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Wireless keys and access control

Authenticate




Embedded Security? Where?

Electronic Money

Request
+ Signature

Approval
586




Embedded Security? Where?

Protecting Bits at Rest

= Confidentiality



Stored Secrets

* Integrity

- Confidentiality

« Authentication

* Non-repudiation (sighing)
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Common Technologies

Dedicated MicroController MicroController with
, Hardware Accelerator Hardware
Architecture
4 - 8 bit 16 - 32 bit

Program — Several Kbytes Several 100's Kbytes
Memory _

Data 100's bits 100's bytes Several Kbytes
MOPS 100's KHz 1 MHz 50 MHz

Power 30 uW 5 mW 100 mW
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Embedded Security Challenges
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Challenge #1: Dealing with Resource Constraints

Signing | Dedicated Hardware (Low Power)

ECDSA | 0.13mm CMOS 500KHz Sig Generation 0.41s  [Gaubatz 03]
secp160 | 18KGates 400mW
p163

Micro-Controller Software (Sensor Node)

AVR ATMega128 8MHz Sig Generation 2.00s [Liu 08]

Workstation Software
Intel Core 2 Q6600 2.4GHz  Sig Generation 1.36ms  [EBACS 10]




Embedded Security Challenges
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Challenge #2: Dealing with Implementation Attacks

- Traditional cryptography assumesjt:ld g Jed dimplementations:
attacks should only consider input/output data.



Embedded Security Challenges

Challenge #2: Dealing with Implementation Attacks

- Traditional cryptography assumesjt:ld g Jed dimplementations:
attacks should only consider input/output data.

- Secure Embedded Systems are systems:
their implementation characteristics (power dissipation,
execution time, radiation, ...) can be observed

- Implementation attacks exploit features of the physical
implementation
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 How to implement trustworthy secure
embedded systems

 that can thwart attacks?
 that are efficient?

Two examples of ongoing projects

1. Preventing Implementation Attacks on Software
2. Chip-Unique Binding of Software and Hardware
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Starting Point: An Embedded Core
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Passive Attack

Side-channel Analysis:

AES-128 (symmetric-key) on a
embedded 32-bit CPU

- 256 measurements ("traces")
disclose first key byte

- 40,960 traces disclose
ALL key bytes

Real-time for attack ~ 5 minutes
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Implementation Attack

AES-128

(Symmetric-Key) Side-channel leakage observed from
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How to thwart implementation attack?
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How to thwart implementation attack?
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How to write Program and Program ?

- Side Channel Leakage is proportional to the Hamming Weight
of the Sensitive Data
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How to write Program and Program ?

Side Channel Leakage is proportional to the Hamming Weight
of the Sensitive Data

Program and Program work on complementary sensitive data

If Program writes 0x55 into register r5
then Program writes 0xAA into register r5

Program and Program execute complementary instructions

If Program performs and r3, r4, r5
the Program performs or «r3, r4, r5

Program and Program run synchronized
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How to write Program and Program ?

Side Channel Leakage is proportional to the Hamming Weight
of the Sensitive Data

Program and Program work on complementary sensitive data

If Program writes 0x55 into register r5
then Program writes 0xAA into register r5

Program and Program execute complementary instructions

If Program performs and r3, r4, r5
the Program performs or «r3, r4, r5

Program and Program run synchronized

I:> Hamming Weight of Sensitive Data remain constant
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Resulting Side-channel strength

Side-channel Analysis:

AES-128 (symmetric-key) on a
dual-core CPU with complementary
programs

- 81920 traces to disclose first
key byte (single-core: 256 traces)

- 1M traces cannot disclose all key
bytes (single-core: 40960 traces
discloses all)
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Of course, there are other attacks ...

: Trust Bound

- Invasive attacks breach the trust boundary; :--ryfr"'%gﬁcy‘.

Non-invasive attacks do not | peaser

! ehavior !

I 1

« Active attacks affect the trusted behavior; i Crypto i

Passive attacks do not T ]
Active Passive
Invasive Tampering Probing

Non-Invasive Fault Attack Side-channel Attack
(SCA)
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How to implement trustworthy secure
embedded systems

 that can thwart attacks?
« that are efficient?

Two examples of ongoing projects

1. Preventing Implementation Attacks on Software
2. Chip-Unique Binding of Software and Hardware
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Chip-Unique Binding of SW and HW

 How can we demonstrate the uniqueness of the link between
embedded hardware and embedded software ?

steal SW : l :
4 repurpose HW

Embedded Embedded
CPU CPU

Counterfeit System Embedded System Counterfeit System

24



Physical Unclonable Functions

Designer

» Wire width
* Doping Level
* Threshold Voltage
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Chip-Unique Binding of SW and HW

- By definition, a PUF cannot be copied or tampered with
A PUF can be implemented as a challenge/response function
A PUF works can be used as an intrinsic key generator

=
!

C
<€— Embedded
—>

R

PUF CPU

Embedded System
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SW Binding with a PUF

1. PUF Enroliment

Generate a C/R pair

Tttt T T ! Encrypt Software
! sw | Er(SW)
: l Distribute
! l ; C, En(SW)
|

|
! |

2. Deployment

: Embedded : ploy
: CPU ' Recreate R with C
! : Decrypt Software
,_ Embedded System _ | Dpur(c)(SW)

Execute SW
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Protection FPGA SW and HW

Embedded Hardware Platform

(Flash)

|
1
i Configuration
|
1

Memory FPGA i
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Protection FPGA SW and HW

Embedded Hardware Platform
1. Configure FPGA
(Flash)

---------------------------- Define HW

Memory | [Embeded

Integrity On-Chip
Kernel RAM

Embedded
PUF CPU

29



Protection FPGA SW and HW

Embedded Hardware Platform
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Store PUF C
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Protection FPGA SW and HW

Embedded Hardware Platform

(Flash)

Memory

Security
Kernel (C)

Encrypted
SW Binary

Integrity
Kernel
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RAM
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Configure FPGA
Define HW

Prepare SW

Encrypt SW w/ PUF R
Store PUF C

Boot System

Verify Flash Integrity
Load Security Kernel
Retrieve Response
Load & Decrypt SW
Execute!
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Conclusion

- Secure Embedded Systems =
Information Security +
Efficient Implementation +
Trustworthy Implementation

- The Hardware/Software Symbiosys:
Software delivers complexity, flexibility
Hardware delivers trustworthiness
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