

Patrick Schaumont (ECE Dept, Virginia Tech) Abhranil Maiti (ECE Dept, Virginia Tech) Zhimin Chen (ECE Dept, Virginia Tech)

Dagstuhl July 2009

Outline

Thermal Covert Channel Filtering

- On-chip heat generation and detection
- Optimized detection using DSP
- Thermally indifferent PUF
 - Temperature Effects on PUF
 - Mitigating Temperature Effects
 - Area Optimized solution
- Measuring lots of (FPGA) chips ...

Covert Channel based on Heat

Bandwidth ~ 0.0138 bps

Brouchier, Kean, Marsh, Naccache, "Thermocommunication," ePrint IACR 2009/002

How *covert* can we make it?

- Temperature profile on an FPGA over 1 day
 - On-chip temperature measurement
 - We touched the FPGA package two times for a few seconds. Can you see when?

How touching a package affects T

Pedram, Nazarian, "Thermal Modeling, Analysis, and Management in VLSI Circuits: Principles and Methods," Proc. IEEE, August 2006

Can information be more covert?

- Detecting Temperature *events* on an FPGA
 - SNR of 24-hour measurement is very poor
 - The energy in the event of interest if very small
 - But the event of interest may be band-limited !

Our communications system

- We need
 - A good sensor: sensitive, high bandwidth
 - A good detector

Bandwidth and Resolution of Sensors

CLASSIFICATION OF TEMPERATURE MONITORING	D 1 111	Lateral	Temperature
METHODS	Bandwidth	resolution	resolution
NON EMPEDDED METHOD		resolution	resolution
NON EMBEDDED METHOD			
NON CONTACT METHODS			
Infrared emission thermography	50 kHz[23]	10 µm[1]	0.02°C[24]
Thermoreflectance	150 MHz	0.5 μm	0.001°C
Interferometry	150 MHz	0.5 µm	1 fm ~
		·	0.0001°C
CONTACT METHODS			
Liquid crystal thermography[25,67,68]	0.01 Hz	1 μm	0.1°C
Fluorescent microthermography[4]	0.01 Hz	0.7 μm	0.01°C
Scanning Thermal Microscopy[26]	100 kHz	50 nm	0.001°C
EMBEDDED METHODS			
Absolute temperature sensors	>1 MHz	No	
Differential temperature sensors[6]	>1 MHz	No	0.01 °C

Altet, Claeys, Dilhaire, Rubio, "Dynamic Surface Temperature Measurements in ICs," Proc. IEEE, August 2006.

Ring-oscillator based Thermal Sensor

Sample a Free-running Ring Oscillator

Ring-oscillator based Thermal Sensor

How good is this structure in detecting temperature variations?

- Detection bandwidth is limited by f_s/2
- However, a high f_s is not ideal either –Processing load
- Digital RO cannot be alias-free

Our communications system

Select band based on expected signal

Select band based on expected signal

After Filtering

- 1. Suitable filtering based on DSP drastically increases sensitivity
- 2. Chip Temperature Sensors can have a high bandwidth (~MHz)

(Open issue: how well can this be exploited with simple on-chip sensors?)

or:

(Can thermal sensors be used for sidechannel analysis as well?)

Outline

Thermal Covert Channel Filtering

- On-chip heat generation and detection
- Optimized detection using DSP
- Thermally indifferent PUF
 - Temperature Effects on PUF
 - Mitigating Temperature Effects
 - Area Optimized solution
- Measuring lots of (FPGA) chips ...

RO-based PUF

Self-Heating

Ensure RO's use low duty factor

S. Lopez-Buedo et al, "Thermal Testing on Reconfigurable Computers," IEEE Design and Test, 4-11, Jan-Mar 2000.

Temperature Dependence

S. Lopez-Buedo et al, "Thermal Testing on Reconfigurable Computers," IEEE Design and Test, Jan-Mar 2000.

Temperature Dependence

S. Lopez-Buedo et al, "Thermal Testing on Reconfigurable Computers," IEEE Design and Test, Jan-Mar 2000.

Brute-forcing stability

- Instead of comparing a pair of RO, consider a group of RO
 - Use only the maximum or minimum f [Suh 2007]
- This reduces the useful C/R space
- In turn, this leads to larger PUFs (more RO's), higher cost

Compact, stable RO

Configurable Ring Oscillator

8 RO for the price of one

- Configurable Ring Oscillator
 - Fits in a single CLB, uses only local routing
 - Reproducible macrocell

Selecting the Configuration

Tuning:

a/ Apply each configuration {c0, ..., c7} to A *and* B (this removes all dependencies on routing)

b/ Determine and store the configuration g(A,B)=j for which maximum absolute frequency difference is obtained

Usage:

Each time pair A, B is compared, select configuration j

C/R Strategy for 128 RO

- Fixed C:
 - Pairwise comparison of adjacent RO pairs
 - Compensate for correlated effects

CLB Columns

Measurements on 128-RO PUF

Unstable bits

Remember

- 1. Architecture Optimization can simultaneously address PUF stability and resource cost
- 2. Increasing PUF stability will simplify postprocessing (*helper data processing*)

Outline

Thermal Covert Channel Filtering

- On-chip heat generation and detection
- Optimized detection using DSP
- Thermally indifferent PUF
 - Temperature Effects on PUF
 - Mitigating Temperature Effects
 - Area Optimized solution
- Measuring lots of (FPGA) chips ..

Recent PUF work

Hard to get PUF performance data for large populations (> 100 chips)

Table 1: Previous work on experimental FPGA Variability Analysis						
Researcher	Die-to-die	Within-die	Circuit	Technology	Population	
	Measurement	Measurement		(nm)		
Sedcole [15]	yes	yes	Ring Osc	90	18	
Kassapaki [19]	yes	no	Delay	150	4	
Onodera [20]	yes	yes	Ring Osc	90		
Suh [21]	yes	yes	Ring Osc	90	15	
Guajardo [22][23]	yes	yes	SRAM	90	2	
Kumar [25]	yes	yes	Latch	65	36	
Maes [26]	yes	yes	Delay	130 & 90	9 & 20	
Holcomb [27]	yes	yes	SRAM*	90	8	
* standalone SRAM chips attached to an FPGA rather than on-chip SRAM						

NSF Project

• Infrastructure to collect and analyze circuit variability in FPGAs

