
Secure Embedded Systems:
A Software-Hardware Symbiosis

Patrick Schaumont
ECE Department, Virginia Tech

2 April 2010
CS Department, Virginia Tech

Embedded Security? Where?

Authenticate

Wireless keys and access control

2

Embedded Security? Where?

Electronic Money

3

Request

+ Signature

Approval

$$$

$$$

Embedded Security? Where?

Protecting Bits at Rest

Integrity

4

Confidentiality

Stored Secrets

• Integrity (key-less) hash

• Confidentiality Symmetric-Key

• Authentication Symmetric-Key/ Public-Key

• Non-repudiation (signing) Public-Key

5

Embedded Security relies on stored secrets

Common Technologies

Architecture

Dedicated
Hardware

MicroController MicroController with
Accelerator Hardware

6

Architecture

Program

Data

Power

MOPS

Hardware Accelerator Hardware

100's bits 100's bytes Several Kbytes

Several Kbytes Several 100's Kbytes

4 - 8 bit 16 - 32 bit

100's KHz 1 MHz 50 MHz

30 µW 5 mW 100 mW

Memory

Embedded Security Challenges

Embedded System

Stored Secret

Crypto

7

Embedded Security Challenges

Embedded System

Challenge #1: Dealing with Resource Constraints

Stored Secret

Crypto

8

Signing

AVR ATMega128 8MHz 2.00s [Liu 08]

Sig Generation0.13mm CMOS 500KHz
18KGates 400mW

0.41s [Gaubatz 05]

Micro-Controller Software (Sensor Node)

Dedicated Hardware (Low Power)

Workstation Software

ECDSA
secp160
p163

Sig Generation

Sig Generation

Intel Core 2 Q6600 2.4GHz 1.36ms [EBACS 10]

Embedded Security Challenges

Embedded System

Challenge #2: Dealing with Implementation Attacks

in out

Stored Secret

Crypto

9

• Traditional cryptography assumes black-box implementations:
attacks should only consider input/output data.

Embedded Security Challenges

Embedded System

Challenge #2: Dealing with Implementation Attacks

Trust Boundary

in out

I(t)

EM

t
Stored Secret

Crypto

10

• Traditional cryptography assumes black-box implementations:
attacks should only consider input/output data.

• Secure Embedded Systems are gray-box systems:
their implementation characteristics (power dissipation,
execution time, radiation, ...) can be observed

• Implementation attacks exploit features of the physical
implementation

Our Research

• How to implement trustworthy secure
embedded systems

• that can thwart attacks?

• that are efficient?

11

1. Preventing Implementation Attacks on Software

2. Chip-Unique Binding of Software and Hardware

Two examples of ongoing projects

Our Research

• How to implement trustworthy secure
embedded systems

• that can thwart attacks?

• that are efficient?

12

1. Preventing Implementation Attacks on Software

2. Chip-Unique Binding of Software and Hardware

Two examples of ongoing projects

Starting Point: An Embedded Core

Local
Memory

Program

13

Register File

Execution
Pipeline

I+D Memory
Interface

Register File

Execution

Pipeline

I+D Memory
Interface

Local
Memory

Program

Passive Attack

Side-channel Analysis:

AES-128 (symmetric-key) on a
embedded 32-bit CPU

- 256 measurements ("traces")

14

- 256 measurements ("traces")
disclose first key byte

- 40,960 traces disclose
ALL key bytes

Real-time for attack ~ 5 minutes

Implementation Attack

Local
Memory

Program

AES-128
(Symmetric-Key) Side-channel leakage observed from

AES-128 executing on a PPC Processor

15

Register File

Execution
Pipeline

I+D Memory
Interface

I(t)

Side-channel Analysis

Stored Secret

How to thwart implementation attack?

I(t)
Local

Memory

Program

16

Register File

Execution
Pipeline

I+D Memory
Interface

t

Program

I(t)

How to thwart implementation attack?

I(t)
Local

Memory
Local

Memory

Program Program

Trust Boundary

Program

Side-channel leakage disappears!

17

Register File

Execution
Pipeline

I+D Memory
Interface

Register File

Execution
Pipeline

I+D Memory
Interface

t

Program

I(t)

How to write Program and Program ?

• Side Channel Leakage is proportional to the Hamming Weight
of the Sensitive Data

18

How to write Program and Program ?

• Side Channel Leakage is proportional to the Hamming Weight
of the Sensitive Data

• Program and Program work on complementary sensitive data

If Program writes 0x55 into register r5
then Program writes into register

19

If Program writes 0x55 into register r5
then Program writes 0xAA into register r5

• Program and Program execute complementary instructions

If Program performs and r3, r4, r5

the Program performs or r3, r4, r5

• Program and Program run synchronized

How to write Program and Program ?

• Side Channel Leakage is proportional to the Hamming Weight
of the Sensitive Data

• Program and Program work on complementary sensitive data

If Program writes 0x55 into register r5
then Program writes into register

20

If Program writes 0x55 into register r5
then Program writes 0xAA into register r5

• Program and Program execute complementary instructions

If Program performs and r3, r4, r5

the Program performs or r3, r4, r5

• Program and Program run synchronized

Hamming Weight of Sensitive Data remain constant

Resulting Side-channel strength

Side-channel Analysis:

AES-128 (symmetric-key) on a
dual-core CPU with complementary
programs

21

programs

- 81920 traces to disclose first
key byte (single-core: 256 traces)

- 1M traces cannot disclose all key
bytes (single-core: 40960 traces
discloses all)

Of course, there are other attacks ...

• Invasive attacks breach the trust boundary;
Non-invasive attacks do not

• Active attacks affect the trusted behavior;
Passive attacks do not

Active Passive

Trust Boundary

Trusted

Behavior

Crypto

22

Invasive

Non-Invasive

Active Passive

Tampering

Fault Attack

Probing

Side-channel Attack
(SCA)

Our Research

• How to implement trustworthy secure
embedded systems

• that can thwart attacks?

• that are efficient?

23

1. Preventing Implementation Attacks on Software

2. Chip-Unique Binding of Software and Hardware

Two examples of ongoing projects

Chip-Unique Binding of SW and HW

• How can we demonstrate the uniqueness of the link between
embedded hardware and embedded software ?

SW SW

24

Embedded
CPU

Embedded System

Embedded
CPU

repurpose HW

steal SW

Counterfeit System Counterfeit System

Physical Unclonable Functions

Designer
Chip Fab Chip

Chip1

25

Random
Process

Manufacturing
Variations

Chip1

Chip2

Chip3
An unclonable on-chip ID
is a chip-level structure that
deliberately exploits random
process manufacturing
variations to establish the
chip identity

• Wire width
• Doping Level
• Threshold Voltage

Chip-Unique Binding of SW and HW

• By definition, a PUF cannot be copied or tampered with

• A PUF can be implemented as a challenge/response function

• A PUF works can be used as an intrinsic key generator

26

Embedded
CPU

SW

Embedded System

PUF

C

R

SW Binding with a PUF

1. PUF Enrollment

SW

Generate a C/R pair
Encrypt Software

ER(SW)
Distribute

C, E (SW)

27

Embedded
CPU

Embedded System

PUF

C

R

C, ER(SW)

2. Deployment

Recreate R with C
Decrypt Software

DPUF(C)(SW)
Execute SW

Protection FPGA SW and HW

FPGA
Configuration

Memory

Embedded Hardware Platform

(Flash)

28

Protection FPGA SW and HW

Configuration
Memory

Embedded Hardware Platform
1. Configure FPGA

Define HW
(Flash)

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM

29

FPGA Configuration

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM

Protection FPGA SW and HW

Encrypted
SW Binary

FPGA
Configuration

Memory

Embedded Hardware Platform
1. Configure FPGA

2. Prepare SW

Define HW
(Flash)

Security
Kernel (C)

Encrypt SW w/ PUF R

30

Encrypt SW w/ PUF R
Store PUF C

FPGA Configuration

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM

Protection FPGA SW and HW

Encrypted
SW Binary

FPGA
Configuration

Memory

Embedded Hardware Platform
1. Configure FPGA

2. Prepare SW

Define HW
(Flash)

Security
Kernel (C)

Encrypt SW w/ PUF R

31

3. Boot System

Encrypt SW w/ PUF R
Store PUF C

Verify Flash Integrity

FPGA Configuration

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM

Protection FPGA SW and HW

Encrypted
SW Binary

FPGA
Configuration

Memory

Embedded Hardware Platform
1. Configure FPGA

2. Prepare SW

Define HW
(Flash)

Security
Kernel (C)

Encrypt SW w/ PUF R

32

3. Boot System

Encrypt SW w/ PUF R
Store PUF C

Verify Flash Integrity
Load Security Kernel

FPGA Configuration

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM

Protection FPGA SW and HW

Encrypted
SW Binary

FPGA
Configuration

Memory

Embedded Hardware Platform
1. Configure FPGA

2. Prepare SW

Define HW
(Flash)

Security
Kernel (C)

Encrypt SW w/ PUF R

33

3. Boot System

Encrypt SW w/ PUF R
Store PUF C

Verify Flash Integrity
Load Security Kernel
Retrieve Response
Load & Decrypt SW

FPGA Configuration

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM

Protection FPGA SW and HW

Encrypted
SW Binary

FPGA
Configuration

Memory

Embedded Hardware Platform
1. Configure FPGA

2. Prepare SW

Define HW
(Flash)

Security
Kernel (C)

Encrypt SW w/ PUF R

34

3. Boot System

Encrypt SW w/ PUF R
Store PUF C

Verify Flash Integrity
Load Security Kernel
Retrieve Response
Load & Decrypt SW
Execute!

FPGA Configuration

PUF

Integrity
Kernel

Embedded
CPU

On-Chip
RAM

Conclusion

• Secure Embedded Systems =
Information Security +
Efficient Implementation +
Trustworthy Implementation

35

• The Hardware/Software Symbiosys:
Software delivers complexity, flexibility
Hardware delivers trustworthiness

