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ABSTRACT 

Embedded Systems Architectures are hard to design, and there is 
no generally accepted method of doing it. In recent years, this 
problem has become even harder because of the wide variety of 
programmable components (FPGA, ASIP, DSP, …). We propose 
hardware/software codesign as a starting point for teaching the 
topic. Codesign helps designer-students to think about 
architecture design in terms of a trade-off between performance 
and flexibility. Our senior-level undergraduate course in 
hardware/software codesign includes a hands-on project that 
requires students to optimize embedded system architecture across 
the traditional boundaries of hardware and software. We describe 
a lab series that combines system modeling with refinement on an 
FPGA board, and that concludes with a class-wide 
hardware/software codesign contest. The results of the contest 
clearly illustrate the strengths of ‘systems thinking’ over 
‘component thinking’. 

1. INTRODUCTION 
 

Embedded Systems Architecture design is the task of 
selecting and programming a suitable configuration of 
components for a given system application. Programmable chip 
companies, with the help of Moore’s law, are providing us with 
amazing selection of components to do this. Traditionally, the 
creation of embedded system architectures used to be relatively 
straightforward: use a microcontroller for flexibility and add 
hardware peripherals for specialized functions. Nowadays, 
designers can apply multiple component types (e.g. Field 
Programmable Gate Arrays, Digital Signal Processors, and 
Application-Specific Instruction-set Processors) to find the 
optimum over multiple design objectives, including system 
flexibility, power consumption, design cost, and design time. 

 
Building embedded system architectures is not an easy task. Each 
programmable component comes with its own design flow and 
tools, and with its own programming model. Each one presents a 
separate learning curve to the designer.  

This contribution considers how embedded-system educators can 

help future engineers to prepare for this complex architecture 
design space. Obviously, it is not feasible to train students in each 
possible programmable technology – there are too few hours in a 
semester to do that. In current practice, educators select a single 
component type (e.g. FPGA), and then teach students how to map 
and optimize an example application for this component. 
Educators thus use a thematic, application-driven approach to 
train students [1]. In order to cover a broader problem space 
(more component types or more applications), a structured 
approach to teaching embedded systems architecture may be 
preferable. This is an important motivation for developing a 
structured introduction to hardware/software codesign [2].  

A central idea in hardware/software codesign is to merge two 
design processes: hardware design uses spatial decomposition and 
is well suited for performance, while software design uses 
temporal decomposition and is well suited for flexibility. A 
successful combination of hardware and software enables 
designers to obtain solutions that are the right combination of 
flexibility and performance. Thus, we think of hardware/software 
co-design as a simplified version of the more complex trade-off 
that needs to be made during embedded systems architecture 
design, namely the partitioning between platform architecture and 
platform function. For this reason, we think that 
hardware/software co-design is the proper starting point for 
education in this area.  

Among programmable components, FPGA platforms have been 
very successful in providing a target that equally suits software 
design and hardware design. Several courses have explored this in 
the context of codesign [3] [4]. We also note that there is a 
complementary view to embedded systems design which starts 
from a software-centric system view (rather than a hardware-
centric system view). In that case, the problem being addressed is 
how to teach architecture-specific software. The Embedded 
Software consortium in Taiwan, for example, has defined a 
software curriculum because of the high add-on value that 
software can bring to hardware design [5]. Vanderbilt University 
has defined and embedded-software and systems concentration in 
their engineering curriculum to address the specific needs of 
embedded software that interacts with electrical, mechanical and 
other hybrid systems [6]. 

The rest of this paper elaborates on the need for - and our 
approach to - embedded systems architecture education. The 
following section enumerates some of the difficulties for 
‘newbies’ in hardware/software codesign, and we point out 
possible causes. Section 3 discusses the approach we have 
followed. Section 4 explains the hands-on project we used in an 
undergraduate course on hardware/software codesign. The project 
demonstrated the importance of system-level thinking in 
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embedded system architecture design, and the role that 
hardware/software codesign plays in it. We conclude the paper 
with a few open challenges and a positive note. 

2. NEWBIE CODESIGN PROBLEMS  
 

A modern undergraduate curriculum in computer engineering 
tends to use a rather strict partitioning in hardware-oriented and 
software-oriented topics. Figure 1 shows a typical example. After 
an introductory programming course, students take courses with a 
hardware focus or a software focus. It is not until the final-year 
capstone project that students will experience the full problem 
space of embedded systems architecture design. This may be too 
late. In our experience, senior computer-engineering students that 
follow a curriculum as shown in Figure 1 tend to develop a ‘bias’ 
towards hardware design or software design, and this hampers the 
development of good systems-architecture thinking. The 
following subsections illustrate some of the difficulties faced by 
aspiring codesign students.  
 

2.1 Combining Modeling Languages 
 
Although there has been a tremendous research effort in system-
level languages over the past decade, these efforts have not yet 
made their full impact on the curriculum. Therefore, the hardware-
branch and software-branch in Figure 1 use different, 
incompatible modeling – and programming languages (for 
example, C and VHDL). The semantic gap between these design 
languages is very large, and it reflects fundamental differences in 
thinking about design. Consider the following illustrations of the 
difference between writing C and modeling hardware using RTL 
(VHDL or Verilog).  

• The concept of time in RTL and C differs enormously. 
Software designers write untimed C and hardware designers 
write event-driven RTL. A common ground between 
hardware timing and software timing would be to count time 
based on clock cycles or maybe instructions. Instead, RTL 
designers insist on event-driven modeling for the occasional 
asynchronous gate, and C programmers don’t want to add 
timing details that destroy portability. Students are forced to 
choose their camp. 

• The notion of model and implementation is very different in 
C and RTL. For all practical purposes, a program in C is an 
implementation. An RTL program on the other hand is a 
simulation artifact, and the implementation is only available 
after logic synthesis. In RTL, what you write is not 
necessarily what you get, which is hard to grasp for designers 
with a software mindset.  

• Nearly identical syntax in C and RTL may mean very 
different things. A for-loop in C is a control-flow construct. 

A for-loop in RTL, on the other hand, is syntactical sugar 

that is unrelated to the control-flow in the implementation. In 
fact, if we discount the modeling of state machines using 
case statements, RTL does not offer a good means to model 

control. 

 

The language differences between C and RTL do not stop 
designers from excelling in either hardware design or else 
software design. However, the differences make a combined 
mastering of C and RTL very hard.  

2.2 Designing Interfaces 
 

A second hurdle for students in embedded systems architecture 
design is the design of interfaces. The efficiency of an embedded 
system is critically dependent on the efficiency of interfaces 
(between hardware and software, between coprocessors and 
processors, etc). Thus, embedded system architects should think 
of these interfaces as essential design features. Instead, the 
curriculum in Figure 1 puts the focus on the individual domains, 
and not on the links that interconnect the domains. As a result, 
interfaces become a second-class citizen in embedded architecture 
design.  

As a contrasting example, computer science students study the 
interface between instruction-set architecture and micro-
architecture during an entire introductory course (‘Introduction to 
Computer Architecture’) [7]. This prepares them to deal with 
many computer-architecture issues such as pipeline-stalls, 
memory-bottleneck, etc. For embedded-system engineering 
students no similar introductory and structured interfacing-course 
exists. 

2.3 Design Tools versus Design Methodology 
 

A final issue for students in embedded system architecture design 
is the myriad of design tools they need to use. Each programmable 
component comes with its own design environment, often 
incompatible with others. The curriculum in Figure 1 promotes 
the use of such specialized tools, but it does not teach how to 
combine their use. A second issue is that many aspects of modern 
design cannot be covered with design tools alone. Some examples 
include good debugging practice, defensive programming, design 
for observability, version control, and divide-and-conquer 
problem solving. These issues, as well as many others, can be 
collected under the common theme of design methodology: the 
recipe to transform design ideas into design implementation. 

Therefore we believe that an embedded systems architecture 
student will benefit more from a sound design methodology using 
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Figure 1: Separate Software and Hardware Tracks in 
Typical Computer Engineering Curricula 



simple tools then from fancy and automated design tools that 
operate stand-alone that that abstract out crucial details of the 
problem. 

3. CODESIGN AS BASIS FOR EMBEDDED 

ARCHITECTURE DESIGN 
 

In this section, we briefly motivate and outline our course, 
which is targeted to seniors and first-year graduate students. We 
present hardware/software codesign to students as a generic 
solution for a design problem that re-appears in many different 
forms during the design of embedded system architectures. 
Specifically, hardware/software codesign targets the combination 
of a generic processing engine and a specialized processing 
engine. A designer then maps a specification so as to optimize the 
efficiency (power, preformance, utilization ...) of the overall 
architecture.  

In all of the cases shown in Figure 2, the generic processing 
engine is a machine that runs C. The specialized processing 
engine is, depending on the case, a coprocessor, an FPGA (-
coprocessor), a DSP instruction-set, or an ASIP instruction. 
Although the target platform is different in each case, the 
underlying design concepts are strongly related, and it makes 
sense to address them in the context of a structured introduction to 
hardware/software codesign. The next subsection describes the 
course topics, while the subsection after that addresses the issue of 
design tools.  
 

3.1 Course Topics 
 
The hardware/software codesign course contains three parts.  
 
Fundamentals: The first part introduces fundamental ideas in 
embedded system architectures. On top is a discussion on 
concurrent specifications and parallel implementation. We use 
Synchronous Dataflow (SDF, [8]) as an introduction to 
concurrent specifications. SDF semantics are very well suited for 
this because of their formal properties in combination with their 
practical applications (signal processing). Besides a discussion of 
SDF, we also teach the students how to analyze the control flow 
and the data flow in a C program. This analysis is very useful 
when considering architectural alternatives for a C program. 
 
Custom Architecture Design Space: A second part in the course is 
an in-breadth discussion of the custom architecture space. As 
illustrated in Figure 3, we start with finite-state-machine-with-
datapath models, and gradually proceed to System-on-Chip 

architectures. The in-breadth discussion of architectures starts 
with typical ‘hardware’ targets and proceeds to typical ‘software’ 
targets. This way, students learn that there is only a single design 
space. It is easy to show that each step in the sequence of Figure 3 
is an improvement over earlier targets in terms of flexibility. 
Obviously, in-breadth discussions imply that we cannot address 
the full details of each architecture. However, our discussion is 
complementary to the in-depth approach of existing courses: 
FSMD, general-purpose cores and system-on-chip may be 
addressed in detail in a digital-design course, a computer 
architecture course, and an embedded systems software course 
respectively. 
 
Hardware/Software Interfaces: The final part of the course is a 
discussion on hardware/software interfaces. We describe how C 
communicates with a specialized processing component such as a 
coprocessor or a custom datapath. This is a broad topic, and it 
includes a description of data communication from C to hardware 
(interfaces and buses), synchronization methods (handshakes, 
mailboxes, queues), encapsulation of software (custom 
instructions, API's) and encapsulation of hardware modules. 
 

3.2 Tools and Design Flow 
 
The course topics are augmented with an intensive hands-on part. 
Because of the difficulties with a mixed-language approach based 
on C and RTL, we are using GEZEL, a codesign modeling - and 
cosimulation environment [9]. GEZEL combines a design 
language for FSMD with custom interfaces to instruction-set 
simulators. GEZEL provides cycle-based co-simulation and a path 
to implementation by converting the FSMD models into VHDL. 
Students write co-designed models by combining C and GEZEL 
language. In comparison with the use of RTL and C for codesign, 
we address the following issues: 

• Hardware is expressed using cycle-based, single-clock 
FSMD modeling. These models result in a compact syntax, 
close to implementation. In GEZEL, a reg variable is really 

a flip-flop. In our experience, a simple mechanism to express 
hardware models is very important to enable students to 
concentrate on methodology and design. Some students enter 
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Figure 3: Covering the custom architecture-space in-
breadth rather than in-depth. 
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Figure 2: Hardware/Software Codesign is a generic 
formulation of a problem with multiple instances 



our class without previous knowledge on RTL programming 
(Verilog is only covered in an elective course). 

• GEZEL offers access to HW/SW interfaces as library blocks 
in the language. These library blocks expose the  pin-out of 
interfaces without burdening the model with unneeded 
internals. The library blocks reflect actual interfaces from 
prototyping environments; their use guarantees that the 
GEZEL FSMD can be easily connected to the prototype once 
they are converted to VHDL. Listing 1 illustrates one type of 
HW/SW interface (Fast Simplex Link), connected to a 
software driver and an FSMD. The overall operation of this 
model is to send an array of integers from software to 

hardware over an FSL link, and to accumulate the sum of 
these integers in the hardware model. Some features of the 
model are as follows. Lines 8-15 show the FSL link. This 
interface is modeled after the tightly-coupled Fast Simplex 
Link found in Xilinx' MicroBlaze processor, and has a data 
port and two handshake signals exists and read. The 

interface is attached to a core arm1 (line 12), and this core 

will control the interface through memory locations 
0x80000000 and 0x80000004 (a memory-based 

emulation of the FSL protocol is needed since the ARM 
simulation model used by the cosimulator does not have 
dedicated instructions for the FSL interface). The FSMD 
module that connects to this hardware-software interface is 
shown on lines 19-36. The datapath has an always 

instruction that executes every clock cycle (line 26), as well 
as two instructions doread and dontread (lines 27-29) 

that will only execute when told so by the FSM controller on 
line 32-36. The top-level hardware module, which 
interconnects the FSMD and the cosimulation interface, is 
not shown in Listing 1. Finally, a software driver that 
communicates with the FSMD through the 
hardware/software interface is shown on lines 40-53. The use 
of volatile int pointers ensures that the C compiler 

does not optimize the apparently redundant memory-read and 
memory-write operations. 

• The cosimulation environment is interactive, and command-
line driven. The model in Listing 1 would be captured in two 
files (e.g. sw.c and hw.fdl) and would be simulated by 

cross-compiling the embedded software, and next by running 
the cosimulator: 
 
> arm-linux-gcc sw.c –o exec.elf 
> gplatform hw.fdl 

 
The design environment used by the students contains the 
following elements: 
 

• A KNOPPIX CDROM with a pre-installed GEZEL-based 
codesign environment, including all cross-compilation and 
simulation tools. 

• A Xilinx-based EDK+ISE environment, which is used as a 
backend for code created in the codesign environment. 

• A Spartan-3E Starter Kit with a baseline configuration 
including Microblaze, on-chip timer, off-chip DDR RAM 
memory. 
 

4. A LAB SERIES TO INTRODUCE 

CODESIGN 
 

As described in the previous section, the students in the 
codesign course make use of a KNOPPIX cdrom (for modeling 
and cosimulation) and an FPGA board with design software (for 
prototyping) [10]. Figure 4 shows the organization of the hands-
on experiments based on these tools. An initial lab series 
familiarizes students with the use of the tools. That experience 
then converges into a Codesign Challenge, a competition that 
challenges students into building the fastest possible 
implementation of a given C program onto an FPGA. 

1. //------------------------------------ 
2. // ARM core with FSL interface in GEZEL 

3. ipblock arm1 { 

4.   iptype "armsystem"; 

5.   ipparm "exec = exec.elf"; 

6. } 
7.  

8. ipblock fsl1(out data   : ns(32); 

9.              out exists : ns(1); 

10.              in  read   : ns(1)) { 
11.   iptype "armfslslave"; 
12.   ipparm "core=arm1"; 
13.   ipparm "write=0x80000000"; 
14.   ipparm "status=0x80000004"; 
15. } 
16.  
17. //------------------------------------- 
18. // GEZEL FSMD, reads from FSL, accumulates 
19. dp avg_fsmd    (in  rdata   : tc(32); 
20.                 in  exists  : ns(1); 
21.                 out read    : ns(1)) { 
22.  
23. reg rexists : ns(1); 
24. reg acc : tc(32); 
25.  
26.   always        { rexists = exists; } 
27.   sfg doread    { read  = 1;  
28.                   acc  = acc + rdata; } 
29.   sfg dontread  { read  = 0; } 
30. } 
31.  
32. fsm fsm_avg_fsmd(avg_fsmd) { 
33.   initial s0; 
34.   @s0 if (rexists) then (doread)   -> s0; 
35.                    else (dontread) -> s0; 
36. } 
37.  
38. //-------------------------------------- 
39. // C driver for ARM core with FSL interface 
40. void sendarray (int *in,  
41.                 unsigned length) { 
42.   volatile unsigned int  
43.     *wchannel_data   = (int *) 0x80000000; 
44.   volatile unsigned int  
45.     *wchannel_status = (int *) 0x80000004; 
46.   int i; 
47.  
48.   // send content of in[]  to FSL link 
49.   for (i=0; i<length; i++) { 
50.     while (*wchannel_status == 1) ; 
51.     *channel_data = in[i]; 
52.   } 
53. } 

 

Listing 1: This HW/SW model accumulates a data stream. 



4.1 Lab Series 
 

A set of 10 lab projects prepare students for the codesign 
challenge. Five lab projects cover modeling and design; five 
additional projects cover the use of the FPGA prototyping 
environment. The two tracks of lab projects gradually converge, 
so that the codesign environment is coupled to the FPGA design 
flow. Students then are able to complete the following tasks: 
convert a single C program into a combination of a C program 
and a hardware coprocessor; verify the resulting design using 
cosimulation; port the coprocessor and C program to the FPGA 
platform; and verify the performance of the design in the resulting 
prototype. 
 
The modeling assignments include SDF & FSMD modeling, 
profiling of embedded software using an instruction-set simulator, 
and two coprocessor designs. The coprocessors use a tightly-
coupled Fast Simplex Link and a general-purpose Memory-
mapped interface.  
 
In the complementary prototyping assignments, students learn to 
take the output of the modeling flow (software driver and 
generated coprocessor VHDL) and connect that into the FPGA 
environment. They also familiarize themselves with the numerous 
available platform architecture parameters (location and size of 
memories, configuration of buses, optimization during software 
compilation and hardware synthesis, etc). 

The combined use of GEZEL cosimulation and EDK synthesis is 
done for several reasons. First, EDK has a steep learning curve 
compared to the simplicity of GEZEL. Second, even though EDK 
can hide many of the details of the underlying machine, the 
cosimulation mechanism is still quite cumbersome as it requires 
elaboration of the hardware model. Finally, the students that take 
the codesign course may not have taken a course on VHDL or 
Verilog yet, since the latter is an elective at the authors' 
institution. However, it should also be clarified that the author has 
not yet attempted to organize this lab sequence solely using EDK. 
 

4.2 Codesign Challenge 
 
The Codesign Challenge is deliberately set up as an open-ended 
assignment to improve the performance of a given C specification 
as much as possible. The constraints are the reference 
specification, the resulting platform, and the design time (two 
weeks). The initial ranking of results is based on absolute 
performance of the student designs, even though the in-class 
discussion of the results is based on Pareto-optimality of 
performance and resource usage. In the following, we describe the 
results of the Codesign Challenge we ran in the fall semester of 
2007. In that class, 28 students participated in the final project.  
 
Figure 5 shows the target platform for the Codesign Challenge. A 
DDR RAM memory contains a vector angle with 65536 values. 

The design in the FPGA must read this vector, and transform each 
element in the vector to an (X,Y) tuple representing the sine and 
cosine of that angle. The result is stored in the DDR RAM. A 
CORDIC algorithm with 20 successive rotations is used for this 
transformation [11]. The reference design in the FPGA includes a 
MicroBlaze processor with local memory and a peripheral bus 
system with timer. The students also received a software 
implementation of the CORDIC design for this reference 
platform. The performance of their design is measured as the wall-
clock time needed to rotate 64K vectors stored in off-chip 
memory. 
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Figure 4: The Lab Series combines modeling and 
prototyping and merges into a 'Codesign Challenge' 
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Figure 5: The 'Codesign Challenge' in fall 2007 was to 
optimize 64K CORDIC rotations. 



After two weeks of design time, the students turned in their 
results. Figure 6 reflects the speedup of their design (over the 
reference software implementation) versus resource usage. A wide 
variation can be observed for each parameter - as could be 
expected in such an open-ended assignment. Figure 6 shows that 
the student designs can be partitioned into in two groups: those 
with a speedup lower than 200, and those with a better speedup. 
All of the students implemented a hardware accelerator for the 
CORDIC computations, with a typical design computing a 
rotation in 20 clock cycles. However, as can be observed from the 
system architecture in Figure 5, each rotation requires three off-
chip memory accesses, and the performance of the reference 
design was around 20 cycles per memory access. The designs 
bounded at a speedup of 200 are those that did not take this 
bottleneck into account. 
 
About one third of the class figured that hardware acceleration 
alone would not save the day and that further optimization of the 
system architecture was necessary. The results obtained in their 
designs illustrate the case that embedded system architecture 
design goes beyond hardware/software partitioning. Among the 
optimizations performed by this group of students are the 
following: 

• Allocate multiple coprocessors, and exploit the parallelism 
available in 65536 independent CORDIC rotations; 

• Write driver software that overlaps input/output  
communication with coprocessor computation; 

• Move the .text segment of the code to on-chip memory 

and free up the system communication bus. 
 
Two students from those with previous Verilog experience 
decided to develop hardware directly in Verilog (rather than in 
GEZEL) for compactness and performance; however, the resulting 
system was harder to debug because cosimulation at RTL is 
inadequate and time-consuming. 
 
Another interesting issue is how students allocated design time 
under a limited time budget. The best designs were those that 
focused (almost exclusively) on the embedded system architecture 

and the implementation of system-level data streams. Those top 
students were also able to decide how much effort a given 
optimization was worth, because they started by estimating the 
performance limits in their platform. 

5. CONCLUSIONS & FUTURE WORK  

The breakneck speed of technological development enables 
senior students to complete in a class project what was considered 
a high-end design 10 years ago. The technologies and tools are 
available, and they are cheap. However, the computer engineering 
curriculum is lagging. The idea that digital design education 
should start with digital gates is losing its relevance when 
designers are no longer concerned with individual gates. 
Educators are in need of more effective design abstractions. We 
have used hardware/software codesign as a step towards 
structured thinking about embedded systems architecture design. 
It is not possible to cover each programmable technology that is 
being proposed today. Hence, our objective is to produce 
engineers that can quickly adapt to new programmable systems 
architectures. 

As a positive note, the embedded systems design space has 
never been more interesting and offered more opportunities, for 
students and educators alike. There are significant opportunities 
available in the computer engineering curriculum for new tools, 
subjects, and course projects. 
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7. APPENDIX A: Course Topics 
 

The following enumerates the lecture topics of the course. 
This material is covered in approximately 22 lectures, 
excluding reviews, midterms, and exam. 

Fundamentals 

• What is hardware-software codesign? 
o Flexibility versus performance 
o Concurrent and sequential specifications, 

parallel implementations 
o Modeling abstraction levels 

• Synchronous Data-flow Modeling (as an example of 
concurrent specification) 

o Semantics of SDF 
o Analysis of SDF 
o Implementing SDF in Software 

o Implementing SDF in Hardware 

• Control Edges and Data Edges (of a C program) 

The Custom Architecture Design Space 

• FSMD: a systematic but inflexible model for hardware 

• Micro-programmed Architectures: Flexible, scalable 
control, but hard to program and optimize (e.g. 
pipelining) 

• General-purpose Embedded Cores: Flexible, scalable 
control, easy to program, but hard to specialize 

• System-on-Chip: Flexible, scalable control, easy to 
program, feasible to specialize 

The Custom-Hardware/Software Interface 

• On-chip busses 

• Memory-mapped interfaces 

• Coprocessor (dedicated processor-HW) interfaces 

• Control Design in Co-processors 

• Intellectual-property Interfaces 

• Advanced solutions 
o ASIPs 
o Using C for Hardware Design

 

 


