Optimized System-on-Chip Integration
of a Programmable ECC Coprocessor

XU GUO and PATRICK SCHAUMONT
Virginia Tech

Most hardware/software (HW/SW) codesigns of Elliptic Curve Cryptography have focused on
the computational aspect of the ECC hardware, and not on the system integration into a
System-on-Chip (SoC) architecture. We study the impact of the communication link between
CPU and coprocessor hardware for a typical ECC design, and demonstrate that the SoC may
become performance-limited due to coprocessor data- and instruction-transfers. A dual strategy is
proposed to remove the bottleneck: introduction of control hierarchy as well as local storage. The
performance of the ECC coprocessor can be almost independent of the selection of bus protocols.
Besides performance, the proposed ECC coprocessor is also optimized for scalability. Using
design space exploration of a large number of system configurations of different architectures, our
proposed ECC coprocessor architecture enables trade-offs between area, speed, and security.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Design Studies
General Terms: Algorithms, Design, Performance
Additional Key Words and Phrases: Cryptography, elliptic curves, system-on-chip, FPGA

ACM Reference Format:

Guo, X. and Schaumont, P. 2010. Optimized system-on-chip integration of a programmable ECC
coprocessor. ACM Trans. Reconfig. Techn. Syst. 4, 1, Article 6 (December 2010), 21 pages.
DOLI: 10.1145/1857927.1857933. http://doi.acm.org/10.1145/1857927.1857933.

1. INTRODUCTION

Public-key cryptosystems, especially elliptic curve cryptography [Gura et al.
2003; Koblitz 1987; Miller 1986] and recently extensively discussed hyper-
elliptic curve cryptosystems (HECC) [Koblitz 1990], have become very popular.
They have become the preferred public-key cryptosystem for many critical
embedded applications. Implementing ECC on an embedded system, including
both the hardware and software components, can be a real challenge since

This project was supported in part by the National Science Foundation through grant 0644070.
Authors’ address: X. Guo and P. Schaumont, Whittemore Hall 302, Virginia Tech, Blacksburg
VA 24061.

Permission to make digital or hard copies part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2010 ACM 1936-7406/2010/12-ART6 $10.00 DOIL: 10.1145/1857927.1857933.
http://doi.acm.org/10.1145/1857927.1857933.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

6:2 . X. Guo and P. Schaumont

one has to deal with ultra-long bit-width data with constrained resources and
processing power. A promising approach to deal with this dilemma is the
HW/SW codesign, which offers the advantage of flexibility in software with
performance in hardware.

The computationally intensive kernel of ECC is well suited for hardware
acceleration, so HW/SW codesign is the logic choice to evaluate trade-offs be-
tween cost and performance. In the last couple of years, many researchers have
used codesign techniques to explore trade-offs between cost, performance, and
security in ECC system designs. Typical target platforms include low-end 8
bits platforms (e.g., AVR or 8051) [Aigner et al. 2004; Batina et al. 2005; Gura
et al. 2004; Hodjat et al. 2005; Koschuch et al. 2006; Kumar and Paar 2004]
as well as 32 bits microprocessors with bus systems (e.g. MicroBlaze with PLB
bus). [Orlando and Paar 2000] proposed a scalable elliptic-curve processor ar-
chitecture which operates over the binary field GF(2™). [Gura et al. 2003] have
introduced a programmable hardware accelerator for ECC over GF(2™), which
can be attached to a 64 bits PCI bus and supports field sizes up to 255. These
two papers emphasize the optimization of the coprocessor for speedup and scal-
ability. [Sakiyama et al. 2006] explored architecture optimizations for ECC co-
processors and showed how to exploit parallelism using local control and local
coprocessor storage. Their experiments were based on ARM cosimulation. Al-
though each of the above three papers discussed coprocessor implementation
results for FPGA, none of them presented a detailed discussion of the system
integration effects and the impact of communication bottlenecks when attached
to actual processors. [Cheung et al. 2005] implemented a coprocessor with par-
allel field multiplier attached to OPB bus and identified data transfers over
the processor bus as an important system integration problem, but no further
optimization for this was mentioned.

Although the design goals in 8 bits platforms and platforms with 32 bits mi-
croprocessors and bus systems may differ due to different applications (e.g.,
low-power sensor nodes versus high performance security systems), both of
them have to deal with the same problem of how to minimize the communi-
cation overhead resulting from using a single, central controller.

The work described in this article is an extension of [Guo and Schaumont
2009], but with more emphasis on the analysis of architectural scalability and
security aspects. Compared with the previous work, this work presents four
contributions to codesigns for ECC.

First, we present a complete ECC SoC design and focus on the system in-
tegration issues on a real FPGA platform. We use HW/SW cosimulation to
do system profiling of the bus bottleneck, and we explore multiple control hi-
erarchies in a typical FPGA based SoC system. We show that, using proper
partitioning of control and data, the ECC system execution time can be made
almost independent of the selection of bus protocols between the central con-
troller and the coprocessor. Also, we present system performance profiles for
an ECC SoC design with MicroBlaze processor and PLB (Processor Local Bus).

Second, we identify two system performance regions. In the first region, the
overall system is performance-constrained due to the coprocessor hardware. In
the second region, the overall system is communication-constrained due to the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

Optimized System-on-Chip Integration of a Programmable ECC Coprocessor . 6:3

coprocessor-CPU bus. The actual operating point of the system is determined
by the choice of coprocessor configurations.

Third, we quantify the impact of control hierarchy and local storage in the
coprocessor, and show how the system performance regions are affected. Specif-
ically, we use a small 8 bits microcontroller, PicoBlaze, as a local control unit in-
side the coprocessor. Moreover, we optimize the control hierarchy by converting
a Single-Picoblaze sequencer architecture into a Dual-Picoblaze architecture
which runs interleaved instruction sequences. This Dual-PicoBlaze based ar-
chitecture can achieve the instruction transfer rate of 1 instruction/cycle, while
a Single-Picoblaze architecture only provides half that speed, 1 instruction per
2 cycles. The FPGA implementation results show that our proposed ECC SoC
architecture with the Dual-PicoBlaze based coprocessor has a better tradeoff
between area and speed.

Finally, we optimize the ECC coprocessor to have high flexibility by propos-
ing a novel parallel architecture, which can be used to explore application- and
algorithm-level parallelism of ECC. The architecture is scalable and can be
adapted to different bus interfaces. Based on our theoretical analysis on its
scalability, the parallel ECC SoC design can be used for various high perfor-
mance applications.

The remainder of this article is as follows. Section 2 gives a brief description
of our ECC system configuration and the definition of the ECC design space in
our design. In Section 3, the problem statement of HW/SW partitioning will
be given. The implementation details will be discussed in Section 4. Section 5
explains the HW/SW codesign flow used in the paper, and performance results
of FPGA implementations are analyzed. Section 6 concludes the article.

2. ECC BACKGROUND

Curve-based cryptography, especially ECC, has become very popular in the
past several years [Koblitz et al. 2008]. These cryptographic primitives are
used for exchanging keys over an insecure channel and for digital signatures.
Furthermore, these algorithms show good properties for software and hard-
ware implementations because of the relatively short operand length compared
to other public-key schemes, like RSA. However, ECC is still considered as a
computationally intensive application due to the complexity of scalar or point
multiplications.

2.1 Implementation of ECC over GF(2™)

Here we present a brief introduction to elliptic curves and more information
on elliptic curves can be found in Hankerson et al. [2004]. Let GF(2™) be a
binary field, and let E be an non-supersingular elliptic curve defined with the
following equation

3

E: y?+xy=2>+ax® +b. (1)

A basic building block of all elliptic curve cryptosystems is the scalar multi-
plication, an operation of the form K - P where K is an integer and P is a point
on an elliptic curve. A scalar multiplication can be realized through a sequence

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

6: 4 . X. Guo and P. Schaumont

ECC Scalar Multiplication
(double-and-add-always)

ECC Scalar Multiplication
(Montgomery Ladder)

Input: P, K={k, ;,...ko}
Output: Q=K<P

1: Q[0] < P
2:fori=n-2to0do
3: 0[0] «— 20[0]

Input: P, K={k, ,...ko}
Output: Q = K*P

1: O[0] < P, O[1] « 2P;
2:fori=n-2to 0do

3: O[1-k] < O[0]+0[1]

O[] < Q[0] +P Olki] 200k
0[0] « O[]
Return Q[0] Return Q[0]
Fig. 1. Elliptic curve scalar multiplication (ECSM) algorithms.

Table I. Basic Configuration for Our ECC Design

Coordinate L-D Projective coordinates [Lépez and Dahab 1999]

Point Mult. Montgomery Scalar Multiplication [Lopez and Dahab 1999]

Field GF(21%3)

Curve NIST random elliptic curve B-163

GF Mult. Bit- /Digit-serial multipliers [Grofschidl 2001; Kumar et al. 2006]
GF Addition Logic XOR operations

GF Square Dedicated hardware with square and

reduction circuits [Hankerson et al. 2004]
GF Multiplications and Squares based
on Fermat’s Theorem [Rodriguez-Henriquez et al. 2006]

GF Inversion

of point additions and doublings (see Figure 1). This operation dominates the
execution time of cryptographic schemes based on ECC, such as signatures
(ECDSA).

2.2 Basic Configurations

There are many design options for ECC implementations, including the coordi-
nate system, the field and the type of curve [Hankerson et al. 2004]. We used
the configuration in Table I for our ECC design. First, we chose a curve with
corresponding parameters from the FIPS 186-2 standard [NIST 2000]. Next,
we selected a point multiplication algorithm and a coordinate system. Finally,
we selected the lowest level finite filed arithmetic algorithms. For simplicity,
the discussion in our work is restricted to the smallest field size m=163 speci-
fied in the NIST recommended elliptic curves for federal government use. Since
this article mainly focuses on the ECC architecture-level optimizations, not the
algorithm-level, the current selection of configurations is only for illustration
purpose and does not compromise the generality of our proposed architecture.

2.3 ECC Design Space

We consider design space exploration for ECC system architecture at two ab-
straction levels.

At the application-level of ECSM, we discuss the scalability of our proposed
parallel ECC coprocessor architecture. Multiple scalar multiplications can be

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

Optimized System-on-Chip Integration of a Programmable ECC Coprocessor . 6:5

180 4 - 2400 64000

4 —R— Standalone Field Multipliers]
160 - , —(— Area i 2200 56000‘J”””"”””W’”‘ 7777777777777777777777777777777
1 + 142000 ;
1404 | [-@—Latenc '

1 - 1800
I

1204 ! ‘
H 1600 S onne N .
14 1400

14 1200

Latency (cycles)

%

g

I

Area (Slices)

R B &5 &
& 8 8 8
g 8 8 8
g 8 8 8
| | | I

Area-Time Products (slices x cycles)

1
: |
604 1 < 1000 ﬁl&\ ——
1500 P b33
404 o] 16000 1= sy
209 SUSEEEEE o 8000 - -1 - \ﬁ
oL 8 SIS SO SO B o SO A
~90-9-0-0-6_ o - 400 j oo =R R =
15 T? % BERE R
+—T——————+—+—+——T—+—+—+—1— 200 O+t —+—+
BS D2 D3 D4 D8 DI6 D24 D28 D32 D33 D41 D55 D82 BS D2 D3 D4 D8 DI6 D24 D28 D32 D33 D41 D55 D82
Type of multipliers Type of multipliers
Standalone simulation results Standalone simulation results

Fig. 2. Area, time and area-time products of different multiplier implementations.

computed simultaneously on one parallel ECC coprocessor, and each of them is
executed on independent ECC datapath.

At the algorithm-level of ECSM, we discuss the mapping of existing parallel
ECSM algorithms [Jarvinen and Skytta 2008] to our parallel ECC architecture,
and one scalar multiplication result can be obtained by summing all the partial
ECSM results from parallel datapaths.

Detailed theoretical analysis and FPGA implementation results on design
space exploration at the above two levels are provided in Section 4.4 and
Section 5.1, respectively.

At the low abstraction level of finite field arithmetic, the design space is de-
fined by the use of different Field Multiplier architectures, including bit-serial
as well as digit-serial multipliers of different sizes. A basic bit-serial multiplica-
tion in GF(2™) can be realized through a classic shift-and-XOR based MSB-first
bit-serial multiplier with interleaved reduction modulo the irreducible polyno-
mial [GroBschadl 2001]. It can finish one GF(21%3) multiplication in 163 clock
cycles. A digit-serial multiplier on the other hand can process multiple bits of
the operands in parallel with a processing time proportional to [m/D] cycles,
with digit size D < m - k, where m is 163 and k is 7 for the B-163 curve. It is
obvious that within a certain range of D, when increasing the D, the area will
increase accordingly, but the processing time will be the same. For example,
for all De[55,81], the multiplication time is 3 clock cycles. In this case we only
select D size of 55 for our implementations.

Evaluating the multiplication speed and the area-time product for the dif-
ferent architectures leads to the optimum digit size for an implementation on
a specific platform. We have evaluated the multipliers required for the NIST
B-163 polynomial for different digit sizes to find the optimum values. This
leads to Figure 2, which shows the post-place and route results for a Virtex-5
XC5VLX50-1FF676 FPGA with Xilinx ISE10.1 with default settings. For the
area metric in Virtex-5 FPGA, we use the unit, slice, which is based on the
new six-input LUTs. We want to point out that the FPGA implementation
results may be affected by different system constraints after place and route
and different FPGA platforms, so the results shown in Figure 2 are just for

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

6:6 . X. Guo and P. Schaumont

case study and used as concrete examples to discuss the system integration
issues.

Even though a digit-serial multiplier was presented in Kumar et al. [2006],
the conclusions of those authors cannot be directly applied here. The differ-
ences are due to the use of different technologies (ASICs vs. FPGA) and tar-
get application (standalone components vs. system coprocessors). In our case,
the system clock frequency is 125MHz, determined by the MicroBlaze system
processor. Even though we find that the multipliers can run above 200MHz,
we will operate them at the 125MHz system clock. Indeed the coprocessor may
run at higher speed, but that would complicate the system implementation by
introducing multiple clock regions. Therefore, instead of using absolute execu-
tion time and equivalent gate counts, we use cycle counts and total used slices
to calculate the area-time products. Then, from Figure 2 we can identify that
the best choice, in terms of the area-time product, for a field multiplier in a
stand-alone design is a digit-serial multiplier with D size of 33. All the bit-
serial and digit-serial multipliers are implemented in logic without using hard-
ware macros because field multiplications on binary fields are mainly composed
of shift and XOR operations. Also, the multipliers cannot be pipelined due to
the iteration structure and data dependency inside of the bit- and digit-serial
multiplier algorithms.

3. CONSIDERATIONS FOR ECC HARDWARE/SOFTWARE PARTITIONING

As shown in Figure 3, a scalar multiplication, K - P, with an integer K and a
point P on an elliptic curve, needs to be realized through a sequence of point
additions and doublings. These group operations can be further decomposed
into several types of finite field arithmetic with ultra-long operand word length
(e.g., 163 bit above).

Several researchers [Koschuch et al. 2006; Sakiyama et al. 2006] have pro-
posed implementing the field multiplication in hardware and the upper-level
point multiplication in software. This typical partitioning is a trade-off be-
tween flexibility, cost, and speed, which are the cost factors of most importance
in embedded ECC implementations. However, this partitioning may result
in a HW/SW communication bottleneck since the lower-level field multiplica-
tion function will always be called by upper-level point operations, including
many instruction and data transfers. For a baseline ECC system in our de-
sign (Scheme A in Figure 3), with all parameters and intermediate results
stored in processor local memory, the data/instruction transfer time may take
up to 98.3% of the total time required to perform one GF(21%3) scalar multipli-
cation when using digit-serial multiplier with D size of 82 and a typical bus
communication latency of 9 clock cycles [Guo and Schaumont 2009]. So, the
overall ECC system speedup brought by increasing the D size of digit-serial
multipliers would be buried if we cannot optimize the HW/SW communication
bottleneck.

From the given analysis on the HW/SW partitioning, we already know where
the system bottleneck will be, so before starting the system-level design we

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

Optimized System-on-Chip Integration of a Programmable ECC Coprocessor . 6:7

inC SW driver HW coproc. w/o loc. storage

Finite field arithmetic y many ins. & many data bus transfers y

Scheme A 5

Hardware

Local

Software CPU HW coproc. w/ loc. storage
Storage

inC SW driver loc. storage

A A
y /many ins. & few data bus transfers y

Finite field arithmetic

Scheme B @

CPU HW coproc. w/
Local Hardware (Main controller) loc. storage & ctrl. hierarchy
Storage .
e - Control SW driver | loc. storage || loc. controller
Group operanon Hierarchy
Hardware A | 4 . 4
Finite field arithmetic y_fewins. & few data bus transfers y

Scheme C

Fig. 3. System architecture modeling of different schemes.

Table II. System Profiling from GEZEL Cosimulation

Access 163 bit Baseline Design Uni-PicoBlaze Dual-PicoBlaze

local reg. bus transactions bus transactions bus transactions
Ins. # Data #Ins. # Data #1Ins. #Data

2,788 26,791 1,294 481 489 468 476

should first quantitatively measure the bus transactions in the baseline de-
sign, and estimate the optimization room left for us. Table II shows the system
profiling from GEZEL cosimulation [Schaumont et al. 2006]. Since our sys-
tem bus interface uses the memory-mapped registers, the way we collect the
number of instruction and data transfers over the bus is to measure how many
write and read on these registers for instruction or data transfers.

4. ECC SOC DESIGN

4.1 Proposed Optimizations

Targeting the above communication bottleneck problem, we tried to optimize
the HW/SW boundary in two steps: reducing data transfers and accelerating
instruction transfers.

Apart from architecture-level optimizations (Scheme B and C in Figure 3),
we also evaluated the impact of algorithm-level optimizations to further

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

6:8 . X. Guo and P. Schaumont

improve the original Montgomery Scalar Multiplication algorithm [Lépez
and Dahab 1999]. These algorithmic optimizations focus on the data and
instruction transfers. First, by adding I/O local registers into the coprocessor,
data can be transferred between the software and the coprocessor while an
ECC field multiplication is in progress. Second, the local registers used to store
operands also enable data reuse in the coprocessor. For example, a field mul-
tiplication is always followed by a field addition, so the field multiplication re-
sults can be directly used as one operand for the following addition. By exploit-
ing the data dependencies in the point multiplication and coordinate conversion
operations, we can avoid additional data transfers between the CPU and the
COProCcessor.

4.2 Impact of Local Storage

Scheme A: using Processor Local Memory as main storage. In a straightforward
design, like Scheme A in Figure 3, the ECC system will implement the point
operations on the main processor. This requires storing all parameters and
intermediate results in Processor Local Memory, so that the main processor
can access and manipulate them. This scheme is also called the Baseline ECC
SoC System.

From Table II, it is observed that for a full 163 bit scalar multiplication,
there are 2,788 times read/write on eight 163 bits coprocessor local registers,
so if all parameters and intermediate results are stored in main memory, this
may result in 16,728 times data transfers over the 32 bits bus. This represents
a significant amount of time (around 60% of the total execution time of a point
multiplication, assuming the typical PLB bus HW-SW latency of 9 clock cycles).
Hence, a simple optimization can be achieved by adding local storage to the
coprocessor, like Scheme B in Figure 3, so that the amount of data transfers
over the processor-to-coprocessor bus can be minimized.

Scheme B: using Coprocessor Local Registers as local storage. We optimize
the ECC baseline design by adding local storage to the coprocessor, so that the
amount of data transfers over the processor-to-coprocessor bus may be reduced.
In total, five 163 bits registers were added to the coprocessor. It is also possible
to use SRAM blocks instead of registers to save slices.

The comparison of FPGA implementation results between Scheme A and B
can be found in Figure 4.

Comparing Scheme A with B, Scheme B provides an average speedup of 2.5
times at the expense of a 1.3 times larger area. The figure also shows that
beyond digit-size D = 16, the latency of the overall point multiplication does
no longer decrease. Thus, the digit-size D = 16 splits the design space into
two. The left half of the figure is a computation constrained area. In that part,
the system is constrained by the efficiency of the coprocessor hardware. The
right half of the figure is communication constrained. In that part, the system
is limited by the processor. For example, if a multiplication in hardware can
finish in 9 clock cycles (e.g., 8 clock cycles for digit-serial multiplier of D-size of
24), the speedup of standalone field multiplication brought by D-sizes beyond
24 become invisible. From this point of view, we can conclude that the best

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

Optimized System-on-Chip Integration of a Programmable ECC Coprocessor . 6:9

1000000 Computation —{Sch. B Area 4000

Constrained /\— Sch. A Area
900000 4 -——— .

''''''' —> 3500

800000 _Cnmmunica!iun il
' Constrained 1
7000004 11 A A—A—A—4 <3000

“BSch. B Time]| | I m/:

600000 4 | ' i I I I | |
—A— Sch. A Time] ! - [ﬁ]/ /o1 42500

‘ — P JA

NG P YA

~ 2000
400000

Area (slices)

500000 - / /
tJ _

B e
AT

Latency (cycles)

1500

300000

ﬁ]/@\@*@/ -
‘ A

200000 1000

D OAA
1000004 A1 A

a ; T T ; T ; ; T T T T
BS D2 D3 D4 D8 DI16 D24 D28 D32 D33 D41 D55 D82
Multiplier Digit Size

Fig. 4. Time to complete one multiplication and area for each type of coprocessors.

hardware design may not result into the best system solution when system
integration overhead is considered.

4.3 Impact of Control Hierarchy

4.3.1 Embedded Processor Cores. A wide range of bit widths from 8 to 32
bits processor cores are available to be used as control units in typical SoC
designs. Small bit width has the advantage of a small memory footprint for
simple applications, but also implies a limited complexity. Wide instructions
allow for much more complex applications, but will also require a large amount
of memory even for small applications [Hempel and Hochberger 2007].

Various synthesizable processor cores are available for FPGA designs. On
one hand we have adaptations of some well known embedded processors like
AVRS8 and Leon2 processor. These cores are not tailored to the specific resources
available in FPGAs. On the other hand there are specialized processor cores
for FPGAs, such as Altera NIOS II, Xilinx MicroBlaze and PicoBlaze, and Lat-
tice Mico8. These cores are specifically developed for FPGAs, and they can be
classified into two categories: 8 bits cores like the Xilinx PicoBlaze or the Lat-
ticeMico8 and 32 bits cores like the NIOS II and the Microblaze. The use of
32 bits cores targets at high performance applications and sometimes requires
external memory. Peripherals can be attached to these cores through bus sys-
tems. Also, there exist FPGAs that have processor cores implemented as hard
IP blocks (e.g., PowerPC embedded in Xilinx FPGA).

Compared with the 32 bits cores, the 8 bits cores have very simple I/O inter-
faces and are very limited in computation power. The on-chip program memory
is always very small, typically less than 1K instruction store with simplified
instruction set.

As we have indicated, either type of core has its own advantages, which may
be complementary to each other in one SoC design. However, most current
research only considers them as separate control units and rarely combines
them in a single system-level design.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

6: 10 . X. Guo and P. Schaumont

4.3.2 Single-PicoBlaze Based ECC SoC Design.

Scheme C: using PicoBlaze (PB) as control hierarchy. From the above analy-
sis of Scheme A and B, these two schemes mitigate the overall bus commu-
nication overhead by optimizing the data transfer side; however, instruction
transfers still dominate the entire scalar multiplication time. From the cosim-
ulation profiling (see Table II), we can see that for a full 163 bits scalar multi-
plication, there are 26,791 times instruction transfers though the data trans-
fers have been reduced to 1,294 (mostly composed of reading status registers)
with a typical PLB bus communication latency of 9 clock cycles. One area
for further optimization is that of coprocessor control. Indeed, for each oper-
ation performed by the coprocessor, the processor needs to perform a command
transfer over the PLB bus. These command transfers are still needed, even
after local registers are added to the coprocessor. In order to reduce the amount
of command transfers, we must change the way to control the coprocessor.

The PicoBlaze microcontroller is a compact, capable and cost-effective fully
embedded 8 bits RISC microcontroller core optimized for Xilinx FPGAs. It has
predictable performance, always two clock cycles per instruction, and 1K in-
structions of programmable on-chip program store, automatically loaded dur-
ing FPGA configuration. It only costs 53 slices and 1 block RAM on Virtex-5
XC5VLX50 FPGA and can run at the max frequency of 180MHz.

By introducing a local control hierarchy, the PicoBlaze takes the charge
of sending out the point addition and doubling instructions. The main con-
troller, MicroBlaze, only needs to start a scalar multiplication once, after which
the detailed sequencing will be completed by the PicoBlaze (like Scheme C in
Figure 3). As shown in Figure 5, the coprocessor has two separate FSMs to
decode the instructions sent from the CPU and PicoBlaze, respectively. The
CPU instruction set only contains instructions for data transfers, while the
PicoBlaze instruction set includes all the instructions for controlling the fi-
nite field arithmetic ALUs and exchanging data with coprocessor local register
array.

The PicoBlaze has additional advantage of having a fixed instruction rate (2
clock cycles per operation). This means that the local instruction decoder in the
coprocessor can be simplified: no additional synchronization is needed between
the PicoBlaze and the local instruction decoder FSM. From the cosimulation
system profiling (see Table II), we can see that for the Single-PicoBlaze design
the instruction and data transfers have been greatly reduced to 481 and 489,
respectively. The lower-bound on the amount of instruction and data transfers
is around 18 and 6, respectively. Most of the current measured instruction and
data transfers are devoted to polling the status registers with associated in-
structions during the coprocessor execution time. Therefore, a simple further
optimization can be conducted by using ’interrupt’ control, and this improve-
ment may not only reduce the number of bus transactions but also save the
task load of ECC on MicroBlaze and PLB bus, which then may be used for
other peripherals in a large system.

The results for Scheme C with a Single-PicoBlaze local controller will be
discussed in Section 5.2 and compared with other design strategies. We

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

Optimized System-on-Chip Integration of a Programmable ECC Coprocessor . 6: 11

BUS

CPU i CPUINS Decoder ! PicoBlaze | PicoBlaze INS Decoder
i I I
Send scalar K \i\ : IOR : I/O Reg.
E K ! MUL_ST % | MRR: Multiplier Reg.
E i ADD_ST MDR: Multiplicand Reg.
\ SQR_ST RR :Result Reg.

[K CLR_RR
INIT i IOR2MRR
IDLE : IOR2MDR

! LOAD LD | if Ki=1 | RR2IOR

cPU ! LOADFIN o . | Madd, Mdouble | TOR2REGL | pjcoBlaze
; : Projective -) o © IOR2REG2 ;
Instruction i STORE Mont : € > Instruction
Set ! STORE ST OEgé’l'\“/[ery! Madd, Mdouble | IOR2REG3 Set

! IOR2REGK 0 Mxy i TOR2REG4
RESX2IOR : - IOR2REGS5
RESY2IOR ! ! REGI2IOR
. | Res.x ; REG22I0R

H : Res. REG32I0R

H Res.x A/|/ ey

: ! REG42I0R

Receive Res.x / Res.y i

REGS52IOR _/

Receive Res.y :
|

Fig. 5. Dataflow of ECSM with CPU and PicoBlaze instruction sets.

have demonstrated that by introducing the Picoblaze as control hierarchy the
communication constrained area disappears as we can observe a continuous
speedup when the coprocessor uses a faster multiplier, from a bit-serial multi-
plier to a digit-serial multiplier of D-size 82.

4.3.3 Dual-PicoBlaze Based ECC SoC Design. After analyzing the previous
design we find two characteristics of Single-PicoBlaze based ECC coprocessor
design, which can help us to further refine the design. First, the local control
unit, PicoBlaze, in the current design is acting as an instruction generator. It
has no data processing inside, which means it is feasible to split the Picoblaze
program into several subsets as long as the sequence of the instructions is
guaranteed. Second, the instruction rate of Single-PicoBlaze is fixed 2 clock
cycles per operation, which means that there is still one cycle per operation
wasted in the ECC datapath. So, from the above two observations we propose
the idea of optimizing the local control unit by converting a Single-Picoblaze se-
quencer architecture into a Dual-Picoblaze architecture which runs interleaved
instruction sequences. Hence, this novel Dual-PicoBlaze based architecture can
achieve the maximum instruction transfer rate of 1 instruction/cycle. To illus-
trate the conversion from Single-PicoBlaze to the Dual-PicoBlaze, a simple ex-
ample of PicoBlaze assembly codes executing one field multiplication followed
by an addition is shown in Figure 6. Compared with the Single-PicoBlaze de-
sign our proposed Dual-PicoBlaze design can save additional 18% of total clock
cycles in average, at the expense of very small hardware overhead (81 slices in
average from FPGA implementation results on XC5VLX50). Detailed compar-
ison between cosimulation and FPGA implementation results are presented in
Section 5.2.

Traditional ways can also achieve the maximum instruction rate of 1 in-
struction/cycle, such as implementing the point operations in FSM or using a
microcoded controller with preset microcodes [Sakiyama et al. 2006].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

6: 12 . X. Guo and P. Schaumont

Execution time of Single-PicoBlaze ECC for one scalar multiplication

MicroBlaze: “X SCALAR MUL_ST X_IDLE
sys_clk __| |_| |_| |_| |_| |_’ |_| I__| |_’ |_’ |_’ |_’ |_| I__| I_I
Single-PB: ins Y X 10R2MR Y 10R2MDR X_ MUL_ST X WAIT MUL_FIN X_IOR2MR X_ADD ST X \

Execution time of Dual-PicoBlaze ECC for one scalar multiplication—>|

MicroBlaze: “X SCALAR MUL_ST Y IDLE
N O e I I o OO O B
PBO: insO { X 10R2MR X MUL_ST X WAIT MUL FIN X I:xDD ST X \/\
PB1: insl A\ X IORZMDR X WAlTﬁMULiFI_l‘jW_X 10R2M§"R_X Y

WAIT_MUL_FIN
One Field Multiplication One Field
Addition

Dual-PB: ins

A}

Fig. 6. An example of interleaving PicoBlaze instructions.

Compared with the first approach using FSMs, our Dual-PicoBlaze archi-
tecture is more flexible and efficient. In general, the field operations can be
very fast (a digit-serial multiplier with D size of 82 can finish one 163 bit field
multiplication in 2 clock cycles) and a big performance gain of the whole under-
lying ECC system can only be obtained if new point operation algorithms with
faster point operations are proposed. In this case, by fixing the lowest level
field operations in hardware, updating an ECC system is just replacing the
software assembly codes in PicoBlaze with the new point operation algorithms
without the need to rewrite the HDLs. In Hankerson et al. [2004], more than
10 point multiplication algorithms are compared and the research in this direc-
tion is still very active. In addition, this method can also enable the integration
of the latest countermeasures against side-channel attacks into the algorithm
for scalar multiplication. In Guo et al. [2009], we have already shown a fea-
sible way to resist most existing passive and active attacks on ECC by using
a collection of algorithm-level countermeasures based on this programmable
architecture.

Compared with the second approach using microcoded controller, the Dual-
PicoBlaze architecture is much easier to be programmed. The microcoded
controller needs sometimes complex dedicated controller with FSMs to dis-
patch instructions. Based on the Dual-PicoBlaze architecture we can simply
use several PicoBlaze instructions to achieve efficient communication and syn-
chronization with the hardware decoder without additional logic.

4.4 Scalability

For scalability, we mainly discuss about the parallelism inside of our proposed
ECC coprocessor architecture. Two levels of parallelism can be explored so that
two operation modes have been defined:

1. Application-Level Parallel ECSM. Different parallel ECC datapaths can
calculate different K - P and return separate scalar multiplication results.

2. Algorithm-Level Parallel ECSM. The scalar is firstly split into several
parts using the fixed window scalar splitting algorithm [J4rvinen and Skytta

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

Optimized System-on-Chip Integration of a Programmable ECC Coprocessor . 6: 13

...... = [teration Starts

on CPU
Send K, ECSM on ECC datapath_1
[on Coprocessor
Send K, ECSM on ECC datapath 2
Send Ky ECSM on ECC datapath N | Iteration Ends <&
Receive (X1, Y1) [Receive (X, Ya) [= o e e veveveees Receive (Xx, Yx)

Fig. 7. Exploration of the application-level parallelism within the proposed generic coprocessor
architecture.

2008]; then different parallel ECC datapaths calculate the partial scalar multi-
plication with final point additions to sum all the partial scalar multiplication
results from each ECC datapath.

Given the flexibility of the PicoBlaze local control hierarchy, switching the
computation mode from Application-Level Parallel ECSM to Algorithm-Level
Parallel ECSM, we can just modify the PicoBlaze assembly codes in each data-
path without any hardware change.

Application-Level Parallel ECSM. Our proposed ECC coprocessor archi-
tecture is scalable for parallel implementations because of three design
considerations: 1. distributed data processing makes each ECC datapath be
independent to each other; 2. local storage makes all the initialization parame-
ters and intermediate results be stored locally without data transfers through
bus; 3. additional hierarchy of control makes point operation instructions be
sent from the local control, instruction sequencer. In summary, the ECC data-
path can execute scalar multiplication almost independent of the bus selec-
tions and CPU, and once the CPU send the scalar K to each ECC datapath to
initialize the computation, the datapath will work automatically and turn out
the right results. The maximum number of independent ECC datapath which
can be attached to the CPU instruction decoder is dependent on the bus la-
tency. Therefore, CPU can control one ECC coprocessor with N datapaths, and
N point multiplications can be performed at the same time.

According to the iteration structure shown in Figure 7, we can derive an
equation to express the relation between the maximum number of parallel ECC
datapaths and bus latency. The basic idea is to overlap the communication
time with the computation time. We assume the bus latency is Tg,, cycles
per transfer, and scalar K and results (X, Y) each needs the same M times bus
transfers (including both instruction and data transfers), and the ECSM on
one ECC datapath requires Tony, cycles to complete, so the effective maximum
number, N4, of parallel ECC datapath can be expressed as

Niax = (Tcomp/MTdelay) + 1. (2)

From Figure 7, we can observe that the results from the first datapath are
ready to be sent back just after the datapath_N,,,, receives the K. Due to

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

6: 14 . X. Guo and P. Schaumont

this parallel architecture, we can get the fastest implementation with Toue min
cycles, where

Tavg_min =3M Tdelay~ (3)

From Equation (3), we can observe that for the fastest ECC coprocessor con-
figuration with maximum number of parallel ECC datapaths, the minimum
computation time in average is only related to the bus latency. Also, we can
have trade-off designs between area and speed with different number of paral-
lel ECC datapaths to fit for different embedded applications, and then we can
get the computation time in average, Tyyg, as

2N + DMT ety + Teomp
N .

Algorithm-Level Parallel ECSM. If we assume that a fixed polynomial is
used with fixed base point, the algorithm-level parallelism inside of one scalar
multiplication can also be explored. We can apply a fixed window scalar split-
ting algorithm [Jarvinen and Skyttd 2008] based on our parallel ECC architec-
ture with multiple datapaths.

If the scalar K has m bits, it can be split into N blocks using predefined
windows with a size of w. Here N can be the number of parallel datapath and
w is equal to [m/N7. Then, the scalar K is decomposed into several parts with
K1 consists of the w least significant bits (LSB) of K, K2 contains the next w
bits, etc. The base point Pj for each segment of K can be pre-computed because
the window sizes are fixed,

Tavg = (4)

Pj=20"vp, (5)

The overhead of precomputing Pj can be neglected because the base point P
is assumed to be fixed in most ECC applications. After the computation of each
parallel ECC datapath for Kj-Pj, point additions will be followed to obtain the fi-
nal results of K-P. As a case study of two datapaths shown in Figure 8, the fixed
window scalar splitting algorithm is used to split the scalar K into two parts,
K1 and K2, and compute them on two datapaths in parallel with precomputed
base points, P1 and P2. Only one final point addition is performed to calculate
the sum of the two intermediate scalar multiplication results, K1 - P1 and
K2 . P2. We can also clearly see that when switching the mode from
Application-Level Parallel ECSM, we may just add PicoBlaze instructions for
one point addition in Affine Coordinate on the first datapath and two instruc-
tions on the second datapath for moving the partial ECSM results to the first
datapath.

5. DESIGN FLOW AND IMPLEMENTATION

5.1 FPGA Implementation

Using the GEZEL cosimulation environment we can translate the GEZEL
description of the ECC datapath and control wrappers into synthesizable
VHDL, which can be then added as coprocessors in the Xilinx Platform Studio
(XPS) 10.1.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

Optimized System-on-Chip Integration of a Programmable ECC Coprocessor . 6: 15

|
CPU | CPU INS Decoder ECC Datapath_1 ECC Datapath_2
Split K =K1 + K2 |

|

|

|

|

Pre-computed base points:
P1 and P2
Send (K1, P1)

(K2, P2) \ (K1, P1)

|

|

I

I

I

|

\

[[(K2, P2)
! !

:

|

I

I

Send (K2, P2) \I\h &1, P1)
|
|
|
|
|
| if K1i=1
: ! loop for Madd, Mdouble
| Projective I| K1.P1 else if K2i=1 oo £
| Coordinate | Madd, Mdouble Madd, Mdouble oop for
| ! XY clse K2.P2
: I Madd, Mdouble
! [MXY
: I Wait until both datapaths complete
| D K1.x | Send K2 to DPI
I | Kly © Send K2.y to DP1
| g
| Affine | Point Addition in
| Coordinate | Affine Coordinate |
I L
| |
|
|
|

/ Kby
KPx .
Receive Res.x / KP.y I

Receive Res.y |

|
!
KP.x |
|
|

Fig. 8. Parallel scalar multiplication with fixed window scalar splitting method.

The SoC system shown in Figure 9 is built on the Xilinx Virtex-5 XC5VLX50
ML501 development board. A hardware timer is added for measuring the cycle
counts for each design configuration.

Based on the discussion in Section 4.4, the timing profiling of parallel imple-
mentations of multiple ECC datapaths based on Processor Local Bus (PLB) on
Xilinx FPGA platform can be found in Table III.

The Processor Local Bus (PLB) interface is a memory-mapped interface
for peripheral components with typical bus transfer latency, Tgeqy, of 9 clock
cycles. For the above timing profiling, we just consider the ideal case for
data/instruction transfers without any software overhead (e.g., function calls),
so the estimated value is from the theoretical point of view. For instance, to
finish one 163 bit scalar multiplication and transfer results back to CPU, in the
minimum average time, Tyg min, 0of 540 clock cycles is very appealing; however,
the maximum parallel implementation of 139 ECC datapaths with digit-serial
multiplier of D82 is impractical. Still, we can find reasonable trade-offs through
Equation (4).

5.2 Discussion of Experimental Results

To make fair comparisons with other designs we only use the results of ECC
coprocessor design with single datapath. From the deterministic and cycle-
accurate GEZEL cosimulation, we can obtain both of the stand-alone hardware

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

6: 16 . X. Guo and P. Schaumont

Runtime Programmable & Parallel ECC Coprocessor

MUL ESMIL g { MUL
Function Descriptions: SQR SQR
ADD | |o oo o . @ | ADD
r SW Driver: send scalar K and receive - =
results Register @ Register
System ; Array 7 T Array

“HW/SW IF: PLB IPIF

PicoBlaze 1.a ECC PicoBlaze N.a ECC
“ee
PicoBlaze_1.b Datapath_1 PicoBlaze_N.b |i Datapath N

rINS Decoder: perform data transfers (Loc. Controller) for K, (Loc. Controller) for Ky
ECC | PicoBlaze generate instructions for t t t t
Coprocessor| Loc. Controller: point operations

L Datapath: field arithmetics

=

STO
MicroBlaze @
(Main Controller)
Software Driver | MicroBlaze Instruction Decoder |
[Xilinx IPIF |
I A
A Processor Local Bus (PLB) A

Fig. 9. The structure of our proposed parallel ECC coprocessor.

Table ITI. Timin Profiling of Parallel Implementations of the Proposed ECC Coprocessor

Telay M Teomp w/D82 Nz /D82 Tavg min
Micro Blazew/PL B 9 20 24,698 139 540

design profiles and the system profiles (e.g., cycle counts and toggle counts).
This is very helpful for system designers to get performance evaluation at a
very early design stage and accelerate their design space exploration.

As indicated in Figure 10, for the Scheme B with only local storage, the two
systems are limited by the throughput of the PLB bus. For example, for the
FPGA implementation with the PLB bus latency of 9 clock cycles, if a field
multiplication in hardware can finish in 9 clock cycles (e.g., 8 clock cycles for
digit-serial multiplier of D size of 24), the speedup of standalone field multi-
plication brought by D-sizes beyond 24 become invisible. For the results for
Scheme C with a Single-PicoBlaze local controller, we can observe a continu-
ous speedup when the coprocessor uses a faster multiplier, from a bit-serial
multiplier to a digit-serial multiplier of D-size 82. Compared to the results of
Scheme B, the communication bottleneck has disappeared as we can observe
a speedup of 1.2 for the coprocessor with D-size 82 over the one with D-size
of 16. Since the control hierarchy optimization by introducing PicoBlaze also
features small hardware overhead, from Figure 11 we can see our proposed
Dual-PicoBlaze based design can achieve the best trade-off design with D size
of 28.

In order to make a fair comparison with other published results, we also syn-
thesize our ECC coprocessor design with single datapath based on Virtex-2 Pro
XC2VP30 FPGA. As shown in Table IV, our Dual-PicoBlaze based ECC (with
maximum frequency around 136 MHz on XC2VP30-FF896-7C) shows a better

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

Optimized System-on-Chip Integration of a Programmable ECC Coprocessor . 6: 17

450000 -

400000 N\ B Sch. B
& —2-Sch. C w/ Dual-PB
—pd— Sch. C w/ Single-PBJ-—

350000

300000

250000 +-

200000

Cycle Counts

150000

100000

50000

0

——
4 DS DI6 D24 D28 D33 D41 D55 D82
Multiplier Digit Size

FPGA Implemenation

o]
17}
|
S
| -
&
w2

Fig. 10. Cycle counts of FPGA implementations of each configuration of coprocessors for one full
scalar multiplication.

9.00E+008 ,—J.L /&

5.00E+008 /g\g/ ;

—%—Sch. B
~#4- Sch. C w/ Dual-PB
—bd— Sch. C w/ Single-PB

4.00E+008

3.00E+008

2.00E+008

1.00E+008

Area-Time Products (slices x cycles)

0.00E+000

gl

i
T T T T T l
BS D2 D3 D4 D8 DI6 D24 D28 D33 1 D55 D82

Multiplier Digit Size

Fig. 11. Comparison of time-area products for each configuration of coprocessors.

trade-off between cost and performance: compare our fastest design with ref. 2,
it gains 13.4% speedup; compare our best trade-off design with ref.1 and ref.2,
its area-time product is 60.4% and 63.7% smaller. Although the current version
of Dual-PicoBlaze design does not support arbitrary field size and superscalar
as Sakiyama et al. [2006], it still offers an ideal alternative since in most cases
the arbitrary field size is not required. This is especially true for reconfigurable
computing since the hardware complexity resulted from supporting arbitrary
field size in traditional ASICs can be replaced with multiple configuration bit-
streams and dynamic reconfigurations. The optimizations of ECC SoC design
can be done in several levels (e.g., architecture, algorithm, and circuit) and the
results shown here might not be the optimal ones even in terms of the area-
time product since the performance optimization focus in this paper only lies
on the architectural-level.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

6: 18 . X. Guo and P. Schaumont

Table IV. Comparison of ECC Coprocessor Implementations on Xilinx XC2VP30 FPGA

Field Platform Slices Cycle Field Comments
Counts Size

Dual-PB w/ D28 G F(2163) V2Pro 5,158 29,897 Fixed Best trade-off
Dual-PB w/ D82 GF@2'%3) V2Pro 8,944 24,689 Fixed Fastest
ref.1 in [Sakiyama

et al. 2006] G F(2163) V2Pro 4,749 48,800 Arbitrary 1xMALU163
ref.2 in [Sakiyama

et al. 2006] GF(2'%) V2Pro 8,450 28,000 Arbitrary 2xMALU163

Table V. Parallel ECC Coprocessor Implementations on Xilinx XC5VLX50 FPGA

Field Slices Cycle Field Modes
Counts Size
Dual-PB
Single-DP w/ BS GF(2163) 1,261 234,985 Fixed Normal Operation
Dual-PB
Single-DP w/ D82 GF(2163) 3,522 24,689 Fixed Normal Operation
Quad-PB

Dual-DP w/ BS GF(2163) 2179 117,972 TFixed Application-Level Parallel
Quad-PB

Dual-DP w/ D82 GF(2163) 6,585 12,824 Fixed Application-Level Parallel
Quad-PB

Dual-DP w/ BS GF(2163) 2179 204,390 Fixed Algorithm-Level Parallel
Quad-PB

Dual-DP w/ D82 GF(2163) 6,585 19,461 Fixed Algorithm-Level Parallel

In order to show the scalability of our architecture, we also compare the
design with Dual-PicoBlaze Single-Datapath ECC design with the Quad-
PicoBlaze Dual-Datapath ECC designs under different operation modes. We
select two extreme coprocessor configurations, the smallest (with bit-serial
multiplier, BSMUL) and the fastest (with D82), for detailed comparison. For
the results shown in Table V, the cycle counts for Application-Level Parallel
ECSM mode are the average speed for two ECSMs in parallel. For the results of
algorithm-level Parallel ECSM, the speedup over the Dual-PB Single-DP based
design is not as good as in [Jarvinen and Skyttd 2008] because different finite
field inversion algorithms are used (Fermat’s little theorem vs. Itoh-Tsujii [Itoh
and Tsujii 1988]). However, these experimental results still effectively demon-
strate the capability of our proposed architecture to switch operation modes by
just revising the PicoBlaze assembly codes.

Besides performance, cost efficiency and flexibility, using PicoBlaze as con-
trol hierarchy can also enhance the side-channel attack resistance. The use of
L-D Montgomery scalar multiplication is already useful as a countermeasure
since it performs exactly one Madd and one Mdouble operation for each bit of
the scalar K. Consequently, the total number of Madd/Mdouble operations de-
pends only on the bit length of K, but not on its Hamming weight. This property
helps to prevent certain side-channel attacks like simple power analysis (SPA)
attacks and timing attacks [Coron 1999]. By using PicoBlaze to implement
point operation we can add dummy instructions or field computations with pre-
dictable timings to further adjust the balance of the power or timing of either

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

Optimized System-on-Chip Integration of a Programmable ECC Coprocessor . 6: 19

Sample Bits of Secrete Scalar K
A

no" e non e no" e non e " e
43.5 ps |-— 43.5 ps

FPGA Power Measurements

Time

Fig. 12. SPA attacks on FPGA implementation of our proposed ECC coprocessor.

branch of Madd/Mdouble operations. Figure 12 shows the real power mea-
surement on the implementation of our proposed Dual-PicoBlaze based ECC
coprocessor with single datapath and bit-serial multiplier on the Xilinx Vir-
tex2Pro XC2VP7 FPGA based on a SASEBO-G board. From the power traces,
it is observed that it is impossible to distinguish the 1 bit from 0 bit of scalar K,
which can prove that our design also shows good SPA attack resistance. Since
this ECC coprocessor is programmable, new algorithm-level countermeasures
can be uploaded to the coprocessor without hardware modifications. In Guo
et al. [2009], we have already demonstrated that based on the programmable
and parallel ECC coprocessor architecture described in this work we can resist
a number of passive and active attacks by just changing the PicoBlaze assem-
bly codes with novel algorithm-level countermeasures.

6. CONCLUSIONS

ECC SoC designs may become performance limited due to coprocessor
data- and instruction-transfer bottleneck. The introduction of local storage
and control hierarchy into the ECC coprocessor datapath can greatly reduce
the communication overhead faced by traditional centralized control scheme.
Starting from the system profiling of ECC codesigns using cosimulation, we
tried to not repeat the conventional optimization techniques on bus communi-
cation, but instead explore new system architectures with multiple control hi-
erarchies. This results in the Single-PicoBlaze based ECC coprocessor design
and further into the Dual-PicoBlaze based design with the maximum instruc-
tion rate of 1 instruction/cycle. For flexibility, the PicoBlaze controller allows us
to configure its instruction RAM and update the coprocessor with the newly de-
veloped scalar multiplication algorithms and security countermeasures. Scal-
able application-level parallelism and algorithm-level parallelism can also be
explored to achieve tradeoff designs between area and speed. With flexibility,
ease of integration of multiple PicoBlazes into current FPGA systems and pre-
dictable performance, the proposed parallel ECC coprocessor architecture can
not only be extended to other curve-based cryptography systems, but also to
some other similar computationally intensive embedded applications.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

6: 20 . X. Guo and P. Schaumont

ACKNOWLEDGMENTS

The authors would like to thank the Xilinx University Program and National
Institute of Advanced Industrial Science and Technology (AIST) of Japan for
their hardware support.

REFERENCES

AIGNER, H., BOoCK, H., HTTER, M., AND WOLKERSTORFER, J. 2004. A low-cost ecc coprocessor
for smartcards. In Proceedings of the Conference on Cryptographic Hardware and Embedded
Systems. Springer, Berlin, 107-118.

BATINA, L., HWANG, D., HODJAT, A., PRENEEL, B., AND VERBAUWHEDE, I. 2005. Hardware/
software co-design for hyperelliptic curve cryptography (hecc) on the 8051 p. In Proceedings of
the Conference on Cryptographic Hardware and Embedded Systems. Springer, Berlin, 106-118.

CHEUNG, R. C. C., LUK, W., AND CHEUNG, P. Y. K. 2005. Reconfigurable elliptic curve cryp-
tosystems on a chip. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE’05). IEEE Computer Society, Los Alamitos, CA, 24—29.

CORON, J.-S. 1999. Resistance against differential power analysis for elliptic curve cryptosystems.
In Proceedings of the 1st International Workshop on Cryptographic Hardware and Embedded
Systems (CHES’99). Springer-Verlag, 292-302.

GROBSCHADL, J. 2001. A low-power bit-serial multiplier for finite fields gf(2™). In Proceedings of
the 34th IEEE International Symposium on Circuits and Systems. IEEE, 37-40.

GUO, X. AND SCHAUMONT, P. 2009. Optimizing the control hierarchy of an ecc coprocessor
design on an fpga based soc platform. In Proceedings of 5th International Workshop on Applied
Reconfigurable Computing. Springer-Verlag, Berlin, 169-180.

GUoO, X., FAN, J., SCHAUMONT, P., AND VERBAUWHEDE, I. 2009. Programmable and parallel
ecc coprocessor architecture: Tradeoffs between area, speed and security. In Proceedings of the
Workshop on Cryptographic Hardware and Embedded Systems (CHES’09). Springer, 289-303.

GURA, N., SHANTZ, S. C., EBERLE, H., GUPTA, S., GUPTA, V., FINCHELSTEIN, D., GOUPY,
E., AND STEBILA, D. 2003. An end-to-end systems approach to elliptic curve cryptography. In
Revised Papers from the 4th International Workshop on Cryptographic Hardware and Embedded
Systems (CHES’02). Springer-Verlag, 349-365.

GURA, N., PATEL, A., WANDER, A., EBERLE, H., AND SHANTZ, S. C. 2004. Comparing elliptic
curve cryptography and rsa on 8-bit cpus. In Proceedings of the Conference on Cryptographic
Hardware and Embedded Systems. Springer, Berlin, 925-943.

HANKERSON, D., MENEZES, A., AND VANSTONE, S. 2004. Guide to Elliptic Curve Cryptography.
Springer-Verlag, Berlin.

HEMPEL, G. AND HOCHBERGER, C. 2007. A resource optimized processor core for fpga based
socs. In Proceedings of the 10th Euromicro Conference on Digital System Design Architectures,
Methods and Tools (DSD’07). IEEE Computer Society, Los Alamitos, CA, 51-58.

HODJAT, A., HWANG, D., BATINA, L., AND VERBAUWHEDE, 1. 2005. A hyperelliptic curve crypto
coprocessor for an 8051 microcontroller. In Proceedings of the 19th IEEE Workshop on Signal
Processing Systems. IEEE, 93—98.

IToH, T. AND TSUJII, S. 1988. A fast algorithm for computing multiplicative inverses in gf(2™)
using normal bases. In Information and Computation. Academic Press, Inc., 171-177.

JARVINEN, K. AND SKYTTA, J. 2008. On parallelization of high-speed processors for elliptic curve
cryptography. IEEE Trans. VLSI Syst. 1162-1175.

KoBLIiTZ, A. H., KOBLITZ, N., AND MENEZES, A. 2008. Elliptic curve cryptography: The
serpentine course of a paradigm shift. http:/eprint.iacr.org/2008/390.

KoOBLITZ, N. 1987. Elliptic curve cryptosystems. Mathematics of computation. Math. Comput. 48,
177, 203-209.

KOBLITZ, N. 1990. A family of jacobians suitable for discrete log cryptosystems. In Proceedings of
the 8th Annual International Cryptology Conference on Advances in Cryptology (CRYPTO’88).
Springer-Verlag, 94-99.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

Optimized System-on-Chip Integration of a Programmable ECC Coprocessor . 6: 21

KOSCHUCH, M., LECHNER, J., WEITZER, A., GROBSCHADL, J., SZEKELY, A., TILLICH, S., AND
WOLKERSTORFER, J. 2006. Hardware/software co-design of elliptic curve cryptography on
an 8051 microcontroller. In Proceedings of the Conference on Cryptographic Hardware and
Embedded Systems. Springer, Berlin, 430-444.

KUMAR, S. AND PAAR, C. 2004. Reconfigurable instruction set extension for enabling ecc on an
8-bit processor. In Proceedings of the Conference on Field Programmable Logic and Application.
Springer, Berlin, 586-585.

KUMAR, S., WOLLINGER, T., AND PAAR, C. 2006. Optimum digit serial gf(2") multipliers for
curve-based cryptography. IEEE Trans. Comput. 55, 10, 1306-1311.

LOPEZ, J. AND DAHAB, R. 1999. Fast multiplication on elliptic curves over gf(2™) without
precomputation. In Proceedings of the 1st International Workshop on Cryptographic Hardware
and Embedded Systems (CHES’99). Springer-Verlag, 316-327.

MILLER, V. S. 1986. Use of elliptic curves in cryptography. In CRYPTO’85: Advances in Cryptology.
Springer-Verlag, 417-426.

NIST. 2000. Digital signature standard. FIPS PUB 186-2 Federal Information Processing
Standard. NIST.

ORLANDO, G. AND PAAR, C. 2000. A high performance reconfigurable elliptic curve processor
for gf(2™). In Proceedings of the 2nd International Workshop on Cryptographic Hardware and
Embedded Systems (CHES’00). Springer-Verlag, 41-56.

RODRIGUEZ-HENRIQUEZ, F., SAQIB, N. A., Diaz-PEREZ, A., AND Koc, C. K. 2006. Crypto-
graphic Algorithms on Reconfigurable Hardware (Signals and Communication Technology).
Springer-Verlag.

SAKIYAMA, K., BATINA, L., PRENEEL, B., AND VERBAUWHEDE, I. 2006. Superscalar coprocessor
for high-speed curve-based cryptography. In Proceedings of the Conference on Cryptographic
Hardware and Embedded Systems. Springer, Berlin, 415-429.

SCHAUMONT, P., CHING, D., AND VERBAUWHEDE, I. 2006. An interactive codesign environment
for domain-specific coprocessors. ACM Trans. Des. Autom. Electron. Syst. 11, 1, 70-87.

Received April 2009; revised November 2009; accepted January 2010

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 1, Article 6, Pub. date: December 2010.

