanalytic machines did not hold up to the improvements in Cryptography

this is good news :)

Learning more

- Enigma
 - D. Rijmenants: <u>http://users.telenet.be/d.rijmenants</u>
 - T Sale: <u>http://codesandciphers.org.uk</u>
 - G. Ellsbury: <u>http://ellsbury.com</u>
 - F. Weierud: <u>http://cryptocellar.web.cern.ch</u>
- ECC2K-130
 - Certicom Challenge: <u>http://www.certicom.com</u>
 - Search: <u>http://ecc-challenge.org</u>
 - Search: http://eprint.iacr.org/2009/541