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Embedded Security? Where?

Authenticate

Wireless keys and access control
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Embedded Security? Where?

Electronic Money
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Request

+ Signature

Approval

$$$

$$$



Embedded Security? Where?

Protecting Bits at Rest

Integrity
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Confidentiality



Stored Secrets

• Integrity (key-less) hash

• Confidentiality Symmetric-Key

• Authentication Symmetric-Key/ Public-Key

• Non-repudiation (signing) Public-Key
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Embedded Security relies on stored secrets 



Common Technologies

Architecture

Dedicated
Hardware

MicroController MicroController with
Accelerator Hardware
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Architecture

Program

Data

Power

MOPS

Hardware Accelerator Hardware

100's bits 100's bytes Several Kbytes

Several Kbytes Several 100's Kbytes

4 - 8 bit 16 - 32 bit

100's KHz 1 MHz 50 MHz

30 µW 5 mW 100 mW

Memory



Embedded Security Challenges

Embedded System

Stored Secret

Crypto
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Embedded Security Challenges

Embedded System

Challenge #1: Dealing with Resource Constraints

Stored Secret

Crypto
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Signing

AVR ATMega128 8MHz 2.00s [Liu 08]

Sig Generation0.13mm CMOS 500KHz
18KGates 400mW

0.41s [Gaubatz 05]

Micro-Controller Software (Sensor Node)

Dedicated Hardware (Low Power)

Workstation Software

ECDSA
secp160
p163

Sig Generation

Sig Generation

Intel Core 2 Q6600 2.4GHz 1.36ms [EBACS 10]



Embedded Security Challenges

Embedded System

Challenge #2: Dealing with Implementation Attacks

in out

Stored Secret

Crypto
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• Traditional cryptography assumes black-box implementations: 
attacks should only consider input/output data.



Embedded Security Challenges

Embedded System

Challenge #2: Dealing with Implementation Attacks

Trust Boundary

in out

I(t)

EM

t
Stored Secret

Crypto
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• Traditional cryptography assumes black-box implementations: 
attacks should only consider input/output data.

• Secure Embedded Systems are gray-box systems:
their implementation characteristics (power dissipation, 
execution time, radiation, ...) can be observed

• Implementation attacks exploit features of the physical 
implementation



Our Research

• How to implement trustworthy secure 
embedded systems 

• that can thwart attacks?

• that are efficient?
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1. Preventing Implementation Attacks on Software

2. Chip-Unique Binding of Software and Hardware

Two examples of ongoing projects
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Starting Point: An Embedded Core

Local
Memory

Program
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Register File

Execution
Pipeline

I+D Memory
Interface

Register File

Execution

Pipeline

I+D Memory
Interface

Local
Memory

Program



Passive Attack

Side-channel Analysis:

AES-128 (symmetric-key) on a 
embedded 32-bit CPU

- 256 measurements ("traces") 
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- 256 measurements ("traces") 
disclose first key byte

- 40,960 traces disclose 
ALL key bytes

Real-time for attack ~ 5 minutes



Implementation Attack

Local
Memory

Program

AES-128
(Symmetric-Key) Side-channel leakage observed from

AES-128 executing on a PPC Processor

15

Register File

Execution
Pipeline

I+D Memory
Interface

I(t)

Side-channel Analysis

Stored Secret



How to thwart implementation attack?

I(t)
Local

Memory

Program
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Register File

Execution
Pipeline

I+D Memory
Interface

t

Program

I(t)



How to thwart implementation attack?

I(t)
Local

Memory
Local

Memory

Program Program

Trust Boundary

Program

Side-channel leakage disappears!

17

Register File

Execution
Pipeline

I+D Memory
Interface

Register File

Execution
Pipeline

I+D Memory
Interface

t

Program

I(t)



How to write Program and Program ?

• Side Channel Leakage is proportional to the Hamming Weight 
of the Sensitive Data
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How to write Program and Program ?

• Side Channel Leakage is proportional to the Hamming Weight 
of the Sensitive Data

• Program and Program work on complementary sensitive data

If Program writes 0x55 into register r5
then Program writes into register 
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If Program writes 0x55 into register r5
then Program writes 0xAA into register r5

• Program and Program execute complementary instructions

If Program performs and r3, r4, r5

the Program performs or  r3, r4, r5

• Program and Program run synchronized



How to write Program and Program ?

• Side Channel Leakage is proportional to the Hamming Weight 
of the Sensitive Data

• Program and Program work on complementary sensitive data

If Program writes 0x55 into register r5
then Program writes into register 
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If Program writes 0x55 into register r5
then Program writes 0xAA into register r5

• Program and Program execute complementary instructions

If Program performs and r3, r4, r5

the Program performs or  r3, r4, r5

• Program and Program run synchronized

Hamming Weight of Sensitive Data remain constant



Resulting Side-channel strength

Side-channel Analysis:

AES-128 (symmetric-key) on a 
dual-core CPU with complementary
programs
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programs

- 81920 traces to disclose first
key byte (single-core: 256 traces)

- 1M traces cannot disclose all key
bytes (single-core: 40960 traces
discloses all)



Of course, there are other attacks ...

• Invasive attacks breach the trust boundary; 
Non-invasive attacks do not

• Active attacks affect the trusted behavior; 
Passive attacks do not

Active Passive

Trust Boundary

Trusted 

Behavior

Crypto

22

Invasive

Non-Invasive

Active Passive

Tampering

Fault Attack

Probing

Side-channel Attack
(SCA)



Our Research

• How to implement trustworthy secure 
embedded systems 

• that can thwart attacks?

• that are efficient?
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1. Preventing Implementation Attacks on Software

2. Chip-Unique Binding of Software and Hardware

Two examples of ongoing projects



Chip-Unique Binding of SW and HW

• How can we demonstrate the uniqueness of the link between 
embedded hardware and embedded software ?

SW SW
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Embedded
CPU

Embedded System

Embedded
CPU

repurpose HW

steal SW

Counterfeit System Counterfeit System



Physical Unclonable Functions

Designer
Chip Fab Chip

Chip1
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Random
Process

Manufacturing
Variations

Chip1

Chip2

Chip3
An unclonable on-chip ID
is a chip-level structure that
deliberately exploits random
process manufacturing
variations to establish the
chip identity

• Wire width
• Doping Level
• Threshold Voltage



Chip-Unique Binding of SW and HW

• By definition, a PUF cannot be copied or tampered with

• A PUF can be implemented as a challenge/response function

• A PUF works can be used as an intrinsic key generator
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Embedded
CPU

SW

Embedded System

PUF

C

R



SW Binding with a PUF

1. PUF Enrollment

SW

Generate a C/R pair
Encrypt Software

ER(SW)
Distribute

C, E (SW)
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Embedded
CPU

Embedded System

PUF

C

R

C, ER(SW)

2. Deployment

Recreate R with C
Decrypt Software

DPUF(C)(SW)
Execute SW



Protection FPGA SW and HW

FPGA
Configuration

Memory

Embedded Hardware Platform

(Flash)
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Protection FPGA SW and HW

Configuration
Memory

Embedded Hardware Platform
1. Configure FPGA

Define HW
(Flash)

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM
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FPGA Configuration

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM



Protection FPGA SW and HW

Encrypted
SW Binary

FPGA
Configuration

Memory

Embedded Hardware Platform
1. Configure FPGA

2. Prepare SW

Define HW
(Flash)

Security
Kernel (C)

Encrypt SW w/ PUF R
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Encrypt SW w/ PUF R
Store PUF C

FPGA Configuration

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM



Protection FPGA SW and HW

Encrypted
SW Binary

FPGA
Configuration

Memory

Embedded Hardware Platform
1. Configure FPGA

2. Prepare SW

Define HW
(Flash)

Security
Kernel (C)

Encrypt SW w/ PUF R
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3. Boot System

Encrypt SW w/ PUF R
Store PUF C

Verify Flash Integrity

FPGA Configuration

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM



Protection FPGA SW and HW

Encrypted
SW Binary

FPGA
Configuration

Memory

Embedded Hardware Platform
1. Configure FPGA

2. Prepare SW

Define HW
(Flash)

Security
Kernel (C)

Encrypt SW w/ PUF R
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3. Boot System

Encrypt SW w/ PUF R
Store PUF C

Verify Flash Integrity
Load Security Kernel

FPGA Configuration

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM



Protection FPGA SW and HW

Encrypted
SW Binary

FPGA
Configuration

Memory

Embedded Hardware Platform
1. Configure FPGA

2. Prepare SW

Define HW
(Flash)

Security
Kernel (C)

Encrypt SW w/ PUF R
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3. Boot System

Encrypt SW w/ PUF R
Store PUF C

Verify Flash Integrity
Load Security Kernel
Retrieve Response
Load & Decrypt SW

FPGA Configuration

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM



Protection FPGA SW and HW

Encrypted
SW Binary

FPGA
Configuration

Memory

Embedded Hardware Platform
1. Configure FPGA

2. Prepare SW

Define HW
(Flash)

Security
Kernel (C)

Encrypt SW w/ PUF R
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3. Boot System

Encrypt SW w/ PUF R
Store PUF C

Verify Flash Integrity
Load Security Kernel
Retrieve Response
Load & Decrypt SW
Execute!

FPGA Configuration

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM



Conclusion

• Secure Embedded Systems =
Information Security + 
Efficient Implementation + 
Trustworthy Implementation
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• The Hardware/Software Symbiosys:
Software delivers complexity, flexibility
Hardware delivers trustworthiness


