Secure Embedded Systems:
A Software-Hardware Symbiosis

Patrick Schaumont
ECE Department, Virginia Tech

2 April 2010
CS Department, Virginia Tech

@ VirginiaTech

Invent the Future



Embedded Security? Where?

Wireless keys and access control

Authenticate




Embedded Security? Where?

Electronic Money

Request
+ Signature

Approval
586




Embedded Security? Where?

Protecting Bits at Rest

= Confidentiality



Stored Secrets

* Integrity

- Confidentiality

« Authentication

* Non-repudiation (sighing)

(key-less) hash
Symmetric-Key
Symmetric-Key/ Public-Key
Public-Key




Common Technologies

Dedicated MicroController MicroController with
, Hardware Accelerator Hardware
Architecture
4 - 8 bit 16 - 32 bit

Program — Several Kbytes Several 100's Kbytes
Memory _

Data 100's bits 100's bytes Several Kbytes
MOPS 100's KHz 1 MHz 50 MHz

Power 30 uW 5 mW 100 mW



Embedded Security Challenges

Stored Secret

i
Crypto

Embedded System




Embedded Security Challenges

Stored Secret

i
Crypto

Embedded System

Challenge #1: Dealing with Resource Constraints

Signing | Dedicated Hardware (Low Power)

ECDSA | 0.13mm CMOS 500KHz Sig Generation 0.41s  [Gaubatz 03]
secp160 | 18KGates 400mW
p163

Micro-Controller Software (Sensor Node)

AVR ATMega128 8MHz Sig Generation 2.00s [Liu 08]

Workstation Software
Intel Core 2 Q6600 2.4GHz  Sig Generation 1.36ms  [EBACS 10]




Embedded Security Challenges

Stored Secret

\

in

out

Crypto

Embedded System

Challenge #2: Dealing with Implementation Attacks

- Traditional cryptography assumesjt:ld g Jed dimplementations:
attacks should only consider input/output data.



Embedded Security Challenges

Challenge #2: Dealing with Implementation Attacks

- Traditional cryptography assumesjt:ld g Jed dimplementations:
attacks should only consider input/output data.

- Secure Embedded Systems are systems:
their implementation characteristics (power dissipation,
execution time, radiation, ...) can be observed

- Implementation attacks exploit features of the physical
implementation

10



 How to implement trustworthy secure
embedded systems

 that can thwart attacks?
 that are efficient?

Two examples of ongoing projects

1. Preventing Implementation Attacks on Software
2. Chip-Unique Binding of Software and Hardware

11



 How to implement trustworthy secure
embedded systems

 that can thwart attacks?
 that are efficient?

Two examples of ongoing projects

1. Preventing Implementation Attacks on Software
2. Chip-Unique Binding of Software and Hardware

12



Starting Point: An Embedded Core

I+D Memory
Interface

/

/

Register File
N

Execution
Pipeline

13



Passive Attack

Side-channel Analysis:

AES-128 (symmetric-key) on a
embedded 32-bit CPU

- 256 measurements ("traces")
disclose first key byte

- 40,960 traces disclose
ALL key bytes

Real-time for attack ~ 5 minutes

14



Implementation Attack

AES-128

(Symmetric-Key) Side-channel leakage observed from

< AES-128 executing on a PPC Processor
| | Program e
Local ol
Memory ‘ hﬂh Ah (
\/ 100
1+D Memory -
Interface 60

1 1 L L L L 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

d ) (-\J
Register File I(t) @

7\ <

: Side-channel Analysis
Execution
Pipeline <_ID ! !

Stored Secret

15



How to thwart implementation attack?

? Program
|(t) A

Local
Memory

s

I+D Memory
Interface
V

Program

V

> Register File
t 7 |
4

—_ Execution

Pipeline
CLD

- 16




How to thwart implementation attack?

TrustBoundary ,

1 |

. . 1 1
Side-channel leakage disappears! i ? Program ? Program i
|

10) l | |
) Local Local I

) Memory Memory !

1 |

! 4 !

) \/ !

| I+D Memory I+D Memory )

I Interface Interface ]

Program ! ) :

: ’ :

> : Register File Register File :

t ) A :

I(t) 1 , !

— | Execution Execution I

: Pipeline Pipeline I

I I

! !




How to write Program and Program ?

- Side Channel Leakage is proportional to the Hamming Weight
of the Sensitive Data

18



How to write Program and Program ?

Side Channel Leakage is proportional to the Hamming Weight
of the Sensitive Data

Program and Program work on complementary sensitive data

If Program writes 0x55 into register r5
then Program writes 0xAA into register r5

Program and Program execute complementary instructions

If Program performs and r3, r4, r5
the Program performs or «r3, r4, r5

Program and Program run synchronized

19



How to write Program and Program ?

Side Channel Leakage is proportional to the Hamming Weight
of the Sensitive Data

Program and Program work on complementary sensitive data

If Program writes 0x55 into register r5
then Program writes 0xAA into register r5

Program and Program execute complementary instructions

If Program performs and r3, r4, r5
the Program performs or «r3, r4, r5

Program and Program run synchronized

I:> Hamming Weight of Sensitive Data remain constant

20



Resulting Side-channel strength

Side-channel Analysis:

AES-128 (symmetric-key) on a
dual-core CPU with complementary
programs

- 81920 traces to disclose first
key byte (single-core: 256 traces)

- 1M traces cannot disclose all key
bytes (single-core: 40960 traces
discloses all)

21



Of course, there are other attacks ...

: Trust Bound

- Invasive attacks breach the trust boundary; :--ryfr"'%gﬁcy‘.

Non-invasive attacks do not | peaser

! ehavior !

I 1

« Active attacks affect the trusted behavior; i Crypto i

Passive attacks do not T ]
Active Passive
Invasive Tampering Probing

Non-Invasive Fault Attack Side-channel Attack
(SCA)

22



How to implement trustworthy secure
embedded systems

 that can thwart attacks?
« that are efficient?

Two examples of ongoing projects

1. Preventing Implementation Attacks on Software
2. Chip-Unique Binding of Software and Hardware

23



Chip-Unique Binding of SW and HW

 How can we demonstrate the uniqueness of the link between
embedded hardware and embedded software ?

steal SW : l :
4 repurpose HW

Embedded Embedded
CPU CPU

Counterfeit System Embedded System Counterfeit System

24



Physical Unclonable Functions

Designer

» Wire width
* Doping Level
* Threshold Voltage

25



Chip-Unique Binding of SW and HW

- By definition, a PUF cannot be copied or tampered with
A PUF can be implemented as a challenge/response function
A PUF works can be used as an intrinsic key generator

=
!

C
<€— Embedded
—>

R

PUF CPU

Embedded System

26



SW Binding with a PUF

1. PUF Enroliment

Generate a C/R pair

Tttt T T ! Encrypt Software
! sw | Er(SW)
: l Distribute
! l ; C, En(SW)
|

|
! |

2. Deployment

: Embedded : ploy
: CPU ' Recreate R with C
! : Decrypt Software
,_ Embedded System _ | Dpur(c)(SW)

Execute SW

27



Protection FPGA SW and HW

Embedded Hardware Platform

(Flash)

|
1
i Configuration
|
1

Memory FPGA i

28



Protection FPGA SW and HW

Embedded Hardware Platform
1. Configure FPGA
(Flash)

---------------------------- Define HW

Memory | [Embeded

Integrity On-Chip
Kernel RAM

Embedded
PUF CPU

29



Protection FPGA SW and HW

Embedded Hardware Platform

(Flash)

Memory

Security
Kernel (C)

Encrypted
SW Binary

Integrity
Kernel

On-Chip
RAM

Embedded
CPU

1.

Configure FPGA
Define HW

Prepare SW

Encrypt SW w/ PUF R
Store PUF C

30



Protection FPGA SW and HW

Embedded Hardware Platform

(Flash)

Memory

Security
Kernel (C)

Encrypted
SW Binary

Integrity
Kernel

On-Chip
RAM

Embedded
CPU

Configure FPGA
Define HW

Prepare SW

Encrypt SW w/ PUF R
Store PUF C

Boot System
Verify Flash Integrity

31



Protection FPGA SW and HW

Embedded Hardware Platform

(Flash)

Memory

Security
Kernel (C)

Encrypted
SW Binary

Integrity
Kernel

On-Chip
RAM

Embedded
CPU

Configure FPGA
Define HW

Prepare SW

Encrypt SW w/ PUF R
Store PUF C

Boot System

Verify Flash Integrity
Load Security Kernel

32



Protection FPGA SW and HW

Embedded Hardware Platform

(Flash)

Memory

Security
Kernel (C)

Encrypted
SW Binary

Integrity
Kernel

On-Chip
RAM

Embedded
CPU

Configure FPGA
Define HW

Prepare SW

Encrypt SW w/ PUF R
Store PUF C

Boot System

Verify Flash Integrity
Load Security Kernel
Retrieve Response
Load & Decrypt SW

33



Protection FPGA SW and HW

Embedded Hardware Platform

(Flash)

Memory

Security
Kernel (C)

Encrypted
SW Binary

Integrity
Kernel

On-Chip
RAM

Embedded
CPU

Configure FPGA
Define HW

Prepare SW

Encrypt SW w/ PUF R
Store PUF C

Boot System

Verify Flash Integrity
Load Security Kernel
Retrieve Response
Load & Decrypt SW
Execute!

34



Conclusion

- Secure Embedded Systems =
Information Security +
Efficient Implementation +
Trustworthy Implementation

- The Hardware/Software Symbiosys:
Software delivers complexity, flexibility
Hardware delivers trustworthiness

35



