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ABSTRACT
The Advanced Encryption Standard is used in almost every
new embedded application that needs a symmetric-key ci-
pher. In such embedded applications, high-performance as
well as resistance against implementation attacks is manda-
tory. In this paper, we compare and contrast three different
software implementations of AES. The first two are based on
cryptographic lookup tables, while the third uses bit-slicing.
We analyze the performance and side-channel resistance of
each implementation on two different FPGA platforms, one
based on a PowerPC processor, and the second based on a
LEON-3 soft-core processor. Our measurements show that,
on embedded platforms, a bit-sliced AES implementation
does not always outperform a lookup-table based AES im-
plementation. We also present a detailed analysis of the
side-channel resistance and the source of side-channel leak-
age, and show that our bit-sliced implementation has eight
times more side-channel leakage than the lookup-table im-
plementations. Hence, we conclude that a variation on the
implementation style for embedded software implementation
of AES will not only affect performance, but also embedded
system security.

General Terms
-
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1. INTRODUCTION
The Advanced Encryption Standard, which was selected

by the National Institute of Standards and Technology in
2001, is the dominant symmetric-key algorithm in use to-
day. The algorithm has been intensively studied, and a large
amount of results with respect to performance and security
have been published. However, often it is unclear how these
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different optimizations behave when compared to one an-
other. For example, optimizing for performance may have
an adverse effect on security, and vice versa. In this paper,
we compare three different implementation techniques for
the software implementation of AES, and we compare them
under two orthogonal concerns: performance and (power-
based) side-channel resistance. We show that such a com-
prehensive analysis provides a deeper understanding of the
design space of embedded system security.

Our experiments are targeted to two 32-bit processor ar-
chitectures, the LEON-3 (soft-core) processor [7], and the
PowerPC 405 processor [17]. These 32-bit architectures are
representative for typical embedded systems.

The AES implementations under study differ primarily
in the way they perform cryptographic substitutions. Such
substitutions are part of the substitute-and-permute net-
work (SPN) kernel within AES. A software implementation
can implement these substitutions in different ways. The
most straightforward way is to use a lookup table, called an
S-box, which is a byte-wide 256-element table. By optimiz-
ing the AES algorithm for execution on 32-bit architectures,
the S-box can be merged with some of the permute-steps of
the SPN network, resulting in a so-called T-box [5]. The T-
box is a word-wide 256-element table. Besides the S-box and
T-box lookup-table based formulation of AES, we also study
a bit-sliced implementation AES. In bit-slicing, the individ-
ual bits of a word are computed separately, using bit-level
operations [3]. In this case, the lookup tables need to be
decomposed into elementary operations; this works for AES
S-box because the input and output of the S-box are mathe-
matically related. Indeed, the substitution can be expressed
using finite field arithmetic operations [11].

Given these two processor platforms, and three different
software implementations of AES, we analyze these designs
from two perspectives: performance and power-based side-
channel leakage. Performance is evaluated by measuring the
execution time of the AES kernel. Power-based side-channel
leakage is evaluated using differential power analysis (DPA)
[10]. These experiments are performed on a side-channel
analysis setup consisting of FPGA prototyping boards, a
sampling oscilloscope, and post-processing software.

The main contributions of the paper are as follows. First,
we show that bit-slicing on 32-bit platforms does not out-
perform a T-box implementation of AES. While it is as-
sumed that bit-slicing requires a wide processor wordlength
to be effective [13], this was never demonstrated. In con-
trast, on high-end processors with wide execution units (64-



bit or higher), bit-slicing is known to provide superior AES
performance [9]. Second, we also demonstrate that memory-
based table-lookups have smaller power-based side-channel
leakage than the equivalent bit-sliced implementation. We
attribute this to the fact that a single-step memory access
performs the same amount of work that requires many dif-
ferent instructions for the bit-sliced implementation. Third,
we describe several practical techniques to analyze the side-
channel resistance of software implementations. We explain
how to discriminate the correct secret key from the side-
channel measurements. In addition, we present a technique
to identify the most sensitive part of a software implemen-
tation.

In our evaluation, we did not consider side-channel resis-
tant designs, such as masking or hiding [12]. Initially, we
wanted to compare the algorithms by themselves, since that
gave already an interesting design space. The exploration
of side-channel resistant designs is a useful extension of this
work, but it is outside of the scope of this paper.

The remainder of this paper is organized as follows. In
the next section, we briefly review the implementation of
AES using the S-box, T-box, and bit-sliced formulation on
a 32-bit processor. We also discuss the current state of the
art for AES implementations in software, considering per-
formance as well as side-channel resistance. In Section 3,
we describe the platforms that we have used for our exper-
iments, and we present performance results for our three
AES implementations in Section 4. Section 5 presents and
in-depth discussion of the power-based side-channel analysis
of these designs. We conclude the paper in Section 6.

2. THREE SOFTWARE IMPLEMENTATIONS
OF AES

In this section, we describe the three different implementa-
tions of AES that we evaluated. We emphasize the dataflow
of the algorithm, and we highlight specific optimizations for
software.

2.1 Overview of AES
The Advanced Encryption Standard is well known, and

detailed descriptions of the algorithm have been published
[5]. Here, we briefly review the major steps in the algorithm.
AES operates on a block of 128 bits at one time. It takes a
block of 128 bits of plaintext and iterates that data through
several rounds to produce ciphertext. Each round includes
4 transformations: SubBytes, ShiftRows, MixColumns, Ad-
dRoundKey. We refer to the literature for a description of
these operations. AES organizes a block of 128 bit data as
a 4x4 matrix of 16 bytes. Figure 1 illustrates the dataflow
within a single AES round. The AES-128 algorithm, which
is investigated in this paper, includes 10 such rounds.

2.2 AES S-Box and the AES T-box
Each of the s-operations in Figure 1 is a 256-entry sub-

stitution table. This substitution is mathematically defined:
an S-box operation on an input byte a is found as a finite-
field inversion (over GF (28)) followed by an affine trans-
formation [5]. In each AES-128 round, there are 16 S-box
substitutions. Such a formulation of AES leads to byte-wide
computations over the entire round, which is inefficient on
a 32-bit processor.

The S-box is therefore frequently implemented as a T-
box, which includes each of the shaded operations in Figure

SubBytes

ShiftRows

MixColumns

AddRoundKey

128 bit

32bit

s s s s s s s s s s s s s s s s

Figure 1: Dataflow in AES. A single T-tbox opera-
tion includes the shaded operations.

1. A T-box transforms one byte into four bytes, each of
which represent part of a MixColumn result. In each AES
round, four T-box operations can be combined to obtain a
single row of the AES state matrix. Due to the detailed
implementation of MixColumn, this approach requires four
different T-box lookup tables. However, this approach pro-
vides a significantly better utilization of the 32-bit datapath
of a processor.

2.3 Bit-sliced SBOX
The concept of bit-slicing for symmetric key ciphers was

first inroduced by Biham et al. for the DES algorithm [3]. In
bit-slicing, an algorithm is broken down into bit-level com-
putations (AND, OR, NOT, XOR) and each of these bit-
level operations is implemented as a machine instruction.
For example, a bit-level AND operation will be implemented
with an AND instruction. Since the wordlength of a proces-
sor is n bits (e.g. 32 bits), this implies that n parallel copies
of the same bit-level AND operation can be evaluated in
parallel. Hence, using bit-slicing, n parallel copies of the
algorithm can be evaluated in parallel. The suitability of
an algorithm for bit-slicing depends on the hardware-level
complexity of the algorithm. Essentially, bitslicing treats an
algorithm as netlist of combinational logic, and simulates
this netlist using processor instructions.

Bit-slicing of AES has been discussed extensively in liter-
ature [11, 3, 13, 9, 14, 16]. There are two motivations for
it: bitslicing improves performances, and it provides timing
based side-channel resistance [15]. The latter property is
achieved when lookup tables (memory-load operations) are
replaced with computations (logical operations). In that
case, data-dependent cache-behavior is avoided, resulting in
AES constant-time execution. In this paper however, we are
investigating power-based side-channel resistance, which is
not prevented by bitslicing.

Figure 2 illustrates two approaches to bitslicing of the AES
state. In state-level bitslicing, each bit of the AES state is
mapped into a different register [13]. 32 AES states can then
be represented in 128 processor registers. This approach suf-
fers from three drawbacks. First, it requires a large amount
of processor registers, and may result in spilling, which re-
duces efficiency. Second, when less then 32 AES blocks need
to be encrypted or decrypted, this method results in subop-
timal processor utilization [2]. Finally, conversion of data
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Figure 2: Bitslicing of AES. (a) State-level bitslicing
allocates each bit of an AES state to a different pro-
cessor register, mapping 32 states in 128 registers.
(b) Byte-level bitslicing allocates each bit of a byte
to a different processor register, mapping 2 states in
8 registers.

blocks into bitsliced format and back requires additional
overhead. However, the method results in an encryption
speed of 9.2 cycles per byte on a Core2 processor [14].

Byte-level bitslicing, illustrated in Figure 2b, takes a more
compact approach. The corresponding bits of each byte in
two AES states (32 bytes in total) are mapped into the bits
of a register [9]. Eight 32-bit processor registers thus can
capture two entire AES states. In contrast to the previ-
ous method, this method needs a specific bit-level organi-
zation in order to obtain an efficient implementation of the
AES permutation operations (such as ShiftRows and Mix-
Columns). Nevertheless, on a Core2 processor, a byte-level
bitsliced AES was shown to execute at 7.59 cycles/byte [9].

For our experiments, we implemented a byte-level bit-
sliced version of AES.

3. PLATFORMS AND SCA SETUP
In this section, we describe two embedded platforms on

which the 3 different AES implementations are built. After
that, we discuss the side-channel analysis setup on these two
platforms.

3.1 Platforms
We chose two different platforms. The first platform is

the SASEBO-G board [1], which contains a Virtex 2 pro
FPGA (XC2VP30-5FG676C) with two embedded ASIC 32-
bit PowerPC 405 RISC processor blocks inside. AES soft-
ware is implemented on one PowerPC processor. In the rest
of this paper, we use PPC to represent this platform. Fig-
ure 3a illustrates the first platform.

The second platform is the Digilent Spartan 3E-1600 De-
velopment Board [6] with a Spartan 3E-1600 FPGA (S3E1600).
The AES software runs on a 32-bit Leon3 SPARC V8 pro-
cessor [7] built with the FPGA resources. We use LEON3 to
represent this platform. Figure 3b gives an overview of the
second platform.

The above two platforms are different in several major
features. The PPC platform supports both the software’s
instructions and data to be stored in on-chip memories, as
shown in Figure 3a. The PowerPC processor and the on-chip

PPC
(hardcore)

Block RAM

Cache

DDR2 SRAM

Leon3
(softcore)

Virtex 2 Pro Spartan 3E-1600

(a) (b)

Figure 3: Embedded platforms: (a) PowerPC hard-
core embedded in Virtex 2 Pro FPGA; (b) Leon3
softcore implemented in Spartan 3E-1600 FPGA.

Table 1: Differences between two platforms

PPC LEON3

ASIC processor FPGA

NO cache YES

on-chip code location off-chip

on-chip data location off-chip

constant exec. time data-dependent

memory are clocked at the same speed of 24 Mhz. Both in-
structions and data can be read or written in one clock cycle.
In this case, there is no need to implement a cache. From an
architectural perspective, the PPC platform enables the soft-
ware to run at a fastest speed. In addition, the execution
time of each AES implementation can be a constant.

The LEON3 platform uses the FPGA resources to imple-
ment the Leon3 processor, clocked at 50 Mhz. The instruc-
tions and data of the software are stored in an external
DDR2 SRAM memory. Due to the lower speed of the ex-
ternal memory, both instruction cache and data cache are
implemented within the FPGA. Figure 3b depicts the archi-
tecture of the second platform. Due to the cache effects, exe-
cution time of each AES implementation is data-dependent.
Table 1 summarizes the differences of these two platforms.

The AES implementations follow the same design flow in
both platforms. All 3 AES implementations are designed
as 3 functions and are integrated to the testing program
(Algorithm 1), shown in Section 3.2. The S-box and T-box
based implementations are both designed in C, while the
bit-sliced implementation is written in Assembly. The pure-
C designs can be simply compiled with ’powerpc-eabi-gcc’
and ’sparc-elf-gcc’. When compiling the Bit-sliced AES, we
link the hand-written assembly to the object file and obtain
the executable. At any of the above stages, the compilers’
optimization option is ’-O2’.

3.2 SCA setup
The side-channel analysis setup is the same for both plat-

forms. Hence, we only use PPC platform as an example for
explanation. The setup contains the PPC platform, an oscil-
loscope (Agilent DSO5032A) and a PC, shown in Figure 4.

The three parts of the setup are connected in a circular
fashion. A RS232 cable connects the PPC platform and the



RS232

USB

Current Probe

PC

Oscilloscope

Embedded
Platform

current probe
Virtex 2 ProRS232 cable

Figure 4: Side-channel attack system setup.

PC. Between the oscilloscope and the PC is a USB cable,
through which the PC is able to send commands to and get
sampling waveform from the oscilloscope. The oscilloscope
uses a current probe (Tektronix CT-2) to monitor the cur-
rent flowing into the PPC platform. The sampling rate and
precision are set to be the same for all 3 different AES im-
plementations. We use the current to represent the power
consumption of the embedded system. Side-channel anal-
ysis requires a number of measurements with different in-
puts (plaintexts for AES). In our experiment, the result of
one measurement is the current trace of the PPC platform
and the corresponding random plaintext block for encryp-
tion. Each measurement consists of the following 4 steps. A
side-channel analysis that requires n measurements needs to
repeat these 4 steps for n times.

• Step 1: The PC sends a random plaintext block (16
bytes) to the embedded platform through the RS232
cable.

• Step 2: The PowerPC processor in the platform re-
ceives the plantext and encrypts it with the AES soft-
ware. The program running on the PowerPC processor
is shown in Algorithm 1. Cipher is one of the 3 AES
implementations.

• Step 3: After sending out one block of plaintext, the
PC sends command to the oscilloscope to sample the

Algorithm 1 Program running on PowerPC

exp key ⇐ KeyExpansion(key)
if Cipher is bit-sliced AES then
exp key ⇐ BitsliceConvertion(exp key)

end if
loop

if UART is not empty then
wait until 16 bytes received
in[15 : 0]⇐ UART FIFO

end if
out[15 : 0]⇐ Cipher(in, exp key)

end loop

current trace when PowerPC is running the encryp-
tion.

• Step 4: After sampling is done, one current trace is
sent back to PC for side-channel analysis.

4. PERFORMANCE ANALYSIS
In this section we present a performance based comparison

between the three different AES implementations.
Table 2 compares the three implementations based on la-

tency, throughput, and memory footprint. In terms of speed,
T-box AES is by far the best implementation on both the
platforms. It has a slightly large memory footprint because
of the large lookup table that it uses (4 kB).

The performance of bit-sliced AES is second best on the
PowerPC. On a 32-bit processor, the bit-sliced implementa-
tion processes two AES blocks at once. Hence, the effective
execution time for encryption is half the latency. Bit-sliced
AES incurs a large code footprint on both the platforms.
This is because the different functions like SubBytes and
ShiftRows, which are simple loads and stores from memory
in a standard implementation, are expanded into a much
larger set of instructions in the bit-sliced domain. It can
also be seen that the performance of the bit-sliced imple-
mentation is comparatively worse on the Leon3 than on the
PowerPC. This can possibly be attributed to the large code
footprint of bit-sliced AES. Because of large code size, in-
structions are not present in the instruction cache, and have
to be fetched frequently from main memory. This is not a
problem on the PowerPC, because all the code resides on
the on-chip memory.

The standard S-box implementation has the lowest through-
put of the three implementations. However, it has a smaller
code footprint as compared to the other two implementa-
tions.

It can be seen from these results that, in terms of per-
formance, T-box AES is one of the best choices for imple-
mentation on embedded cores. Though bit-sliced AES has
made speed records on other platforms [9], it may not be the
best option to use on 32-bit embedded processors. As ar-
gued by Matsui [13], bit-sliced implementations can offer an
advantage when the following conditions are met: the target
processor has a large number of registers, and the register
length of the target processor is long. These conditions may
not always be available on embedded platforms. In addition,
bit-slicing benefits greatly from more complex instructions
present on high end general purpose cores (eg. SSE3 and



Table 2: Performance Summary
PPC (24MHz) Leon3 (50MHz)

S-box T-box Bitsliced S-box T-box Bitsliced
latency (µs) 310 60 284 210 30 440

throughput (kbits/s) 412 2133 450*2=900 609 4266 290*2=580
footprint (kB) 1.9 5.2 7.0 1.0 5.3 11.2

SSE4 ISE [8]). These instructions are generally not present
on embedded platforms.

5. SIDE-CHANNEL ANALYSIS
In this section, we describe our experiments to evaluate

and analyze the side-channel leakage of the three AES im-
plementations under consideration. We are using differential
power analysis (DPA) for our side-channel analysis. In this
technique, power measurements are compared with a hypo-
thetical power model. We discuss two important aspects in
performing a practical DPA. The first is the selection of the
power model, and the second is the definition of the attack
success metric (measurements to disclosure, MTD). Next,
we present the DPA results for the three AES implemen-
tation. Finally, we perform a refined analysis, in order to
precisely locate the source of side-channel leakage for the
chosen power model.

5.1 Power Model Selection for DPA
The objective of DPA is to compare measurements, ob-

tained from a prototype, with power estimates, generated
using a power model. The power model is chosen so that
it has a dependency on a part of the secret key. For exam-
ple, in the first round of AES encryption, the output of the
substitution step is given as follows.

out[i] = subbytes(in[i]⊕ key[i]); (1)

where in[i] is the i-th byte of the 128-bit plaintext, key[i]
is the i-th byte of the 128-bit key, and out[i] is the i-th
byte of the 128-bit AES state. In this formula, in is known,
while key and out are unknown. However, out is indirectly
observable through the power consumption of the algorithm.
Hence, we can create a hypothesis test for a key byte, using
a power model for out. By making a guess for the i-th key
byte, we can infer the value of out[i]. The power model used
in the DPA is an estimate for the power consumption of the
hypothesized out[i]. The actual hypothesis test, explained
in the next section, will compare the estimated power con-
sumption with the measured power consumption to identify
the most likely key byte hypothesis. In this section, we dis-
cuss the selection of the power model.

In CMOS technology, where power is consumed as a result
of state transitions, it is common to choose the Hamming
Distance (the toggle count) as a power model [12]. For ex-
ample, when performing power analysis on a processor, we
could use the transitions of a processor register. However,
in a software implementation of AES, we do not know what
other data will share the same register location as out[i].
As a result, the Hamming Distance model is of limited use.
Instead, we use the Hamming Weight (the bit count) as the
power model.

A second difficulty in selecting the power model is that a
software implementation of AES typically may take many

CPU
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Figure 5: Differential Power Analysis: Power Model
and Hypothesis Test

instructions. As a result, the power trace of an AES en-
cryption may cover several hundred clock cycles. We cannot
predict, in general, at which clock cycle out[i] will be com-
puted. To address this issue, we simply extend our power
model over all the clock cycles of a power trace, by repeat-
edly using the Hamming Weight of out[i] for every clock
cycle that we wish to analyze.

Finally, when attacking an unknown AES implementa-
tion, the specific variation of the algorithm that is execut-
ing is unknown to an attacker. In this paper, we compare
three common implementations of AES (S-box based, T-box
based, and bit-sliced). The S-box based and bit-sliced im-
plementation produce the intermediate value out[i] as spec-
ified above, and therefore the Hamming Weight of out[i] is a
valid power model. The T-box based implementation, on the
other hand, does not have such an intermediate value, be-
cause it collapses the S-box substitution with several other
AES operations. For a T-box, a more appropriate power
model is one that is based on a T-box lookup table. This
raises the obvious question how an attacker can select the
power model. In practice, this is a minor issue. An attacker
can simply try out multiple power models, and select the
one for which the strongest hypothesis conclusions can be
made (Section 5.2). Even 8 possible implementations for
AES would not add more than 3 bit of uncertainty, and re-
quire 8 times more hypothesis tests. Therefore, in our tests,
we used the most appropriate power consumption model for
each implementation.

5.2 MTD: Quantifying side-channel leakage
Unlike the current or voltage, the side-channel leakage is

not directly measurable. Therefore, researchers usually use
indirect approaches to quantify the side-channel leakage, for
example to use the attacking effort needed for successful at-
tacks to reflect the amount of side-channel leakage. One of
the commonly used approaches is called Measurements to
Disclosure (MTD). The basic idea is that the more mea-



surements that are required to successfully attack a cryp-
tographic design, the more secure that design is. From a
statistical point of view, the more measurements means the
more samples. Since the side-channel analysis is basically a
statistical process, more samples usually lead to more accu-
rate result.

This paper uses the same approach to compare 3 different
AES software implementations. In particular, we mount a
Correlation Power Attack (CPA) [4] on each of the imple-
mentations. With the same amount of measurements, the
less key bytes are discovered from a design, the more secure
that design is. In the rest of this section, we discuss our
method to quantify the side-channel leakage based on MTD
and CPA.

Suppose we have a set of random plaintext blocks (pt[1 . . . n]).
Each of them is used for one measurement. Correspond-
ingly, we obtain n power traces, each of which contain m
sampling points (tr[1 . . . n][1 . . .m]). In our experiment, the
CPA takes pt and tr as inputs, and discovers AES’s key byte
by byte by focusing on the first round of AES. The details
are presented in Algorithm 2. The basic process is to take
pt[1 . . . n] and a guess value of a key byte (key guess) to cal-
culate an intermediate value of the AES software iv[1 . . . n]
(iv[i] = f(key guess, pt[i])). Sampling a complete power
trace guarantees that the operations on the intermediate
value occur during the sampling process. We use the Ham-
ming weight of iv (iv hw[1 . . . n]) to approximate the power
dissipated by iv. Then we calculate the correlation coeffi-
cient of iv hw and the actual measured power traces at each
sampling point. As a result, we obtain a correlation coeffi-
cient trace corr[1 . . .m] (corr[i] is the correlation coefficient
of iv hw[1 . . . n] and tr[1 . . . n][i]). By now, we have obtained
one coefficient trace corr[1 . . .m] which is corresponding to
one guess value of the key byte. Since there are 256 possible
values for one byte of key, we can, therefore, obtain 256 coef-
ficient traces. By grouping these coefficient traces together,
we are able to identify one coefficient trace from all the other
255 traces. In particular, at some points (when the opera-
tions on the intermediate value occur), the abstract value of
the coefficient trace corresponding to the correct key guess is
much larger than all the other traces. Figure 6 gives an ex-
ample of the correlation coefficient traces. We can see that
around time 100µs, one trace emerged from all the other
traces. And it turned out that the key guess corresponding
to this trace is the correct key, which means the CPA on
this key byte is successful.

5.3 SCA Results
Table 3 presents a comparison between three AES imple-

mentations in terms of resistance to side channel attack.
An attack was mounted on all the three implementations

of AES on the two platforms (PPC and Leon3). The attacks
were based on the techniques described previously.

It can be clearly observed from the table that the bit-sliced
implementation is the weakest in terms of side channel re-
sistance. Using the S-box implementation as a reference,
the bit-sliced version requires 5-8 times fewer power traces
to find all bytes of the key. The T-box implementation is
strongest, requiring maximum number of traces to break
the key. This is expected, because the T-Box implementa-
tion combines SubBytes, ShiftRows and part of MixColums
into one highly compressed lookup table. This means that
sensitive data, that can be attacked using a power analy-

Algorithm 2 Correlation power attack on one key byte.

Require: pt[1 . . . n] contains the random plaintext for en-
cryption; tr[1 . . . n][1 . . .m] contains the sampled power
traces; f maps the inputs to the intermediate value iv; g
calculates the correlation coefficient.

Ensure: key gap[j] is the CPA-attacked key byte.
/* Obtain correlation coefficient traces corr */
for key guess = 0 to 255 do

for i = 1 to n do
iv[i] = f(key guess, pt[i])
iv hw[i] = HammingWeight(iv[i])

end for
for i = 1 to m do
corr[key guess][i] = g(iv hw[1 . . . n], tr[i][1 . . . n])

end for
end for
/* Find the correct key byte */
for i = 1 to m do

find |corr[key1][i]| = max(|corr[0 . . . 255][i]|)
find |corr[key2][i]| = second max(|corr[0 . . . 255][i]|)
gap[i] = corr[key1][i]− corr[key2][i]
key gap[i] = key1

end for
find gap[j] = max(gap[1 . . .m])
return key gap[j] as the correct key byte
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Figure 6: An example of 256 correlation coefficient
traces. Around time 100us, the black trace which
corresponds to the correct key byte emerges from
all the other 255 traces.

sis attack, is present in the system for a very short time
as compared to the other two implementations. Figures 7
and 8 display correlation coefficient plots for the three im-
plementations on both the platforms. It can be seen that
the correlation peak for bit-sliced AES is higher than those
for S-box and T-box based implementations.

A significant fact can be observed from the data in table 3.
Among the two platforms, implementations on the Leon3

are much more easier to attack as compared to those on
the PPC. A standard S-box implementation required 40960
power traces to break completely on the PPC, while this num-
ber for the Leon3 was 6400 (an increase by a factor of 6.4).
Similar trend was observable for the other implementations
as well. The same observation can be made by comparing
the correlation coefficient plots for the different AES imple-
mentations on the two platforms. For the same number of



Table 3: Attack Results Summary - Showing number of bytes discovered
PPC Leon3

Measurements Bitsliced S-box T-box Measurements Bitsliced S-box T-box
2048 13 2 2 512 9 0 0
5120 16 4 4 768 12 1 0
10240 16 8 6 1024 14 4 0
25600 16 11 8 1280 16 8 0
40960 16 16 12 5120 16 14 0
51200 16 16 13 6400 16 16 0
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Figure 7: Correlation Coefficient plots for Side-
channel Attack (number of measurements = 5120)
on three different AES implementations on PPC plat-
form.

measurements, the correlation peak for implementations on
the Leon3 are larger than their counterparts for PPC. This
shows that FPGA based soft-cores leak much more sensitive
information as compared to ASIC cores.

5.3.1 The Effect of Cache
It can be seen from table 3 that the T-Box implementation

cannot be broken on the Leon3. The correlation coefficient
plot for T-box AES on Leon3 (figure 8) also does not show
any clear peak which can be identified as the correct key.
The reason for this is as follows. While mounting an attack
on the T-Box implementation on the Leon3, our first obser-
vation was that the waveform was highly unstable and noisy,
even when the beginning of every encryption was aligned.
We tried to attack this particular waveform but were unsuc-
cessful. We found that the cache in the Leon3 was causing
such behavior. Because of the large lookup tables used by
the T-Box, the effect of cache becomes noticeable, and the
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Figure 8: Correlation Coefficient plots for Side-
channel Attack (number of measurements = 5120)
on three different AES implementations on Leon3

platform.

execution time for different encryptions differs depending on
the plaintext. We verified this by disabling the cache on the
Leon3 and doing the attack again. With the cache tunrned
off, a very stable waveform was observed with constant exe-
cution time, and the T-box implementation could be easily
broken.

This particular effect is absent in the PPC because it does
not have cache and uses on-chip memory instead.

5.4 Location Analysis
Finally, we describe a technique that helps to identify

which part of the algorithm in software is most sensitive
to a power analysis attack.

We first identify which part of the algorithm corresponds
to which part of the power trace. This can be done by
inserting a series of ’nop’ instructions at specific points in
the program. The ’nop’ instructions have a power profile
which is easily distinguishable on the power trace. Thus,
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Figure 9: (a) Power trace of S-box AES on PPC
platform; (b) Correlation coefficient plots for Side-
channel Attack on S-box AES on PPC platform.

by inserting ’nops’ at appropriate places in the program,
we can separate different parts of the algorithm from one
another in the power trace. Next, we perform an attack on
the algorithm with these ’nop’ instructions present in the
program. The sensitive points in the algorithm can now be
identified by seeing where in the power trace a correlation
peak occurs.

For the S-box implementation, the correlation peak was
found to be occurring around the ShiftRows function of the
first round. Figure 9 shows the correlation plot along with
the power trace for the S-box implementation on the PPC.
The ShiftRows function has been isolated from other parts
of the algorithm by inserting a set of ’nops’ before and af-
ter it. The ’nops’ are easily distinguishable in the power
trace as large drops in the power. The peak between the
two drops corresponds to the ShiftRows function. The cor-
relation peak can be clearly seen to be occurring over this
part of the waveform. Figure 10 shows a similar plot for bit-
sliced AES. Here too, the correlation peak occurs around
the ShiftRows function. The sensitivity of ShiftRows is ex-
pected, as it operates directly on the sensitive data. The T-
box implementation shows sensitivity around the first round,
as shown in Figure 11. It is difficult to localize the corre-
lation peak from the T-box implementation any further, as
each round is compressed into a memory lookup and a set
of XOR operations.

The plots presented in Figures 9, 10 and 11 are for attacks
using small number of measurements (768 for bit-sliced AES
and 5120 for S-box and T-box AES). Hence, the sensitive
locations that we have pinpointed for the different imple-
mentations correspond to those parts of the algorithm that
break the earliest under an attack. For an attack using a
large number of measurements, correlation peaks will often
be spread out over a large area of the power trace, and not
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Figure 10: (a) Power trace of Bit-sliced AES on PPC
platform; (b) Correlation coefficient plots for Side-
channel Attack on Bit-sliced AES on PPC platform.
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Figure 11: (a) Power trace of T-box AES on PPC
platform; (b) Correlation coefficient plots for Side-
channel Attack on T-box AES on PPC platform..

be localized to just one function or part of the algorithm.

6. CONCLUSIONS
In this paper, we compared three different implementa-

tions of AES from the viewpoint of performance and power-



based side-channel leakage. We concluded that large vari-
ations can be found in terms of performance as well as in
terms of security. We have also shown that there are many
factors that affect performance and side-channel resistance.
The contribution of our work is in putting these implemen-
tations side-by-side, and demonstrating a practical and com-
prehensive evaluation. There are many extensions possible
on this work. For example, one could consider the impact of
side-channel resistant design techniques (such as masking)
on performance and side-channel resistance. Or, one can
consider additional attacks, such as those based on timing
or on faults.
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