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Abstract—Software intellectual property (SWIP) is a critical
component of increasingly complex field programmable gate
arrays (FPGA)-based system-on-chip (SOC) designs. As a result,
developers want to ensure that their Software Intellectual Prop-
erty (SWIP) is protected from being exposed to or tampered with
by unauthorized parties. By restricting the execution of SWIP to
a single trusted FPGA platform, SWIP binding addresses devel-
opers’ concerns about maintaining control of their intellectual
property and the market position it affords.

This work proposes a novel design flow for SWIP binding on a
commodity FPGA platform lacking specialized hardcore security
facilities. We accomplish this by leveraging the qualities of a Phys-
ical Unclonable Function (PUF) and a tight integration of hard-
ware and software security features. A prototype implementation
demonstrates our design flow’s ability to successfully protect soft-
ware by encryption using a 128 bit FPGA-unique key extracted
from a PUF. Based on this proof of concept, a solution to perform
secure remote software updates, a common challenge in embedded
systems, is proposed to showcase the practicality and flexibility of
the design flow.

Index Terms—Design flow, firmware, field programmable gate
arrays (FPGA), intellectual property, physical unclonable func-
tion, secure embedded systems, security, software binding.

I. INTRODUCTION

E MBEDDED systems and system-on-chip (SOC) designs
based on field programmable gate arrays (FPGA) are be-

coming increasingly complex in nature, requiring sophisticated
software development. As a result, developers need to protect
their Software Intellectual Property (SWIP) from counter-
feiting, reverse engineering, and tampering. This is highlighted
by the estimated 5%–10% of high technology products [3],
[26], [29] on the market that are counterfeit, a trend which
continues to increase [27], [28]. However, the threat faced by
developers goes far beyond an initial reduction in sales. Infe-
rior counterfeit products may perform poorly or malfunction,
sometimes catastrophically, resulting in increased service and
recall costs [30], [31]. Worse still, are instances of legitimate
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Fig. 1. SWIP binding to a platform comprised of HWIP and an FPGA.

products containing malicious software [32], [33] introduced
through tampering or reverse engineering. Scenarios such as
these can rapidly erode customer confidence in a developer
resulting in untold damage to their market position.

In FPGA design, hardware intellectual property (HWIP)
is defined as the soft-core (synthesized from HDL) hardware
modules stored in the FPGA configuration bitstream (herein
referred to as bitstream). The FPGA design can be protected
by means of bitstream encryption, an option offered by sev-
eral FPGA manufacturers. However, bitstream encryption is
not a comprehensive solution. When the FPGA configura-
tion contains programmable components (such as a soft-core
processor), the SWIP implemented on top of that soft-core
processor requires separate protection.

One solution to address this issue is to encrypt the SWIP and
restrict its execution to a specific FPGA. We use the term “Soft-
ware Intellectual Property Binding” to express this. Two compo-
nents are considered in such a solution: the SWIP and the hard-
ware platform.SWIP binding ensures that the SWIP will function
only when it’s deployed on an authentic platform, which includes
an authentic (designated) FPGA and a valid (designated) HWIP.
Fig. 1 illustrates that the SWIP only functions correctly when an
authentic HWIP and a valid FPGA are present, such as with plat-
form 2.Platform 3 failsbecause the FPGAdevice isnot authentic,
while platform 1 fails because the HWIP is not valid. The identity
of a design is thus formed by the combination of a FPGA and a
HWIP. In this work, we propose an end-to-end design flow for
binding a SWIP to a design based on a commodity FPGA.

SWIP binding can be achieved using costly mechanisms such
as secure ROM or flash memory to store FPGA specific cryp-
tographic keys. However, this is not only expensive but rules
out many commodity and legacy systems as well as being vul-
nerable to attack [8], [9]. In this work, we instead utilize the
ability of a PUF to generate a FPGA-unique secret volatile key
to achieve SWIP binding. As a PUF can be deployed securely
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in the fabric of a FPGA, our solution avoids the need for costly
specialized hardware, and as a result, is suitable for commodity
FPGA.

Our main contributions in this paper are as follows.
• To propose a complete, end-to-end design flow to bind a

SWIP to a FPGA utilizing a PUF.
• To develop necessary tools for the proposed design flow

such as the Intellectual Property Encryptor (IPE) and an
obfuscated ROM.

• To demonstrate a complete prototype implementation
using our design flow to prove the validity of our idea. To
our knowledge, this is the first work to demonstrate such
an implementation.

• To propose a secure remote software update scheme for
embedded systems utilizing our design flow as a basis to
showcase its practicality and flexibility.

The remainder of this paper is organized as follows. Section II
provides an overview of related work. Our proposed design flow
is presented in Section III. In Section IV, the supporting hard-
ware architecture is described. We present a security analysis
of our design flow in Section V. Our design metrics and results
are evaluated in Section VI. Section VII presents our proposed
scheme for secure remote software updates based on our design
flow. Finally, we conclude this paper in Section VIII.

II. RELATED WORK

Software intellectual property binding seeks to limit the
execution of SWIP to a particular authorized device or system
[15]. Similar to other forms of intellectual property protection,
the main goal of this restriction is to prevent the unauthorized
duplication or reverse engineering of software. Numerous
protection schemes have been proposed to address this issue
including watermarking, tamper-resistance, and obfuscation
[16]. Tamper resistance allows a program to validate its own in-
tegrity and to cease operation if it has been modified [17]–[19].
Watermarking incorporates a developer signature into a pro-
gram to detect intellectual property theft and reuse [20], [21].
Obfuscation transforms a program in such a way that it is
hard to reconstruct the source or assembly code from a static
program image [22], [23]. However, when these approaches
are deployed purely in a software context, they are vulnerable
to virtualization techniques [15] and exploitable features in
modern processors such as virtual memory support [24]. To ad-
dress this issue, a protected execution environment is necessary
for many of these techniques.

Any system attempting to provide a protected environment
for storage and execution of software must operate as a trusted
device. This concept of trusted computing is implemented by the
Trusted Computing Group’s (TCG) Trusted Platform Module
(TPM) [2]. A TPM functions by providing a secure hardware
medium for storage and generation of keys or certificates, mech-
anisms for monitoring a processor, and identifying a system.
This concept of a secure platform is further expanded by AEGIS
architecture proposed by Suh et al. [25]. AEGIS provides for
a single-chip processor with built-in tamper resistance and de-
tection as well as dedicated cryptographic components. Alter-
natively, Lee proposes a Secret Protected (SP) architecture [35]
which unlike AEGIS or TPM represents a paradigm shift, where

data is tied to a user rather than a particular device. The SP archi-
tecture is an attractive solution as its operation is primarily soft-
ware driven by a Trusted Software Module (TSM). However,
to ensure the TSM’s integrity a processor must support a Con-
cealed Execution Mode (CEM) that isolates TSM functionality
and that contains volatile cryptographic keys. The hardware sup-
ported CEM allows the TSM to perform a trusted bootstrap,
as proposed in [2], [36], [37], and verify the TSM binary and
system state. Such a hardware assisted bootstrap mechanism is
considered critical to establish a trusted execution platform that
is robust against a variety of attacks.

Lie et al. [48] provides an alternative trusted execution plat-
form through the concept of execute only memory (XOM). The
XOM architecture ensures certain private portions of memory
once written are only executable and can’t be modified or read.
However, like AEGIS and SP, XOM requires a specialized hard-
ware implementation and a shift from traditional architectures.

This work relies on a PUF as the root of trust. A PUF is a plat-
form-unique function which, when supplied with an input chal-
lenge, produces an output response. The response is determined
by the behavior of a complex, unclonable physical system, such
as the delay variation of logic and interconnects in an FPGA
due to manufacturing process variations. It can be used to au-
thenticate chips and generate a volatile secret key required for
cryptographic operation without the need of an expensive non-
volatile memory [1]. It is also useful in SWIP protection [3] as
well as in securing private information in many applications.

Several different types of PUF have been proposed so far.
A ring-oscillator (RO)-based PUF [1] is of particular note
among them because of its easy implementation on the FPGA.
The complex nature of an FPGA [14] provides a platform to
deploy traditional forms of intellectual property protection
such as tamper-resistance and obfuscation. By coupling a PUF
with these techniques, we can provide an efficient platform for
binding SWIP to an FPGA.

In the work of Guajardo et al. [12], a SRAM-based PUF pro-
tection mechanism is proposed for securing HWIP modules. In
contrast, our work focuses on protecting SWIP and provides
a demonstration system that explores generation and encryp-
tion of the protected SWIP. In addition, we also provide a de-
tailed mechanism that addresses how to perform the parsing,
decryption, and loading of encrypted SWIP sections. Guajardo
assumes the existence of such a hardware mechanism and does
not go into detail about the nature of such a component.

An updated Aegis architecture has been proposed in [13] for
secure software execution using PUF. That work proposes the
use of PUF for runtime memory-integrity through the use of
hash trees. Our approach addresses configuration of SWIPs, and
shows how to authenticate them onto an FPGA fabric.

III. SWIP BINDING DESIGN FLOW

We propose a generic design methodology that aims to bind
any SWIP to an FPGA platform irrespective of the class or
vendor of the FPGA.

A. Overview

Our design flow is introduced in the context of the different
phases in FPGA-based system design. In Sections IV–VIII, we
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define the system components, the parties involved in the design
flow, and the model of trust that governs their interactions.

1) System Components: Typically, the end-user only per-
ceives a finished product, while the system developer has three
components to manage.

• FPGA—The physical silicon that the HWIP and SWIP are
deployed on. It might contain a hard core processor or other
specialized hardware such as multipliers.

• HWIP—The soft core processor and other hardware com-
ponents, including the PUF, which are configured into the
FPGA fabric. This is typically the level at which HWIP
protection/binding schemes are implemented, for example
with bitstream encryption [11].

• SWIP—The application that executes on a soft core or hard
core processor in the FPGA (herein referred to as binary).
This software is often stored outside of the FPGA bit-
stream. We target this component for binding to an FPGA.

2) Involved Parties: For the purpose of our design flow, we
define the parties involved in system development and use as
follows.

• FPGA Manufacturer—The manufacturer of the physical
FPGA such as Xilinx or Altera.

• System Developer—The developer of the system on which
the SWIP will run. This may include the physical em-
bedded system or just the HWIP contained on the FPGA.
The system developer handles the creation and application
of the PUF. In certain instances the system developer and
FPGA manufacturer can be the same party.

• SWIP Developer—The developer of the end-user applica-
tions (SWIP) which operate on the FPGA-based embedded
system and it’s HWIP.

• End User—The system customer who will utilize the
system as either a standalone product or as part of a larger
integrated system.

3) Trust Model: The primary concern of the FPGA manu-
facturer is the sale of FPGA hardware. As a result, it is in the
manufacturer’s interest to provide a secure platform that is more
appealing to system or SWIP developers. Likewise the goal of
the system developer is to produce a robust full featured plat-
form to attract the end user. To this end, it is in the system de-
veloper’s interest to provide a secure, tamper resistant, platform
for SWIP developers. The goal of the SWIP developer is to max-
imize revenue from the sale of its SWIP. Thus, the system that
can best provide security against counterfeiting or reverse engi-
neering will attract the best end user applications and generate
better sales. Both the FPGA manufacturer and the system devel-
oper benefit from increased sales and have an incentive to trust
each other. Beyond financial incentives the interleaved nature
of an FPGA-based embedded system requires that the FPGA,
HWIP, and SWIP are considered trusted. To this end we assume
that the bitstream is obfuscated, the SWIP is well written (not
prone to vulnerabilities), that the FPGA is tamper resistant, and
that decrypted SWIP is only stored in internal FPGA memory
(not external RAM). Fig. 2 illustrates these overlapping trust
boundaries by the dashed regions.

Often an end-user is only interested in obtaining the best bar-
gain which can include counterfeit systems or pirated SWIP.
Worse still is the case when the end-user is malicious, actively

Fig. 2. Trust boundary and relationships between system components and de-
velopment parties. Dashed regions which overlap signify trusted relationship
between parties.

Fig. 3. FPGA system design flow from developer to end-user.

seeking to compromise the design for the purposes of reverse
engineering or counterfeiting. We base our design flow on this
adversarial model which is represented in the exclusion of the
end user in Fig. 2. This includes any software that is not directly
bound or verified by the design flow (i.e., belong to the trusted
parties) and may possibly be malicious.

B. Design Overview

Fig. 3 illustrates how we employ our PUF-based SWIP
binding methodology in the context of FPGA-based system
design. The elements in gray represent the major contributions
of our approach and are broadly divided in two parts.

• Before delivery to the end-user, inside the trusted and se-
cure development environment, an FPGA-unique key is ex-
tracted from the PUF in a process called enrollment. The
SWIP is then bound to the FPGA by encrypting it using the
PUF key with the help of a custom encryption tool.

• After delivery to the end-user, when the FPGA boots up, a
security kernel (SK) extracts the PUF-based key from the
FPGA to decrypt the encrypted SWIP for execution.

The FPGA, its configuration bitstream (including the PUF
and HWIP) and the protected binary (including the encrypted
SWIP and the SK) constitute the final product to the end-user.
It is critical to prevent an attempt to modify the components of
the delivered product for the purpose of extracting the PUF key.
To solve this problem, we implemented an integrity mechanism
which is discussed in detail in Section III-E.
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Fig. 4. SWIP binding encryption process as performed by the PC-based IPE.
PUF software interface is denoted by the asterix � �.

C. SWIP Binding

Ideally, all software would be encrypted and verified (hashed)
to prevent any analysis or tampering by an adversary. However,
a system cannot boot from a completely encrypted executable.
Therefore, there must be a mechanism which will first extract
the PUF-based key and decrypt the SWIP before execution can
begin. Though specialized hardware may be employed to per-
form this task, such a system would not only be resource in-
tensive in terms of FPGA area but would also hinder system
flexibility. Instead, a software-based Security Kernel (SK) is in-
troduced that remains unencrypted (plain text). The result is a
system that contains two major types of software. One is the
SWIP and must be encrypted and the other is the SK that re-
mains in plain text.

Fig. 4 shows an unprotected binary containing SWIP and our
SK in the .elf binary format used by many compilers. The mixed
nature of the software in our system requires that encryption is
only performed on certain sections. To facilitate this, we created
a standalone Intellectual Property Encryption (IPE) PC-based
utility that can extract and parse the section headers from the
binary. These headers contain information about the name, lo-
cation, and size of the software in that particular section. The C
attribute functionality is used to specify the name for sections
related to the SK. All other sections, regardless of their content,
are considered SWIP sections. Based on the header information
and our naming convention, the IPE retrieves the SWIP section
from the binary file. A simple hash of the section is performed
and stored within the section before encryption is performed (on
the section and its hash) through 128-bit AES in counter mode
[4] using a key derived from the PUF. The IPE performs the en-
cryption of the entire software binary inside the trusted devel-
opment environment and is itself not deployed to the hardware
system.

Additionally, the IPE inserts plain text information into the
SK including the PUF challenge and the header information.
In the end, a protected binary is produced containing both the
encrypted SWIP and the plain text SK section.

D. Boot Procedure

At boot time, when the protected binary is downloaded to an
FPGA, the SK performs the operations of the IPE in reverse, as
shown in Fig. 5. Utilizing the challenge stored in it by the IPE,
the SK retrieves the PUF key. Next the security kernel parses the

Fig. 5. SWIP binding decryption process as performed by the SK deployed on
the embedded system. PUF software interface is noted by the asterix � �.

encrypted binary using the header information included by the
IPE. Once a section of SWIP is located, it is decrypted using
128-bit AES with the key retrieved from the PUF and the re-
sults stored in the FPGA’s internal memory. To ensure an error
free decryption, the SK performs a simple hash of the decrypted
SWIP section. This value is compared to a hash performed by
the IPE and included at the end of each SWIP section. If the
hash values differ this could indicate a compromised section or
a failed decryption. After decryption is completed and validated,
the SK turns execution over to the SWIP. If all sections of SWIP
are decrypted then the memory occupied by the SK can be real-
located for other uses.

E. Trusted Boot

A key concern during the boot procedure is maintaining the
integrity of the SK and ensuring that only its validated software
executes. This is necessary to ensure that the system boots in a
trusted state and requires that any tampering to the boot or inter-
rupt vectors as well as to the SK software be detected. However,
the drawback of our software-based scheme is that the SK can’t
be trusted because a plain text binary can be read and modified.
As the security kernel is not considered as SWIP, its confiden-
tiality is not of concern. The greater issue is that a compromised
security kernel could be utilized to retrieve the PUF key, and the
decrypted SWIP. We address this issue with the inclusion of an
Integrity Kernel (IK).

1) Integrity Kernel: Validation of the security kernel is the
primary function of the IK. A hashing algorithm is commonly
used to establish the validity of software by comparing the re-
sults of the hash with a reference value. We boot our system in
the IK which runs a hash on the security kernel and validates it
against a reference result. By verifying that it has not been tam-
pered with, the execution can pass to the security kernel, and
then it can begin decryption of the SWIP.

It is imperative that the IK and the boot procedure are secure
against attacks. If an attacker can bypass either the IK or SK
they could potentially execute untrusted software and extract the
key from the PUF. To achieve a trusted boot (Fig. 6), we intro-
duce an obfuscated ROM to provide a tamper resistant storage
mechanism for the IK and all values needed to control the boot
process. This prevents an attacker from subverting or surpassing
the IK which in turn verifies that the SK has not been modified.

2) Obfuscated ROM: An FPGA bitstream is believed to have
an inherent layer of obfuscation. Though LUT configuration
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Fig. 6. Trusted boot procedure through IK verification of the SK.

and BRAM contents can be accessed relatively easily, a com-
plete reverse engineering of the bitstream into a net-list has not
been reported so far [14]. Based on this assumption, an obfus-
cated ROM is implemented using multilevel logic in the FPGA
avoiding direct storage in LUTs or BRAMs. This ROM is used
to securely store the IK binary. Even though the required logic
circuits are implemented using LUTs in an FPGA, the contents
of the ROM cannot be extracted just by reading the contents of
the LUTs. This is because the ROM circuit is formed by a com-
bination of several LUTs which is spread over the FPGA, and
interleaved with other circuit components.

The IK binary includes the IK software, the boot vectors, and
the interrupt vectors. The vectors are included into this binary
to help protect the software execution flow. These values are
hard coded as the content of the obfuscated ROM. Since syn-
thesizing the obfuscated ROM is trivial, modifying the design
of the integrity kernel is not difficult. This helps to maintain the
flexibility of our design flow. However, it is important to main-
tain a low footprint, while implementing the ROM.

3) Hashing Algorithm: Employing an obfuscated ROM is
costly in terms of area and is primarily why it is not used to
deploy the SK. As a result, selection of a compact hashing al-
gorithm with small memory footprint is essential.

Traditional hashing algorithms such as SHA-1 are large due
to the size of their internal state. An alternative solution is the
use of a cipher-based Davies–Mayer hash which allows us to
leverage the compact nature of certain ciphers. XXTea for ex-
ample can be deployed in under 380 bytes in such a configura-
tion [5], [6]. Combined with initialization data and the expected
results of the hash, we are able to implement it in a 512 byte
block of obfuscated ROM.

F. Design Summary

All the software and hardware components, required for our
design flow, are illustrated in Fig. 7 from a developer’s perspec-
tive with shaded figures as main components of our design flow.

Our proposed system is able to achieve a high flexibility for
several reasons. First, we do not rely on any specific hard core
facilities or capabilities in an FPGA. Our design only requires
the ability to deploy a soft core processor. Only the interface
with the hardware PUF would be system specific. Second, by
maintaining the majority of our functionality in software, we
ensure rapid substitution of components such as the PUF, error
correction, and various cryptographic primitives to meet the spe-
cific needs of the developer. Finally, by developing our design
using standard C libraries we ensure compatibility across a wide
array of soft and hard core processors.

Fig. 7. Developers design flow, components specific to SWIP binding are
shaded gray.

Fig. 8. SWIP binding prototype system architecture on a Xilinx Spartan
XC3500E FPGA.

IV. DEMONSTRATION SYSTEM

This section presents a basic proof of concept demonstration
system for our design flow. We assume the binding of a single
SWIP binary to an embedded system during a trusted production
process. The underlying hardware architecture has been selected
with this scenario in mind.

A. FPGA Hardware Architecture

Fig. 8 shows the different components of the hardware ar-
chitecture used for our prototype implementation on a Xilinx
Spartan XC3S500E FPGA. A Microblaze soft core processor
integrates several co-processors attached through a 32-bit pro-
cessor local bus. The PUF is attached as a co-processor to the
Microblaze using a dedicated fast simplex link (FSL). The block
rams (BRAM) are not used as on-chip memory. Instead, the ob-
fuscated ROM is used to achieve secure boot as discussed in
Section III-E. The dotted box in Fig. 7 indicates the boundary
of the FPGA. Anything outside it is an off-chip component, and
is nontrusted.

B. Physical Unclonable Function (PUF)

For our prototype implementation, we used an RO-based PUF
that has been proposed in [1] using several identical ROs. This
PUF exploits random but static manufacturing process varia-
tions in RO frequencies. The PUF output is created by pair-wise
comparison of the RO frequencies. These comparisons can be
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represented as a challenge/response function, where the chosen
ring oscillator pair is the challenge, and the comparison result is
the response. An RO PUF has been selected due to its suitability
for an FPGA implementation.

A single RO circuit is created as a hard macro and instantiated
several times to build the PUF as proposed in [1]. Enrollment of
the PUF, the process of extracting the challenge/response pairs
for the first time, is performed by simple C-program during the
trusted development phase. The encryption keys, required for
SWIP encryption, are derived from the PUF enrollment.

C. Error Correction of PUF

PUF outputs are noisy by nature; a finite number (though low)
of PUF output bits vary over time. However, for cryptographic
operation, a stable key is necessary. Generating noise free keys
from PUF is an active area of research, and several error cor-
rection schemes have been proposed such as [45]. Most of them
require a complex implementation in software and/or hardware.
The main objective in this work is to show the use of a PUF in
the SWIP protection mechanism, and therefore, we have imple-
mented a simple but effective error correction mechanism. By
only selecting the RO pairs that have a relatively high difference
in frequency we can extract a stable key and ignore error prone
RO pairs. The drawback of this scheme is that we are not able to
fully utilize all the ring oscillators for key extraction. However,
other error correction techniques can be employed in a produc-
tion scenario.

V. SECURITY ANALYSIS

At first, we assume that the developer’s environment will pro-
tect both HWIP and SWIP sources, including the PUF design (as
defined in Fig. 2). Based on this assumption, we make an effort
to achieve SWIP binding in the untrustworthy user environment.

The goal of the attacker is to reveal the secret key in order to
decrypt the SWIP. In our method, the PUF-based key remains
internal to the FPGA and never gets exposed, so the attacker
has to try to modify either the software or the hardware plat-
form consisting of the FPGA device and the configured HWIP
in order to determine key. Based on this assumption, we discuss
a few relevant hardware and software security issues.

A. Hardware Analysis

1) Physical Attacks: If a physical attack is mounted on the
FPGA device such as by laser cutting or removing chip layers,
it is believed in current literature that the complex and sensitive
delay behavior of the PUF changes and the key is destroyed.

2) Bitstream Attacks: As our system does not utilize a spe-
cialized bitstream protection scheme, the bitstream containing
the PUF is visible to an attacker. However, due to the complex
nature of an FPGA bitstream; it possesses an inherent layer of
obfuscation. We are well aware that ’security by obscurity’ is not
a solid strategy. We can however point out the relative difficulty
of the problem of bitstream reverse engineering by considering
related work. Most advanced current work can only produce a
flat netlist of design elements from a bitstream [50]. Reconstruc-
tion of the design, and identifying the exact location of the PUF,

requires the attacker to reverse engineer the netlist and restore at
least one level of hierarchy. Additional work in bitstream manip-
ulation for partial reconfiguration shows that such manipulation
requires strict constraints and detailed design knowledge [51].
Hence, also “patching” of the bitstream to leak the PUF key is
not a straightforward activity. We also make the practical obser-
vation that perfect security does not exist. Based on a physical
instance of the chip, a single device can be completely reverse
engineered up to the schematic level [52]. However, such an op-
eration costs a significant amount of money and effort. We thus
believe that at the moment of writing, bitstream reverse engi-
neering is still sufficiently hard and uncommon so that a PUF
itself can serve as a root of trust.

B. Software Analysis

1) Software Integrity: As the SWIP is hashed after decryp-
tion to verify its integrity it is very difficult to modify the pro-
tected binary in any useful way. On the other hand, since the SK
is in plain text, it could be modified. However, the addition of
the IK using the obfuscated ROM prevents the execution of the
SK if it has been altered.

2) Execution of Malicious Code: An attacker could attempt
to subvert a deployed system in such a way that they could ex-
ecute malicious code to extract the key. We prevent such an at-
tack by the application of obfuscated ROM inside the bitstream
which contains the boot/interrupt vectors for the processor as
well as the IK. The IK stored in the obfuscated ROM verifies
the integrity of the SK before it is allowed to execute. Likewise,
the SK decrypts and verifies the integrity of SWIP before it al-
lows it to begin execution. The only way an attacker can then
subvert this protection is by successfully reverse engineering
and altering the bitstream in a meaningful way, attacking the
implementation of the SWIP (buffer overflow, etc.), or directly
attacking physical weaknesses of system hardware. However,
we note in the discussion of our trust model and security anal-
ysis that we assume that the bitstream is obfuscated, the SWIP
is well written (not prone to vulnerabilities), and that the FPGA
is tamper resistant.

3) Other Attacks: Finally, there is the concern for traditional
methods of attacking software at runtime such as buffer over-
flow or exploitation of inherent weaknesses in the software. In
general, SWIP binding can do little to avoid such issues. Rather,
the SWIP that is being protected must be validated as being well
written to avoid such problems. After the initial secure boot, no
guarantees can be made to the state or integrity of the SWIP at
runtime.

C. System Design Tradeoff

As our system is designed to provide a flexible framework
for SWIP binding we only specify the general functionality of
certain components such as the PUF error correction. It is im-
portant that the implementations selected for these system com-
ponents provide adequate security. Specifically, error correction
schemes should not leak information about the key and maintain
a good source of entropy. Similarly, the output of a PUF should
be unique across devices and show a high level of stability [1].
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TABLE I
PUF METRICS

VI. RESULTS

In this section, we present our prototype results, including an
assessment of the system demonstrator, the characterization of
the PUF, and resource usage.

A. Functionality Testing

We have tested our prototype design on five Xilinx Spartan
XC3S500E FPGAs. PUF enrollment was done on all of the
FPGAs to extract their respective 128-bit keys and a single
C-code binary was encrypted using each of these keys to
produce five encrypted binaries. To validate the SWIP binding
functionality, these five binaries were executed individually on
each of the five sample FPGA chips. Each of the FPGAs could
successfully execute exactly one binary with no two of them
being able to execute the same binary.

B. PUF Characterization

We measure two parameters namely uniqueness and relia-
bility to characterize the PUF. We define uniqueness as an esti-
mate of how clearly a PUF can distinguish an FPGA from an-
other. In other words, it estimates the difference between two
keys generated by the PUF on two different FPGAs. Reliability
expresses the stability of a specific response that is produced
by a PUF from an FPGA for a given challenge. A stable PUF
should reproduce the same response with minimum rate of error
for a particular challenge if the challenge is applied to the PUF
multiple times. Table I shows the metrics of the PUF that we
implemented.

The PUF performs with a high reliability, while giving a mod-
erately high value of uniqueness. The reliability figure of 96.7%
is calculated for all 255 pairs of ring oscillators during the PUF
enrollment although a 100% reliable key is generated using the
most stable 128 pairs as described in the PUF error correction
(4.3).

Enrollment requires 90 s to generate a stable key on average.
However, it is a onetime operation. On the other hand the time
required for runtime key extraction is 4 s. We provide these fig-
ures to verify the functionality of our proof of concept system
and refer to Maiti et al. [45] for a more detailed evaluation of
the reliability and stability RO-based PUFs.

C. Hardware Utilization

Table II shows the overall FPGA slice count used for the
whole design is 3678, although the components specific to our
design flow (i.e., the PUF and the ROM) only need 745 slices.

D. Security Software Overhead

As evident from the Table III, the software memory overhead
required for our particular implementation can be considered
sizeable for the overall internal memory of a Spartan XC3S500E
FPGA. However, this implementation is a proof of concept. Our

TABLE II
RESOURCE UTILIZATION XILINX SPARTAN XC3S500E

TABLE III
SK AND SK MEMORY REQUIREMENTS

design flow is flexible to allow different hash and decryption
primitives to be utilized to achieve smaller code size, higher
security or faster execution time.

VII. CASE STUDY

Through our demonstration system and its analysis we
have shown that not only is our design flow functional but
also practical for deployment on commodity FPGA. However,
this demonstration only addresses the very basic case of SWIP
binding. To illustrate a key principle in our design methodology,
flexibility, we provide a theoretical case study of its application
to solve a common problem in FPGA-based embedded systems,
software update.

A. Software Update

Embedded system development does not halt when a system
enters production. End-user feedback can expose bugs or sug-
gest possible improvements. As a result developers will often
support a system with continued software updates to either im-
prove the end-user experience or provide additional income in
the case of feature updates. In complex, safety critical, em-
bedded system rich environments, such as automobiles it is im-
perative that these updates be performed expediently and se-
curely [39], [40]. However, it is impractical to have an end-user
return a system to a developer to perform such updates. A more
pragmatic approach is performing the updates over a network
connection.

A typical remote software update protocol can be broken up
into three phases: initiation, authentication, and distribution.
First, a remote system requests a software update from a secure
update sever. Then, the server generates a challenge for which
the remote server must be able to generate an appropriate
response for authentication. Next, the SWIP is encrypted
and packaged in such a way to ensure integrity, authenticity,
confidentiality, and freshness [46]. This must be performed in
such a way to minimize storage, computational overhead, and
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transmission overhead [47]. Finally, the system must be able
to perform such updates multiple times without compromising
the security of the PUF-based key storage. Nilsson et al. [38]
proposes a traditional public key-based approach to providing
secure remote updates. In that work, they identify the following
security properties that such a system must possess.

• Integrity of software must be maintained to ensure that it
has not been modified or corrupted.

• Authenticity of the software must be confirmed as coming
from the trusted system developer.

• Software must remain confidential as it can contain valu-
able intellectual property (SWIP).

• Only the freshest updates must be allowed to prevent an
attacker from reusing old updates [46].

We have already shown that our design flow can ensure in-
tegrity, authenticity, and confidentiality for SWIP. In addition,
we can expand upon Nilsson’s approach by extending these
principles beyond the transmission of the SWIP to its local non-
volatile storage. We address the selection of appropriate proto-
cols and components to securely map our design flow to these
properties in Section VIII.

B. SWIP Protection Authentication Protocol

Our demonstration system accomplishes authentication lo-
cally during the production process through enrollment. How-
ever, after this point, we provide no further mechanism to estab-
lish the identity of the system. This is not required due to the as-
sumption that we are only concerned with protecting a single in-
stance of the SWIP once deployed to an FPGA-based embedded
system. Several PUF-based authentication protocols have been
proposed based on symmetric [3] and public key [42] systems.
Of particular interest is a simplified IP protection authentication
protocol proposed by Guajardo et al. [3]. However, this protocol
is concerned with only HWIP modules and doesn’t take into ac-
count the implicit relationship between the FPGA manufacturer
and the IP (HWIP/SWIP) developer. Let us take into considera-
tion the scenario of a malicious hardware manufacturer. In such
an instance Guajardo argues it is necessary to prevent the mali-
cious manufacturer from gaining access to the decrypted IP or
its key. However, any IP that operates on a given FPGA must
at one point exist in a decrypted state on that FPGA. A mali-
cious manufacturer could introduce functionality to extract this
IP once it has been decrypted for operation. As a result the trust
third party included by Guajardo to act as an intermediary, so
that the IP is not exposed to the system developer, is unneces-
sary. We present a modified version of the protocol in Fig. 9 to
reflect these differences.

The protocol is divided into two portions, enrollment and
software update. During enrollment the system developer,
acting as the trusted party, issues a unique public identifier
to the system, IDSYS. Next, an enrollment procedure is per-
formed on the PUF generating a model or list of challenge (C)
response (R) pairs (CRP) for authentication which is stored by
the system developer.

During software update, the system, in the possession of the
end-user, makes a request for a software update by transmit-
ting its system identifier and the version of its current
software to the system developer. A request containing

Fig. 9. Modified authentication protocol based on Guajardo’s PUF-based sym-
metric key authentication protocol [3].

the software identifier is forwarded to the SWIP developer. If a
newer version of the software is available, it is transmitted
to the system developer over a secure channel. The system de-
veloper chooses a pair of challenges , recorded from the
enrollment process and references the corresponding responses

, . The response can then be used as a key for encrypting
a concatenation of the software update , the software update
identifier , and a hash of the software update .

Integrity and authenticity of the transmitted software update
are assured by the generation of a Message Authentication Code
(MAC) utilizing a keyed hashing protocol such as HMAC [43].
The MAC is generated for the encrypted software update and
the challenges , using the response as a key. Finally,
this is transmitted to the system in possession of the end-user
where the software update can be verified as authentic and de-
crypted. If the software identifier is a newer version, then
the system will update its software.

It should be noted that this protocol only provides for up-
dating the SWIP binary and not the FPGA bitstream. This could
allow a new SWIP binary to be deployed on a system with an
old compromised FPGA bitstream. Champagne et al. [49] of-
fers a solution by directly coupling the FPGA bitstream version
with the SWIP binary version. As such the newest SWIP binary
will only execute on the most recent FPGA bitstream version.

C. Design Flow Mapping

Support for the authentication protocol can be accomplished
with minimal system modifications over our demonstration
system, through software only enhancements within the frame
of the design flow. These modifications are broken down into
two tasks, features and security.

1) Features: Two features need to be included into the system
to provide support for the modified authentication protocol.

• The system must include connectivity functionality to sup-
port receiving the software update. This can be stored in-
side of an encrypted software section that is first decrypted
by the SK before a software update can be performed.

• The SK must be modified to include support for the verifi-
cation of the MAC. This is crucial so that the entire can be
verified for authenticity and integrity without decryption
first.

2) Security: A major concern with the new application of the
PUF for remote authentication is that each exchange exposes
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a CRP of the PUF. As the PUF only contains a finite (some-
times quite limited) number of CRPs an attacker can attempt a
model building attack. Several proposals have been introduced
for preventing such attacks but they each rely on disrupting the
relationship between input and output of the PUF.

Gassend [44] proposes the application of a random secure
hash function on a pre-challenge before it is passed to the PUF
and on the response after it is generated. Due to the principles
of a secure hash, hashing the prechallenge before it is issued to
the PUF makes it difficult for an attacker to specify the chal-
lenge the PUF receives. Similarly, passing the response through
a hash hides the value of the response from the attacker due to
the one way nature of hashes. In this way, such a scheme re-
moves a direct observable relationship between the challenge
and response outputs of the PUF. Such functionality can greatly
improve a PUF’s resilience to attack and is trivial to implement
as software interface layer in our SK.

VIII. CONCLUSION

In this paper, we proposed a flexible design flow that enables
binding of software intellectual property to a specific FPGA
with the help of a ring oscillator-based physical unclonable
function. Validity of the design flow is demonstrated with a
prototype implementation. We are also able to show how the
properties of a circuit level component such as a PUF can be
utilized at the system level using software control. By only
utilizing fabric-based hardware structures and highly portable
C code we are able to maintain a high degree of flexibility,
while still providing adequate security. We demonstrated
this flexibility by mapping design flow to address a common
problem in FPGA-based embedded systems, remote software
update. Coupled with a commodity FPGA our design flow can
be used as a stepping stone for developing robust and secure
trusted platforms.
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