Implementing Virtual Secure Circuit Using A
Custom-Instruction Approach

Zhimin Chen Ambuj Sinha Patrick Schaumont
Virginia Tech. Virginia Tech. Virginia Tech.
Blacksburg, VA 24060 Blacksburg, VA 24060 Blacksburg, VA 24060
chenzm@vt.edu ambujs87@vt.edu schaum@vt.edu

ABSTRACT

Although cryptographic algorithms are designed to resist
at least thousands of years of cryptoanalysis, implementing
them with either software or hardware usually leaks addi-
tional information which may enable the attackers to break
the cryptographic systems within days. A Side Channel At-
tack (SCA) is such a kind of attack that breaks a security
system at a low cost within a short time. SCA uses side-
channel leakage, such as the cryptographic implementations’
execution time, power dissipation and magnetic radiation.
This paper presents a countermeasure to protect software-
based cryptography from SCA by emulating the behavior
of the secure hardware circuits. The emulation is done by
introducing two simple complementary instructions to the
processor and applying a secure programming style. We
call the resulting secure software program a Virtual Secure
Circuit (VSC). VSC inherits the idea of a secure logic cir-
cuit, a hardware SCA countermeasure. It not only main-
tains the secure circuits’ generality without limitation to a
specific algorithm, but also increases its flexibility. Experi-
ments on a prototype implementation demonstrated that the
new countermeasure considerably increases the difficulty of
the attacks by 20 times, which is in the same order as the
improvement achieved by the dedicated secure hardware cir-
cuits. Therefore, we conclude that VSC is an efficient way
to protect cryptographic software.

Categoriesand Subject Descriptors

C.3 [Computer Systems Organization]:
Purpose and Application-Based Systems

Special-

General Terms
Design, Security

Keywords

Virtual Secure Circuit (VSC), balanced instructions, Side
Channel Attacks (SCA)

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguees prior specific
permission and/or a fee.

CASES 10, October 24-29, 2010, Scottsdale, Arizona, USA.

Copyright 2010 ACM 978-1-60558-903-9/10/10 ...$10.00.

1. INTRODUCTION

Cryptographic algorithms are designed to resist at least
thousands of years of cryptoanalysis. That is, given that the
attackers know the algorithm, the input data and the output
data, any known method to extract the crypto-algorithm’s
secret key has an enormous computational complexity.

Unfortunately, the security features of an algorithm alone
are not sufficient to guarantee that their implementations
are also secure. One decade ago, Kocher, et. al intro-
duced the Side Channel Attack (SCA) [10]. Besides the
information used by cryptoanalysis, SCA also makes use of
other information, such as the cryptographic implementa-
tions’ execution time, power dissipation, or/and magnetic
radiation. We call this additional information side-channel
leakage. SCA is able to analyze the relationship between
the side-channel leakage and the implementation’s internal
states and finally breaks a cryptographic system at a much
lower computational cost. For example, if an attacker is able
to check 1 billion AES keys per second, the Advanced En-
cryption Standard (AES) algorithm [14] can resist a brute
force attack for 10" years. In contrast, according to our
experiments, SCA can break AES, which is implemented by
embedded software, within 1 hour. This brings a great con-
cern to the cryptography field, especially to the embedded
security, since side channel leakage from embedded devices
is often easy to obtain. This paper focuses on protecting
cryptographic software implementations against SCA from
a processor architecture perspective via custom instructions.

Countermeasures against SCA broadly fall into two
categories, including hiding and randomization. Hiding
offers protection by reducing the signal-to-noise ratio of
the side channel leakage. Randomization techniques can
randomize the processed values, called masking [2, 16, 8],
or can randomize the time a sensitive value appears, e.g.
random-code injection [3], or can randomize the voltage
and frequency with Dynamic Voltage and Frequency
Scaling (DVFS) [21]. Randomization techniques are not
without problems; random-code injection were shown to
be ineffective [7], and randomized voltage/frequency can
easily observed and attacked. Moreover, randomization
in the form of masking is algorithm-specific. This paper
uses hiding rather than randomization, and it presents an
algorithm-independent countermeasure.

In hardware, hiding can be implemented using Dual-Rail
Pre-charge (DRP) circuits [6]. This paper builds the soft-
ware equivalent of such DRP circuits. DRP circuits consist
of two parts: a direct part and a complementary part. An
ideal implementation of a DRP circuit has a constant static

and dynamic power dissipation (as will be described in Sec-
tion 2). This way, the power dissipation signal of the DRP
circuit contains no more side-channel information.

So far, the DRP technique has not been used to protect
cryptographic software. This is because regular processors
don’t have support for DRP-like behavior. This paper pro-
poses a solution to this problem and successfully ports the
DRP technique to software. In general, the main concept is
to add special custom instructions that enable part of the
processor as a programmable DRP circuit. The new pro-
cessor is called balanced processor. In addition, a special
programming style further guarantees that the processors
act exactly the same as the DRP circuits. As a result, the
power dissipation of the processor should be ideally indepen-
dent on the processed data and therefore resists SCA. We
call the resulting software Virtual Secure Circuit (VSC).

The first advantage of the proposed solution is its flexibil-
ity. Once the balanced processor is built up, the side-channel
resistance is achieved completely in software. The second ad-
vantage is that the proposed solution is not limited to a spe-
cific cryptographic algorithm. This makes our hiding-based
technique more general than masking-based techniques cur-
rently used to protect crypto-software. The third advan-
tage is the much lower hardware cost when compared with
dedicated hardware DRP circuits. Our results show that
hiding-based countermeasures can be applied using the ex-
isting ASIP technology. Hence, our technique can be di-
rectly applied by ASIP users with a need for side-channel
resistance in their designs.

The contributions of this paper include 1) the concept
that using a single balanced processor to support VSC to
thwart SCA, 2) a low-cost solution to implement a balanced
processor and the demonstration of its security, 3) a secure
programming style to implement a VSC, and 4) the demon-
stration and quantification of the effectiveness of our solu-
tion with real side channel attacks.

The rest of this paper is organized as follows. Section 2
introduces the basic knowledge on SCA and the DRP tech-
nique. The proposed solution, VSC, is described and ana-
lyzed in Section 3. In addition, Section 4 presents a general
way to program VSC. Section 5 demonstrates VSC’s effec-
tiveness with experiments and Section 6 makes a conclusion.

2. PRELIMINARIES

In this section, we introduce some preliminary knowledge
on embedded security, including SCA, DRP technique, and
the idea of quantifying security against SCA.

2.1 SideChannel Attacks

SCA can break a cryptographic device much faster than
cryptoanalysis. The reason is that, by exploiting the side-
channel leakage of a device, SCA can reveal the secret key
bit by bit or piece by piece. This breaks the exponential
complexity of a brute force key search. In this section, we
describe the concept of SCA.

Figure 1 shows a cryptographic device. The device imple-
ments a cryptographic algorithm, represented by f. f takes
the plaintext (PT) and the key (K) as inputs, and generates
the encryption result (ER) (ER = f(PT, K)). The internal
secret key K is not directly observable through the ports of
the device. The objective of SCA is to reveal the value of
K.

Each bit of ER is related to every bit of PT and every

-

cryptographic device

cryptographic engine

laintext
iy cL——> f
ke ([

encryption result
(ER = f(PT, K))

intermediate value
(1v = g(PT, K[7:0]))

Voltage \ .
IV is not observable;
__—> IV's power is observable.

time

Figure 1: An example of Side Channel Attack at-
tacks a crypto-device and uncovers the key enclosed.

bit of K. Suppose K has 128 bits, then a traditional brute-
force attack needs to consider 2'?® possible key values. It
is this huge search space that ensures the security of the
cryptographic algorithm. However, SCA does not try to
break the entire K at once. Instead, SCA divides K into
pieces, which are broken one by one. For example, a typical
AES algorithm uses an 128-bit key. Using an SCA that
reveals one key byte at a time, the search space for the
entire key is reduced from 2'2® to 16 x 2% = 212,

Obviously, this is a drastic reduction, and SCA achieves
this as follows. Although every bit of the output E'R is guar-
anteed to be related to every bit of K, this is not true for the
intermediate values. We can always find intermediate values
that are only related to a small part of K, e.g. one byte of
K. For example, assume that we can find an intermediate
value IV which depends on a single key byte K[7 : 0] and
the plaintext PT. We can write IV = g(PT, K[7 : 0]). Then
K|[7: 0] can be discovered with only 2% guesses.

To test which guess is correct, we therefore need to observe
1V. This variable is inside of the implementation, but it is
indirectly observable through its power dissipation. Indeed,
the power dissipated by I'V is a part of the power dissipated
by the entire device, which can be measured by the attack-
ers. Hence, by measurement of the chip power dissipation,
there is a way to test the guesses the attacker makes on a
single key byte. Through proper correlation techniques, the
chip overall power dissipation can be used in place of the
power dissipation from IV; the power dissipated by unre-
lated components can be treated as noise.

In recent years, very powerful SCA techniques have
emerged. Modern secure embedded systems therefore need
to apply adequate countermeasures to prevent SCA. In
the next section, we review a hardware countermeasure
technique developed for this purpose.

2.2 DRP Technique

DRP technique is an effective countermeasure against
SCA. Its basis is to reduce the side-channel information
from the power dissipated by the intermediate variable I'V.
Hardware circuits implemented as DRP have a constant
power dissipation. We use an example to explain the
details.

Figure 2 explains the operation of the DRP technique us-
ing a DRP NAND gate. In this example, we approximate

Standard NAND gate A

A B

r==-7----
I
i

el

e
i
A

-
f
1
:

\
Static Power El 5\1 EO E 1
Dynamic Power E E 0 E 1 E 1
(a)
, , , , ,
DRP NAND gate ! [p— !
IR Va N
Ap i N i A
T
Q P i I] i
i B_ 1 =\ =\ 1 =\
LA T A R VA |
= Qi AN
b I : 4

[i i
StaticPowerlO\ﬁllO 110 1.0 1
Dynamic Poweri 1 E 11 E 11 E 11

(b)

Figure 2: (a) A CMOS standard NAND has data-
dependent power dissipation; (b) A DRP NAND
gate has a data-independent power dissipation.

static and dynamic power dissipation of a logic gate through
the Hamming Weight and Hamming Distance of its output
respectively. In the case of a single NAND gate (Figure 2a),
the static and dynamic power dissipation depend on the in-
put values of the gate. For example, if the static power is
0, both inputs must be 1. This side-channel leakage is the
basis for SCA.

Figure 2b shows the same test case on a DRP NAND
gate. In this case, the circuit encodes each logic value with
a complementary pair (A,, A,). Furthermore, each pair is
pre-charged to (0,0) in each clock cycle before evaluation.
As a result, each clock cycle, every DRP signal pair shows
exactly one transition from 0 to 1 and another one from 1 to
0. The resulting static and dynamic power dissipation are
now independent of the input values of the DRP gate.

Despite the elegance of this concept, DRP circuits in hard-
ware do have some disadvantages. First, DRP circuits are
at least two times larger than equivalent standard CMOS
circuits, and they have a much larger power dissipation.
Second, the constant-power argument, based on Hamming
Weight or Hamming Distance, does not hold when low-level
electrical effects are taken into account. Small asymmetries
between the direct and complementary paths of a signal pair
still may lead to residual side-channel leakage. Nevertheless,
careful design is able to reduce the imbalance to a very low
level. This requires much more power measurements for a
successful SCA [18].

So far, the DRP technique has been broadly used in hard-
ware as secure circuits, for example in SABL [19], in WDDL
[20], and in MDPL [17]. However, software DRP technique
has not been developed. The major reason for this is that
DRP technique requires the executions of the direct and
complementary datapaths in parallel. In regular processors,
this cannot be realized.

2.3 Quantifying Security

Researchers have realized that it is really difficult or even

impossible to design one single SCA countermeasure that
is absolutely secure. Usually, whether a countermeasure is
secure or not depends not only on the countermeasure itself,
but also on the secure system in which the countermeasure
is integrated. Instead of evaluating a countermeasure as
absolutely secure or not, a more practical way is to quantify
the protection offered by a countermeasure.

A well accepted way to quantify the security of SCA coun-
termeasures is to use the number of power measurements
needed for a successful attack. When introducing a coun-
termeasure (in hardware and software), the crypto-engineer
makes a trade-off between the additional hardware/ software
implementation cost, and the additional security offered by
this countermeasure. In this paper, we use the same method
to evaluate our solution. Results will show that the improve-
ment obtained by the proposed software solution is in the
same order as the one obtained by dedicated DRP hardware
circuits.

No SCA countermeasure can provide perfect security by
itself. However, in practice, security can be achieved by
combining different countermeasures at different levels of ab-
straction. An example is to combine a protocol-level coun-
termeasure that decreases the secret key’s lifetime and the
solution proposed in this paper that can increase the number
of measurements. In this case, the secret key will be changed
before the SCA can collect sufficient measurements.

3. VIRTUAL SECURE CIRCUIT ON A
BALANCED PROCESSOR

This section proposes a new SCA countermeasure based
on the DRP technique. Different from the previous DRP-
circuit countermeasures, the new one is a software solution.
It emulates the DRP circuits’ behavior with software, and
therefore, is called Virtual Secure Circuit (VSC).

3.1 Concept

The concept is illustrated in Figure 3. Similar to the DRP
circuits, the processor has two parts: one performs direct op-
erations and the other performs complementary operations.
We call the processor a balanced processor. Every direct
operation in the first part has a complementary counter-
part in the second part. A direct operation takes input in
and generates output out. The complementary operation
takes input in and generates output out. in = NOT(in)
and out = NOT(out). NOT means the bit-wise inversion
operation.

The balanced processor has a set of instructions, referred
to as balanced instructions. Each balanced instruction
chooses a pair of complementary operations from two parts
of the processor and executes them at the same time. The
cryptographic algorithm is programmed with this set of bal-
anced instructions. Therefore, the cryptographic algorithm
has both a direct execution path and a complementary
path. To run the cryptographic algorithm, both direct and
complementary plaintext (balanced input) are supplied to
these two paths. Finally, the algorithm generates both the
direct and the complementary encryption results (balanced
outputs), shown in Figure 3a.

Besides the balanced instructions, the processor also has
another set of instructions that perform the pre-charge oper-
ations in the same way as the DRP circuits. Before executing
balanced instructions, a set of pre-charge instructions first

Balanced
Plaintext

Instruction

Memory

{
pre-charge instruction;
balanced instruction;

pre-charge instruction;
balanced instruction;
return balanced_encryption_result;

Balanced }

Processor .
function others
{

regular instruction;

Partl Part2

regular instruction;

function encryption(balanced_plaintext)

@)
Data Balanced
Memory Encryption result
/
U \
Direct data Complementary data

(a)

Part1 Part 2
direct operations Complementary operations
Power Power
\ y J
Total power

/ data-independent

- 5

(b)

Figure 3: (a) Concept of the proposed solution: balanced processor and VSC programming; (b) Power
dissipation from the new balanced processor system does not reveal the processed data.

clear the execution datapath. Following that, the balanced
instruction finishes the calculation.

With the above concept, we obtain a software version of
DRP circuit. For a balanced instruction, similar to the DRP
gate shown in Figure 2, the power dissipation from the direct
operation always has a complementary counterpart from the
complementary operation. The sum of these two is a con-
stant, shown in Figure 3b. Suppose the output of the bal-
anced instructions contains the direct and complementary
forms of the intermediate value IV mentioned in Section 2,
attackers are not able to go from the power of the balanced
instructions to the value of IV. Therefore, IV is protected.
If every intermediate value in the cryptographic algorithm
is processed by the balanced instructions, then the entire
algorithm is secured. This kind of software program is the
VSC.

3.2 Implementation

The previous section describes the concept of VSC. The
next step is to map the concept to the processor implemen-
tation. This includes the implementation of the balanced
instructions, the pre-charge instructions and the secure pro-
gramming style that leads to DRP behavior.

3.2.1 Balanced Instructions

The instruction set architecture of a processor includes
different instructions. The logic function of the software
is realized with logic instructions, such as AND, OR, and
NOT. In theory, any algorithm can be realized with these
three instructions. For higher efficiency, processors also im-
plement the arithmetic instructions that are frequently used,
such as ADD, SUBTRACT, and MULTIPLY. In addition to
that, due to the processor architecture, shift instructions and
data instructions, such as MOVE, LOAD, and STORE, also
appear in the instruction set architecture. Finally, the pro-
cessor also provides the control instructions, such as JUMP
and conditional JUMP.

As mentioned above, each balanced instruction executes
a pair of complementary operations. To make the balanced

datapath compatible with the regular datapath, the width of
either the direct or the complementary datapaths is designed
to be half of the regular datapath’s width. Thus, the entire
datapath of a balanced instruction is as wide as the regular
instructions.

After fixing the width of the balanced instructions, the
next step is to fix the functions. The integration of bal-
anced instructions follows the rule that balanced instruc-
tions take balanced inputs and generate balanced outputs.
The proposed solution chooses balanced instructions accord-
ing to the existing regular instruction set architecture. This
enables the design flow of the VSC software to reuse the ex-
isting compiler for the regular instructions. The details are
as follows.

Among the logic operations, NOT is the complementary
instruction for itself. This means that if half of the input
is direct value and the other half is complementary value,
the output of NOT is still a pair of complementary values.
Therefore, the regular NOT instruction can also be used
as the balanced NOT instruction. The AND operation has
OR operation as complementary counterpart and vice versa.
Therefore, the balanced AND instruction (b_and) should be
half AND for the direct input and half OR for the com-
plementary input. Similarly, the balanced OR instruction
(b_or) should be half OR and half AND, shown in Figure 4.
With balanced AND, OR, and NOT, any complex logic func-
tion can be realized.

Shift and data instructions are similar. They both move
the programs’ intermediate values from one storage location
to another. Since ‘move’ operations do not change the val-
ues of the operands, their complementary counterparts are
themselves. Similar to NOT instruction, shift and data in-
structions are shared by both balanced and regular instruc-
tions, shown in Figure 4.

Currently, we have not found easy and efficient ways to
design balanced arithmetic and control instructions. But
fortunately, a number of cryptographic algorithms can avoid
using these instructions. For example, the AES algorithm
has a fixed control flow. So arguments of the control in-

(a) invrl, 12 (b) mov rl, 12

—D_
E—,
—D—

(¢)b_andrl, 12,13

Figure 4: (a) Regular INV can be used as a balanced
INV; (b) Regular MOV can be used as a balanced
MOV; (c) Balanced AND instruction uses half AND
operators and half OR operators.

structions are not functions of the key or the plain text in-
put. It does not influence the security even if the attackers
know these intermediate values. Another possible question
is that, without balanced arithmetic instructions, whether it
is practical to realize the software only with balanced logic
instructions. Normally, using logic instructions to replace
arithmetic instructions is very inefficient. However, for a
number of cryptographic algorithms, only logic instructions
are needed. Therefore, even though we do not have bal-
anced arithmetic instructions, these cryptography can still
be implemented without decreasing the efficiency too much.

In summary, the proposed solution only needs to add
two balanced instructions (balanced AND and balanced
OR). NOT, shift, and data instructions can be shared
between regular and balanced instructions. This makes the
modification to the processor very tiny.

3.2.2 Pre-charge Instructions

As mentioned in Section 2, besides complementary dat-
apath, DRP technique also requires pre-charge operations.
The proposed solution also faces the problem on how to im-
plement pre-charge instructions for the same purpose. A
pre-charge operation needs to pre-charge not only the result
storage but also the computational datapath. For a balanced
processor, a pre-charge instruction needs to pre-charge the
processor’s datapath and the destination registers or mem-
ory locations.

In the DRP circuits, pre-charge is usually done by pre-
charging the inputs. The proposed solution uses a similar
way to realize the pre-charge operations. It turns out that by
setting the input operands of different balanced instructions
to 0, the corresponding outputs are either all 0 or all 1 (for

’
’

’ \

7

- datapath 2

Figure 5: Processor architecture: (a) Three datap-
aths in a processor [15]; (b) Datapath for AND oper-
ation.

NOT). Since all 0 and all 1 are both acceptable pre-charge
results, the pre-charge operation of a balanced instruction
can be done by just executing the same balanced instruction
with all 0 inputs.

In summary, there is no need to add additional dedicated
pre-charge instructions. Every balanced instruction can fin-
ish the pre-charge operation for itself by taking all 0 as the
inputs.

3.3 Security Analysis

While a VSC is software, its ultimate objective is to re-
duce the side-channel leakage originating from hardware, and
more specifically from the processor that executes the VSC.
This section explains why VSC has the same security feature
as the DRP circuits.

we first analyze what parts of the processor are potential
sources of side-channel leakage. For this purpose, we ana-
lyze the flow of information within a processor, as shown
in Figure 5a. We can distinguish three different datap-
aths [15]. The first datapath is the computational datap-
ath. It starts from the register file, goes through the Arith-
metic Logic Unit (ALU), and returns to the register file.
For memory-operations, there are two additional datapaths.
The memory-load datapath is used to transfer information
from memory to the register file. The memory-store datap-
ath is used to transfer information from the register file to
the memory.

Each of the above datapaths is a potential source of side-
channel leakage. For example, Figure 5b shows the execution
of an AND operation, which configures the computational
datapath as an array of AND gates. Clearly, this operation
leads to data-dependent power dissipation which must be
avoided. Therefore, if we can protect each of these three
datapaths, the microprocessor instructions that only make
use of these datapaths will also be secure.

Finally, we demonstrate that a VSC is functionally equal

; regular program VSC program

; %r0 =0
1. not %rl,%r6 1. not %r0,%r6
2. not %r2,%r7 [:> 2. not %rl,%r6
3. and %r6,%r2,%r3 3. not $r0, %r7
4. and %r7,%rl,%r4 4. not %r2,%r7
5. or $r3,%rd,%rl 5. b and %r0,%r0,%r3
6. b_and %r6,%r2,%r3
for pre-charge —> 7. b _and %r0,%r0,%r4
7 8. b_and %r7,%rl,%r4
for computation 9. b or %r0,%r0,5%rl
10.b_or %r3,%r4,%rl
(a) (b)

,,,,,,,,,,,, Di complementary

(©)

Figure 6: (a) Regular program of Leon3 [1] assembly
code; (b) VSC program of Leon3 assembly code; (c)
Equivalent DRP circuit.

to a DRP circuit. Figure 6 shows an example of a regu-
lar program (Figure 6a), a VSC program (Figure 6b) and a
DRP circuit (Figure 6¢). All of them accomplish the same
function. In the VSC program, bold instructions act as bal-
anced instructions. Other instructions before each of them
are used for the pre-charge purpose. '’b_and’ and ’b_or’ are
balanced AND and OR instructions.

Two successive pre-charge and balanced instructions cor-
respond to the pre-charge and evaluation activities of a logic
gate (vector) in the circuit in Figure 6c. The numbers an-
notated within the logic gates correspond to line numbers of
the balanced instructions in the VSC program. In between
each logic gate, a register is inserted. They are equivalent to
the registers in the processor’s register file. The pre-charge
instruction will reset that register before loading it with sen-
sitive intermediate values. In addition, the direct and com-
plementary operations are activated by the same balanced
instruction at the same time. Therefore, when executing a
pre-charge instruction followed by a balanced instruction,
the circuits inside the processor behave exactly the same as
a part of DRP circuit in Figure 6¢c. We conclude that a VSC
is a sequentialized version of a DRP circuit. Moreover, the
VSC may inherit the properties of a DRP circuit.

4. VSC PROGRAMMING

This section presents a method for VSC programming on
the balanced processors so that SCA can be thwarted. Com-

regular programming

EERIEX

al[2] | a1[1] | a1[o]

r3 - a2(2] | a2(1] | a2[0]

and r1,r5,r9 r9 -

r4 m a3[1] | a3[0]
|:> and r2,r6,r10 |:> r10 -
s [soa1 [otz [5001} and r3,r7,r11 mf| Jew]ew]aeo]
6 b112] | b111 [b110) and r4,r8,r12 2| [om]ew]eo]

b3[2] | b3[1] | b3[0] | €<—— one element stored in one register

(a)

bitslice programming

r1| a3[o0] | a2[0] | a1[0] | ao[0]

!
=

r2| a3(1] | a2[1] | a1 a0[1]

13 a3 a2 [a1
[sow |

and r1,r5,r9 r9 | <3l0l | c2[0] | c1[o] | cofo]

and r2,6,r10 |:>r10 et | 2l | cana [comy
r5 | b3fo) r11] a2 -cZ[Z] -cllz] <o[2]
r6 | b3[1] | b2[1] | b1[1] | bO[1]

7 <—— one element stored in several registers
(b)

and r3,r7,r11

%

VSC programming

b_and r0,r0,r9
b_and r1,r5,r9 r9 0]
b andr2r6r10 [[T o [S51]
E> b_and r2,r6,r10 E> r1o el
b_and r0,r0,r11 ril o[2]

b_and r3,r7,r11

r6| b1(1] |Em boi1] | bofa]
o7 oz [t] oo [6i21] < 512 - wor eorzn

()

Figure 7: Processing arrays A: (a0,al,a3,a4) and B:
(60,01,62,b3) with AND operations to generate C:
(c0,cl,c2,c3). Each array element is 3-bit long while
the processor’s datapath is 4-bit long. (a) regular
programming; (b) bitslice programming; (c¢) VSC
programming.

pared with the regular programming, VSC programming has
two basic constraints. First, only the balanced instructions
can be used. Second, the direct or the complementary dat-
apath can only take half of the datapath of the processor.
There could be different methods to deal with these two con-
straints. Here, we show a general solution based on bitslice
programming.

4.1 Bitdlice Programming

Bitslice programming is a special programming method.
The idea is to break the software applications into only logic
operations at the bit level, such as AND, OR, NOT, and
XOR. The software’s logic function is realized bit by bit.
This is similar to the hardware implementation, with every
operation equivalent to one logic gate. Porting this idea to
a n-bit processor results in n application instances running
in parallel. Figure 7 shows a simple example on bitslice
programming.

Suppose the application is AND operation and runs on
a 4-bit processor. We use this application to process two

arrays A: (a0, al,a2,a3) and B: (b0,b1,2,03) and generate
the result C: (c0,cl,c2,¢3). c¢i = ai AND bi. Every array
element is 3-bit long, for example a0 can be represented as
(a0[2],a0[1],a0[0]). Figure Ta shows the process based on
regular programming. Every element is stored into a pro-
cessor register. AND operations are used to process the
elements, with each operation generating one element of C.
In contrast, bitslice programming views the problem in a
different way. Each array element is distributed over differ-
ent registers. The operation on each array element is broken
down to the bit level. Therefore, instead of 1 AND instruc-
tion, 3 AND instructions are needed to generate one element
of C array. However, since the processor has a 4-bit wide
datapath, another 3 exactly the same application instances
can be done in parallel. Hence, the operations in Figure 7a
can also be finished in Figure 7b.

Bitslice programming guarantees that the processor’s dat-
apath is under full usage, which may make it more efficient.
However, it also has limitations. First, bitslice programming
only uses logic instructions for computation. So for software
applications that use a lot of arithmetic operations, bitslice
programming loses efficiency. Second, running n identical
application instances in parallel generates n times of inter-
mediate results. These results need to be moved out to the
memory in case the processor’s registers are not enough.
This will also reduce the efficiency.

Even though it has the above limitations, bitslice pro-
gramming for symmetric-key cryptography is still popular.
By now, we have seen bitslice programming under intensive
research on two most important symmetric-key algorithms,
including DES [4] and AES [9, 11, 13]. The reason is that
symmetric-key cryptography seldom uses arithmetic opera-
tions, which makes the first constraint not a problem.

To deal with the second constraint, improved bitslice
schemes have been proposed. The main idea is to reduce
the number of encryption instances running in parallel,
while maintaining a full usage of the processor’s datapath.
In this case, instead of taking only 1 bit of the register, one
encryption instance takes multiple bits. Similar interme-
diate bits in one encryption instance are organized in one
register. The operations on them are usually the same, even
though not always identical as in the basic idea of bitslice
programming. Once the operations for different bits in the
same register are different, shift operations are employed
to separate them for different operations and join them
together after that. This sacrifices some computational
efficiency but reduces data movements between the registers
and the memory. The bitslice programming for AES that
we will use for demonstration follows this method.

4.2 VSC Programming Based on Bitdice

Bit-slicing programming is a very suitable starting point
for VSC programming. First, bitslice programming only
uses bit-level logic instructions for computation. These in-
structions can easily find complementary counterparts. Sec-
ond, bitslice programming can easily meet the requirement
that direct operation only takes half of the processor’s dat-
apath. This can be done by simply changing the number of
instances. Therefore, it is very easy to convert the bitslice
programming to VSC programming.

Figure 7c shows how to convert the example depicted in
Figure 7b to a VSC. Instead of running 4 direct applica-
tion instances together, we maintain 2 instances as direct

and change another 2 to the complementary instances. This
easily fits into the balanced processor. In detail, doing VSC
programming based on bitslice programming can simply go
with the following two steps.

e Do bitslice programming for the cryptographic ap-
plication. Implement even number of application
instances in parallel. Make sure that each applica-
tion instance either falls into the direct part or the
complementary part of the balanced processor. This
guarantees that, after converted a VSC, the applica-
tion instance either remains as a direct instance or is
completely converted to a complementary instance.

e Convert the regular instructions to balanced instruc-
tions. Add the correlated pre-charge operation before
each balanced instruction.

To demonstrate the effectiveness of VSC, we chose the
AES algorithm as the attack target. The bitslice AES was
designed according to the method presented in [11]. Follow-
ing the above two steps, we obtained a VSC AES on a 32-bit
processor. Every AES instance takes 16 bits of the proces-
sor’s datapath. So in VSC AES, one direct AES and one
complementary AES run in parallel. One detail about VSC
AES is with the XOR instruction. Since the complementary
counterpart of XOR, XNOR, cannot be pre-charged by sim-
ply applying 0 on the inputs, we expand XOR to AND, OR,
and NOT instructions. Actually, the logic operation shown
in Figure 6 is a XOR operation that has alreadly been ex-
panded.

From the existing efficient designs of bitslice symmetric-
key cryptography, we can see that the mainstream
symmetric-key cryptography algorithms can all be easily
converted to VSC. So although the current version of VSC
may not support the software with arithmetic operations
well, it can still be applied to a great amount of security
systems.

5. EXPERIMENTAL RESULTS

To demonstrate that VSC on the complementary pro-
cessor improves the resistance against SCA, this section
presents the experimental results based on real attacks.

5.1 Experimental Setup

We used Leon3 embedded processor [1] to build a balanced
processor prototype. Both the regular bitsliced AES and the
VSC bitsliced AES discussed in Section 4 were chosen as the
attack targets. To convert Leon3 to a balanced processor, we
replaced the operations of two existing instructions (ANDN
and ORN) with complementary AND and OR operations.
Since ANDN and ORN instructions are not used by the bit-
sliced AES, this does not influence the correctness of the
software and helps to quickly build up the prototype.

The prototype was realized on a FPGA board with a Xil-
inx Spartan 3E-1600 FPGA. The balanced Leon3 processor
was implemented with FPGA resources, clocked at 50 MHz,
while the software applications under test were stored in
the on-board DDR2 SRAM memory. An AES encryption
key was stored in the DDR2 SRAM and could not be read
out of the board.

The experimental setup contained a FPGA board, an os-
cilloscope (Agilent DSO5032A) and a PC, shown in Figure
8. A RS232 cable connected the FPGA board and the PC to

Current probe
measuring current
flowing into the
FPGA core

Leon3 in USB cable connecting
GA oscilloscope and PC

RS232 cable connecting
FPGA and PC

Figure 8: Experimental setup.

Algorithm 1 Program for Leon3 on FPGA
exp_key < KeyExpansion(key)
loop
if UART is not empty then
wait until 16 bytes received
in[15 : 0] <= UART_FIFO
end if
out[15 : 0] <= cipher(in, exp_key)
end loop

enable the communication between these two. The oscillo-
scope used a current probe (Tektronix CT-2) to monitor the
current flowing into the FPGA core. Here, current is used to
represent the power of the FPGA. Between the oscilloscope
and the PC, a USB cable was used for communication. PC
was able to send command to the oscilloscope, for example
to require the oscilloscope to sample current traces with the
current probe. After one sampling finished, PC was able to
obtain the current sample trace also through the USB ca-
ble. Power measurement for SCA required the collaboration
of these three parts. For every measurement, the following
steps of operations are performed.

e The PC sends a random plaintext message (16 bytes)
(PT) to the FPGA board through the RS232 cable.
The PT is also recorded in the PC.

e The balanced Leon3 processor in the FPGA receives
PT from the RS232 cable, calculates the correspond-
ing complementary message PT and starts the cryp-
tographic program with PT and PT. The program
running on the Leon3 is shown in Algorithm 1. cipher
is the cryptographic application under attack.

e After sending out PT, the PC sends command to the
oscilloscope to sample the current trace when Leon3 in
the FPGA is performing encryption.

e When sampling is done, the oscilloscope sends the cur-
rent trace T'R[999:0] (1000 sampling points) back to
PC for further analysis.

5.2 Correlation Power Attack

With the above measurement results, a SCA was mounted
called Correlation Power Attack (CPA) [5]. In our experi-
ments, CPA focused on the outputs of the SubBytes step
(16 bytes) in the first round of the AES algorithm. Every
output was only related to one byte of the key. CPA is a
searching process. To attack one key byte, it goes through
every possible value of that key byte (28 = 256 possible val-
ues). For different key guesses, we have different outputs of
the SubBytes operation. Accordingly, different power dis-
sipations are expected, called power hypothesis. A decision
function calculates the correlation coefficient of the power
hypothesis and the actual current measurement traces, and
identifies the correct key value that is used by the encryp-
tion: the correct key guess results in larger correlation coef-
ficient than any other incorrect key guess.

Every sample trace has 1000 sample points. These points
cover a certain range of time (500 us in our experiments)
which includes the calculation of the first round of the AES.
Although the attackers do not know which points correspond
to the instruction execution related to the SubBytes’s out-
puts, they can still try every point. This increases the anal-
ysis complexity but the analysis time is still acceptable.

5.3 Results

This section assumes that the reader is familiar with the
SCA result analysis [12]. The key point is Table 1, which
shows the protected AES is much harder to attack.

Experiments first compared the unprotected AES (AES)
and the protected AES (VSC-AES) implementations. Fig-
ure 9 shows an example of the attack results on one of AES’s
key bytes with 5120 measurements. The x-axis represents
the time that each measurement covers. The first round ex-
ecution of AES occurs within this time range. The y-axis
represents correlation coefficient between the power hypoth-
esis and the actual current measurement. At each sampling
point (1000 in total), we mount the CPA analysis, which
results in 256 correlation coefficients for 256 possible key
values. After finishing SCA analysis at 1000 different sam-
pling points, Figure 9 is obtained. The black trace corre-

0.3
0.2
c
S 01
k)
g
s 0
O
0.1

“0 100 200 300 400 500
Time(us)

Figure 9: Attack result on unprotected AES: Corre-
lation between the sampled current and the power
expectations with 5120 measurements. Correct key’s
trace is plotted in black, while all other key’s traces
are in gray. The emerged black trace means successful
attack.

0.3
0.2

0.1

o g Mg P e

“0 100 200 300 400 500
Time(us)

Correlation

Figure 10: Attack result on protected VSC-AES:
Correlation between the sampled current and the
power estimations with 5120 measurements. Cor-
rect key’s trace is plotted in black, while all other key’s
traces are in gray. The buried black trace means un-
successful attack.

sponds to the correlation coefficients at 1000 different time
points when the correct key byte value is used to calculate
the power hypothesis. The gray traces corresponds to other
incorrect key byte values. It turns out that the black trace
differentiates itself from all the other gray traces (around
200us). This means that the correct key byte value can be
identified and the attack is successful.

The experiment also mounted the same CPA attack on
VSC-AES implementation. The example of the attack on the
same key byte as in Figure 9 is shown in Figure 10. The black
trace is totally buried into the gray traces. So the correct
key byte value is not identifiable. Therefore the attack is
not successful.

Figure 9 and 10 give two visualized attack examples when
the sampling trace number is 5120. To quantify the security
improvement, researchers usually use Measurement to Dis-
closure (MTD). MTD means the number of measurements
required for a successful attack. Larger MTD indicates bet-
ter security. Here, we define the successful attack to be
uncovering all 16 bytes of the AES key. Table 1 presents
more detailed attack results. For AES, 1280 measurements
are sufficient to uncover all 16 key bytes. For VSC-AES, the
number of measurements for full attack increases to 25600.
The improvement is as high as 20. These results were ob-
tained from the power expectation which is the Hamming
weight of the entire byte of the SubBytes’s output. We
name this as byte-based Hamming weight model. We also
tested the power expectation which is the Hamming weight
of each bit of the SubBytes’s output, named bit-based Ham-
ming weight model. In our experiments, byte-based model
is more efficient.

To further verify the correctness of VSC, we mounted at-
tacks on variants of VSC-AES: 1) only the direct path of VSC-
AES without complementary path (VSC-AES nocomp), and 2)
VSC-AES without pre-charge operations (VSC-AES noprch).
All these designs could be broken with a similar effort to
break AES, as shown in Table 1.

Table 1 also shows that VSC-AES pays 6.5 times decrease
of throughput and 3.3 times increase of footprint for higher
capability of resisting CPA. We estimate that the energy cost

increases 6.5 times since the power remains more or less the
same. Since our AES implementations unrolled the major
loop of AES: 10 rounds of operations. So the footprints for
both AES and VSC-AES are relatively large. However, it is
reasonable to expect both footprints to decrease by 10 times
if the unrolling is not done.

54 AnalysisBased on Results

The experimental results shown above demonstrate that
VSC on the complementary processors presents an effective
way to improve cryptographic software’s resistance against
SCA. The side-channel resistance improvement of VSC-AES is
in the same order as the improvement offered by the WDDL
prototype IC chip [18], a real DRP circuit countermeasure.
Compared with the unprotected design, VSC-AES provides
20 times improvement while the WDDL prototype IC offers
100 times improvement.

Compared with the WDDL prototype IC, VSC did not
spend much effort to the structural symmetry between di-
rect and complementary datapaths, although they are lo-
cated in adjacent bits (Figure 4). Due to this reason, it is
reasonable to see a smaller improvement than the WDDL
prototype IC. Since intermediate values in software usually
have longer life time than their counterparts in the hard-
ware, software is usually more vulnerable than hardware.
As a result, VSC-AES can be attacked with fewer measure-
ments than the WDDL prototype IC. However, VSC pos-
sesses a potential for improvements. This is because VSC
has a high flexibility. Other countermeasures, for example
masking, can be easily integrated to VSC. In this case, the
baseline design is not a unprotected software but a protected
software with masking solutions. This combination of hid-
ing and masking countermeasures has already been demon-
strated to be effective by the MDPL circuits [17]. Due to the
similarity between VSC and DRP circuits, it is reasonable
to expect the same improvement for VSC based masking
software countermeasures.

Another advantage of VSC is the low hardware cost. The
only modification made to the hardware is two simple bal-
anced instructions. In contrast, DRP circuits is usually from
3.4 times [20] to 12 times [22] larger than the regular circuits.
This is a critical issue that prevents their broad acceptance
by the industry. What VSC pays is not the hardware cost,
but the performance and the memory storage. Considering
the memory storage is becoming cheaper and cheaper and
is reusable, if the reduced performance is still acceptable to
the applications, VSC sees a promising future.

6. CONCLUSION

This paper presents a new software countermeasure
against Side Channel Attacks. The new countermeasure
emulates the secure hardware circuit. Due to this, the
processor system has similar power dissipation as the secure
circuits and therefore can resist Side Channel Attacks as
the secure circuits do. The corresponding software is called
Virtual Secure Circuits. To support this emulation, this
paper also presents the concept and the implementation of
the balanced processors, the balanced instructions, and the
method to program Virtual Secure Circuits. Real attacks
showed that Virtual Secure Circuits improve the security
by 20 times. Besides the security improvement already
obtained, Virtual Secure Circuits still have a large improve-
ment space to cooperate with other countermeasures for

Table 1: Attack results summary.

Parameter AES VSC-AES VSC-AES VSC-AES
byte-based bit-based nocomp noprch
throughput (kb/s) 207*%2=414 64 — —
footprint (kB) 45.7 150.2 — —
key bytes NOT found
Q@ 512! 3 16 16 4 7
@ 1280! 0 15 15 0 0
@ 5120* 0 9 10 0 0
@ 128001 0 4 5 0 0
@ 25600* 0 0 2 0 0

1
Number of measurements.

even better security. Moreover, Virtual Secure Circuits also
see a promising future because of its high flexibility and low
requirement for additional hardware cost.

7. ACKNOWLEDGMENTS

This research has been supported in part by National Sci-
ence Foundation (NSF) Grant No. 0644070.

8. REFERENCES

[1] Aeroflex Gaisler. LEON3 Multiprocessing CPU Core.
available at http: //www. gaisler. com/doc/ leon3_
product_ sheet. pdf.

[2] M.-L. Akkar and C. Giraud. An Implementation of
DES and AES, Secure against Some Attacks. CHES
2001, LNCS 2162:pp. 309-318, 2001.

[3] J. A. Ambrose, R. G. Ragel, and S. Parameswaran.
’rijid: Random code injection to mask power analysis
based side channel attacks”. DAC 2007, pages pp.-
489-492, 2007.

[4] E. Biham. A Fast New DES Implementation in
Software. FSE 2005, LNCS 1267:pp. 260-272, 1997.

[5] E. Brier, C. Clavier, and F. Olivier. Correlation Power
Analysis with a Leakage Model. CHES 2004, LNCS
3156:pp. 16-29, 2004.

[6] S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis
Attacks. CRYPTO 1999, LNCS 1666:pp. 398-412,
1999.

[7] C. Clavier, J.-S. Coron, and N. Dabbous. Differential
Power Analysis in the Presence of Hardware
Countermeasures. CHES 2000, LNCS 1965:pp.
252-263, 2000.

[8] C. H. Gebotys. A Split-Mask Countermeasure for
Low-Energy Secure Embedded Systems. ACM
Transactions on Embedded Computing Systems, Vol.
5(No. 3):pp. 577-612, 2006.

[9] E. Késper and P. Schwabe. Faster and Timing-Attack
Resistant AES-GCM. CHES 2009, LNCS 5747:1-17,
2009.

[10] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power
Analysis. CRYPTO 1999, LNCS 1666:pp. 388-397,
1999.

[11] R. Konighofer. A Fast and Cache-timing Resistant
Implementation of The AES. CT-RSA 2008, LNCS
4964:pp. 187-202, 2008.

[12] S. Mangard, E. Oswald, and T. Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards.
Springer, 2007.

[13] M. Matsui and J. Nakajima. On the Power of Bitslice
Implementation on Intel Core2 Processor. CHES 2007,
LNCS 4727:pp. 121-134, 2007.

[14] NIST. Annoucing the ADVANCED ENCRYPTION
STANDARD (AES). available at
http: //csrc. nist. gov/publications/ fips/
fips197/ fips-197. pdf, 2001.

[15] J. Nurmi. Processor Design.
10.1007/978-1-4020-5530-0. Springer Netherlands,
2007.

[16] E. Oswald and K. Schramm. An Efficient Masking
Scheme for AES software Implementations. WISA
2005, LNCS 3786:pp. 292-305, 2005.

[17] T. Popp and S. Mangard. Masked Dual-Rail
Pre-charge Logic: DPA-Resistance Without Routing
Constraints. CHES 2005, LNCS 3659:pp. 172-186,
2005.

[18] K. Tiri, D. Hwang, A. Hodjat, B. Lai, S. Yang,

P. Schaumont, and I. Verbauwhede. Prototype IC with
WDDL and Differential Routing - DPA Resistant
Assessment. CHES 2005, LNCS 3659:pp. 354-365,
2005.

[19] K. Tiri and I. Verbauwhede. Securing Encryption
Algorithms against DPA at the Logic Level: Next
Generation Smart Card. CHES 2008, LNCS 2779:pp.
125-136, 2003.

[20] K. Tiri and I. Verbauwhede. A Logic Level Design
Methodology for a Secure DPA Resistant ASIC or
FPGA Implementation. Proceeding of DATE 2004,
vol. 1:pp. 246-251, 2004.

[21] S. Yang, W. Wolf, N. Vijaykrishhnan, D. N. Serpanos,
and Y. Xie. Power Attack Resistant Cryptosystem
Design: A Dynamic Voltage and Frequency Switching
Approach. DATE 2005, pages pp. 1530-1591, 2005.

[22] P. Yu and P. Schaumont. Secure FPGA Circuits Using
Controlled Placement and Routing. CODES+I1SSS
2007, pages pp. 45-50, 2007.

