
Hardware/Software Co-design is a starting point in
Embedded Systems Architecture Education

Patrick Schaumont
Bradley Department of Electrical and Computer Engineering

Virginia Tech

schaum@vt.edu

ABSTRACT

Embedded Systems Architectures are hard to design, and there is
no generally accepted method of doing it. In recent years, this
problem has become even harder because of the wide variety of
programmable components (FPGA, ASIP, DSP, …). We propose
hardware/software codesign as a starting point for teaching the
topic. Codesign helps designer-students to think about
architecture design in terms of a trade-off between performance
and flexibility. Our senior-level undergraduate course in
hardware/software codesign includes a hands-on project that
requires students to optimize embedded system architecture across
the traditional boundaries of hardware and software. We describe
a lab series that combines system modeling with refinement on an
FPGA board, and that concludes with a class-wide
hardware/software codesign contest. The results of the contest
clearly illustrate the strengths of ‘systems thinking’ over
‘component thinking’.

1. INTRODUCTION

Embedded Systems Architecture design is the task of
selecting and programming a suitable configuration of
components for a given system application. Programmable chip
companies, with the help of Moore’s law, are providing us with
amazing selection of components to do this. Traditionally, the
creation of embedded system architectures used to be relatively
straightforward: use a microcontroller for flexibility and add
hardware peripherals for specialized functions. Nowadays,
designers can apply multiple component types (e.g. Field
Programmable Gate Arrays, Digital Signal Processors, and
Application-Specific Instruction-set Processors) to find the
optimum over multiple design objectives, including system
flexibility, power consumption, design cost, and design time.

Building embedded system architectures is not an easy task. Each
programmable component comes with its own design flow and
tools, and with its own programming model. Each one presents a
separate learning curve to the designer.

This contribution considers how embedded-system educators can

help future engineers to prepare for this complex architecture
design space. Obviously, it is not feasible to train students in each
possible programmable technology – there are too few hours in a
semester to do that. In current practice, educators select a single
component type (e.g. FPGA), and then teach students how to map
and optimize an example application for this component.
Educators thus use a thematic, application-driven approach to
train students [1]. In order to cover a broader problem space
(more component types or more applications), a structured
approach to teaching embedded systems architecture may be
preferable. This is an important motivation for developing a
structured introduction to hardware/software codesign [2].

A central idea in hardware/software codesign is to merge two
design processes: hardware design uses spatial decomposition and
is well suited for performance, while software design uses
temporal decomposition and is well suited for flexibility. A
successful combination of hardware and software enables
designers to obtain solutions that are the right combination of
flexibility and performance. Thus, we think of hardware/software
co-design as a simplified version of the more complex trade-off
that needs to be made during embedded systems architecture
design, namely the partitioning between platform architecture and
platform function. For this reason, we think that
hardware/software co-design is the proper starting point for
education in this area.

Among programmable components, FPGA platforms have been
very successful in providing a target that equally suits software
design and hardware design. Several courses have explored this in
the context of codesign [3] [4]. We also note that there is a
complementary view to embedded systems design which starts
from a software-centric system view (rather than a hardware-
centric system view). In that case, the problem being addressed is
how to teach architecture-specific software. The Embedded
Software consortium in Taiwan, for example, has defined a
software curriculum because of the high add-on value that
software can bring to hardware design [5]. Vanderbilt University
has defined and embedded-software and systems concentration in
their engineering curriculum to address the specific needs of
embedded software that interacts with electrical, mechanical and
other hybrid systems [6].

The rest of this paper elaborates on the need for - and our
approach to - embedded systems architecture education. The
following section enumerates some of the difficulties for
‘newbies’ in hardware/software codesign, and we point out
possible causes. Section 3 discusses the approach we have
followed. Section 4 explains the hands-on project we used in an
undergraduate course on hardware/software codesign. The project
demonstrated the importance of system-level thinking in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

embedded system architecture design, and the role that
hardware/software codesign plays in it. We conclude the paper
with a few open challenges and a positive note.

2. NEWBIE CODESIGN PROBLEMS

A modern undergraduate curriculum in computer engineering
tends to use a rather strict partitioning in hardware-oriented and
software-oriented topics. Figure 1 shows a typical example. After
an introductory programming course, students take courses with a
hardware focus or a software focus. It is not until the final-year
capstone project that students will experience the full problem
space of embedded systems architecture design. This may be too
late. In our experience, senior computer-engineering students that
follow a curriculum as shown in Figure 1 tend to develop a ‘bias’
towards hardware design or software design, and this hampers the
development of good systems-architecture thinking. The
following subsections illustrate some of the difficulties faced by
aspiring codesign students.

2.1 Combining Modeling Languages

Although there has been a tremendous research effort in system-
level languages over the past decade, these efforts have not yet
made their full impact on the curriculum. Therefore, the hardware-
branch and software-branch in Figure 1 use different,
incompatible modeling – and programming languages (for
example, C and VHDL). The semantic gap between these design
languages is very large, and it reflects fundamental differences in
thinking about design. Consider the following illustrations of the
difference between writing C and modeling hardware using RTL
(VHDL or Verilog).

• The concept of time in RTL and C differs enormously.
Software designers write untimed C and hardware designers
write event-driven RTL. A common ground between
hardware timing and software timing would be to count time
based on clock cycles or maybe instructions. Instead, RTL
designers insist on event-driven modeling for the occasional
asynchronous gate, and C programmers don’t want to add
timing details that destroy portability. Students are forced to
choose their camp.

• The notion of model and implementation is very different in
C and RTL. For all practical purposes, a program in C is an
implementation. An RTL program on the other hand is a
simulation artifact, and the implementation is only available
after logic synthesis. In RTL, what you write is not
necessarily what you get, which is hard to grasp for designers
with a software mindset.

• Nearly identical syntax in C and RTL may mean very
different things. A for-loop in C is a control-flow construct.

A for-loop in RTL, on the other hand, is syntactical sugar

that is unrelated to the control-flow in the implementation. In
fact, if we discount the modeling of state machines using
case statements, RTL does not offer a good means to model

control.

The language differences between C and RTL do not stop
designers from excelling in either hardware design or else
software design. However, the differences make a combined
mastering of C and RTL very hard.

2.2 Designing Interfaces

A second hurdle for students in embedded systems architecture
design is the design of interfaces. The efficiency of an embedded
system is critically dependent on the efficiency of interfaces
(between hardware and software, between coprocessors and
processors, etc). Thus, embedded system architects should think
of these interfaces as essential design features. Instead, the
curriculum in Figure 1 puts the focus on the individual domains,
and not on the links that interconnect the domains. As a result,
interfaces become a second-class citizen in embedded architecture
design.

As a contrasting example, computer science students study the
interface between instruction-set architecture and micro-
architecture during an entire introductory course (‘Introduction to
Computer Architecture’) [7]. This prepares them to deal with
many computer-architecture issues such as pipeline-stalls,
memory-bottleneck, etc. For embedded-system engineering
students no similar introductory and structured interfacing-course
exists.

2.3 Design Tools versus Design Methodology

A final issue for students in embedded system architecture design
is the myriad of design tools they need to use. Each programmable
component comes with its own design environment, often
incompatible with others. The curriculum in Figure 1 promotes
the use of such specialized tools, but it does not teach how to
combine their use. A second issue is that many aspects of modern
design cannot be covered with design tools alone. Some examples
include good debugging practice, defensive programming, design
for observability, version control, and divide-and-conquer
problem solving. These issues, as well as many others, can be
collected under the common theme of design methodology: the
recipe to transform design ideas into design implementation.

Therefore we believe that an embedded systems architecture
student will benefit more from a sound design methodology using

Entry Level

Programming Course

Digital Design I
(Karnaugh maps, …)

Microcontrollers I
(peripherals, assembly, …)

Microcontrollers II
(threads, interrupts, …)

Digital Design II
(HDL, RTL Synthesis, …)

Computer Engineering

Capstone

Hardware Software

Senior

Freshman

Figure 1: Separate Software and Hardware Tracks in
Typical Computer Engineering Curricula

simple tools then from fancy and automated design tools that
operate stand-alone that that abstract out crucial details of the
problem.

3. CODESIGN AS BASIS FOR EMBEDDED

ARCHITECTURE DESIGN

In this section, we briefly motivate and outline our course,
which is targeted to seniors and first-year graduate students. We
present hardware/software codesign to students as a generic
solution for a design problem that re-appears in many different
forms during the design of embedded system architectures.
Specifically, hardware/software codesign targets the combination
of a generic processing engine and a specialized processing
engine. A designer then maps a specification so as to optimize the
efficiency (power, preformance, utilization ...) of the overall
architecture.

In all of the cases shown in Figure 2, the generic processing
engine is a machine that runs C. The specialized processing
engine is, depending on the case, a coprocessor, an FPGA (-
coprocessor), a DSP instruction-set, or an ASIP instruction.
Although the target platform is different in each case, the
underlying design concepts are strongly related, and it makes
sense to address them in the context of a structured introduction to
hardware/software codesign. The next subsection describes the
course topics, while the subsection after that addresses the issue of
design tools.

3.1 Course Topics

The hardware/software codesign course contains three parts.

Fundamentals: The first part introduces fundamental ideas in
embedded system architectures. On top is a discussion on
concurrent specifications and parallel implementation. We use
Synchronous Dataflow (SDF, [8]) as an introduction to
concurrent specifications. SDF semantics are very well suited for
this because of their formal properties in combination with their
practical applications (signal processing). Besides a discussion of
SDF, we also teach the students how to analyze the control flow
and the data flow in a C program. This analysis is very useful
when considering architectural alternatives for a C program.

Custom Architecture Design Space: A second part in the course is
an in-breadth discussion of the custom architecture space. As
illustrated in Figure 3, we start with finite-state-machine-with-
datapath models, and gradually proceed to System-on-Chip

architectures. The in-breadth discussion of architectures starts
with typical ‘hardware’ targets and proceeds to typical ‘software’
targets. This way, students learn that there is only a single design
space. It is easy to show that each step in the sequence of Figure 3
is an improvement over earlier targets in terms of flexibility.
Obviously, in-breadth discussions imply that we cannot address
the full details of each architecture. However, our discussion is
complementary to the in-depth approach of existing courses:
FSMD, general-purpose cores and system-on-chip may be
addressed in detail in a digital-design course, a computer
architecture course, and an embedded systems software course
respectively.

Hardware/Software Interfaces: The final part of the course is a
discussion on hardware/software interfaces. We describe how C
communicates with a specialized processing component such as a
coprocessor or a custom datapath. This is a broad topic, and it
includes a description of data communication from C to hardware
(interfaces and buses), synchronization methods (handshakes,
mailboxes, queues), encapsulation of software (custom
instructions, API's) and encapsulation of hardware modules.

3.2 Tools and Design Flow

The course topics are augmented with an intensive hands-on part.
Because of the difficulties with a mixed-language approach based
on C and RTL, we are using GEZEL, a codesign modeling - and
cosimulation environment [9]. GEZEL combines a design
language for FSMD with custom interfaces to instruction-set
simulators. GEZEL provides cycle-based co-simulation and a path
to implementation by converting the FSMD models into VHDL.
Students write co-designed models by combining C and GEZEL
language. In comparison with the use of RTL and C for codesign,
we address the following issues:

• Hardware is expressed using cycle-based, single-clock
FSMD modeling. These models result in a compact syntax,
close to implementation. In GEZEL, a reg variable is really

a flip-flop. In our experience, a simple mechanism to express
hardware models is very important to enable students to
concentrate on methodology and design. Some students enter

FSMD

Micro-Programmed
Architecture

General-Purpose
Core

System-on-Chip

Hardware

Software

Codesign

Digital

Design I

Embedded

Systems

(Software)

Computer

Architecture

In-depthIn-breadth

Figure 3: Covering the custom architecture-space in-
breadth rather than in-depth.

Specification

RISC +

Coprocessor

FPGA

(w/softcore)
ASIPDSP

RTLC RTLC
Custom

InstrCASMC

Specification SpecificationSpecification

Seq ParSeq ParSeq ParSeq Par

Figure 2: Hardware/Software Codesign is a generic
formulation of a problem with multiple instances

our class without previous knowledge on RTL programming
(Verilog is only covered in an elective course).

• GEZEL offers access to HW/SW interfaces as library blocks
in the language. These library blocks expose the pin-out of
interfaces without burdening the model with unneeded
internals. The library blocks reflect actual interfaces from
prototyping environments; their use guarantees that the
GEZEL FSMD can be easily connected to the prototype once
they are converted to VHDL. Listing 1 illustrates one type of
HW/SW interface (Fast Simplex Link), connected to a
software driver and an FSMD. The overall operation of this
model is to send an array of integers from software to

hardware over an FSL link, and to accumulate the sum of
these integers in the hardware model. Some features of the
model are as follows. Lines 8-15 show the FSL link. This
interface is modeled after the tightly-coupled Fast Simplex
Link found in Xilinx' MicroBlaze processor, and has a data
port and two handshake signals exists and read. The

interface is attached to a core arm1 (line 12), and this core

will control the interface through memory locations
0x80000000 and 0x80000004 (a memory-based

emulation of the FSL protocol is needed since the ARM
simulation model used by the cosimulator does not have
dedicated instructions for the FSL interface). The FSMD
module that connects to this hardware-software interface is
shown on lines 19-36. The datapath has an always

instruction that executes every clock cycle (line 26), as well
as two instructions doread and dontread (lines 27-29)

that will only execute when told so by the FSM controller on
line 32-36. The top-level hardware module, which
interconnects the FSMD and the cosimulation interface, is
not shown in Listing 1. Finally, a software driver that
communicates with the FSMD through the
hardware/software interface is shown on lines 40-53. The use
of volatile int pointers ensures that the C compiler

does not optimize the apparently redundant memory-read and
memory-write operations.

• The cosimulation environment is interactive, and command-
line driven. The model in Listing 1 would be captured in two
files (e.g. sw.c and hw.fdl) and would be simulated by

cross-compiling the embedded software, and next by running
the cosimulator:

> arm-linux-gcc sw.c –o exec.elf
> gplatform hw.fdl

The design environment used by the students contains the
following elements:

• A KNOPPIX CDROM with a pre-installed GEZEL-based
codesign environment, including all cross-compilation and
simulation tools.

• A Xilinx-based EDK+ISE environment, which is used as a
backend for code created in the codesign environment.

• A Spartan-3E Starter Kit with a baseline configuration
including Microblaze, on-chip timer, off-chip DDR RAM
memory.

4. A LAB SERIES TO INTRODUCE

CODESIGN

As described in the previous section, the students in the
codesign course make use of a KNOPPIX cdrom (for modeling
and cosimulation) and an FPGA board with design software (for
prototyping) [10]. Figure 4 shows the organization of the hands-
on experiments based on these tools. An initial lab series
familiarizes students with the use of the tools. That experience
then converges into a Codesign Challenge, a competition that
challenges students into building the fastest possible
implementation of a given C program onto an FPGA.

1. //------------------------------------
2. // ARM core with FSL interface in GEZEL

3. ipblock arm1 {

4. iptype "armsystem";

5. ipparm "exec = exec.elf";

6. }
7.

8. ipblock fsl1(out data : ns(32);

9. out exists : ns(1);

10. in read : ns(1)) {
11. iptype "armfslslave";
12. ipparm "core=arm1";
13. ipparm "write=0x80000000";
14. ipparm "status=0x80000004";
15. }
16.
17. //-------------------------------------
18. // GEZEL FSMD, reads from FSL, accumulates
19. dp avg_fsmd (in rdata : tc(32);
20. in exists : ns(1);
21. out read : ns(1)) {
22.
23. reg rexists : ns(1);
24. reg acc : tc(32);
25.
26. always { rexists = exists; }
27. sfg doread { read = 1;
28. acc = acc + rdata; }
29. sfg dontread { read = 0; }
30. }
31.
32. fsm fsm_avg_fsmd(avg_fsmd) {
33. initial s0;
34. @s0 if (rexists) then (doread) -> s0;
35. else (dontread) -> s0;
36. }
37.
38. //--------------------------------------
39. // C driver for ARM core with FSL interface
40. void sendarray (int *in,
41. unsigned length) {
42. volatile unsigned int
43. *wchannel_data = (int *) 0x80000000;
44. volatile unsigned int
45. *wchannel_status = (int *) 0x80000004;
46. int i;
47.
48. // send content of in[] to FSL link
49. for (i=0; i<length; i++) {
50. while (*wchannel_status == 1) ;
51. *channel_data = in[i];
52. }
53. }

Listing 1: This HW/SW model accumulates a data stream.

4.1 Lab Series

A set of 10 lab projects prepare students for the codesign
challenge. Five lab projects cover modeling and design; five
additional projects cover the use of the FPGA prototyping
environment. The two tracks of lab projects gradually converge,
so that the codesign environment is coupled to the FPGA design
flow. Students then are able to complete the following tasks:
convert a single C program into a combination of a C program
and a hardware coprocessor; verify the resulting design using
cosimulation; port the coprocessor and C program to the FPGA
platform; and verify the performance of the design in the resulting
prototype.

The modeling assignments include SDF & FSMD modeling,
profiling of embedded software using an instruction-set simulator,
and two coprocessor designs. The coprocessors use a tightly-
coupled Fast Simplex Link and a general-purpose Memory-
mapped interface.

In the complementary prototyping assignments, students learn to
take the output of the modeling flow (software driver and
generated coprocessor VHDL) and connect that into the FPGA
environment. They also familiarize themselves with the numerous
available platform architecture parameters (location and size of
memories, configuration of buses, optimization during software
compilation and hardware synthesis, etc).

The combined use of GEZEL cosimulation and EDK synthesis is
done for several reasons. First, EDK has a steep learning curve
compared to the simplicity of GEZEL. Second, even though EDK
can hide many of the details of the underlying machine, the
cosimulation mechanism is still quite cumbersome as it requires
elaboration of the hardware model. Finally, the students that take
the codesign course may not have taken a course on VHDL or
Verilog yet, since the latter is an elective at the authors'
institution. However, it should also be clarified that the author has
not yet attempted to organize this lab sequence solely using EDK.

4.2 Codesign Challenge

The Codesign Challenge is deliberately set up as an open-ended
assignment to improve the performance of a given C specification
as much as possible. The constraints are the reference
specification, the resulting platform, and the design time (two
weeks). The initial ranking of results is based on absolute
performance of the student designs, even though the in-class
discussion of the results is based on Pareto-optimality of
performance and resource usage. In the following, we describe the
results of the Codesign Challenge we ran in the fall semester of
2007. In that class, 28 students participated in the final project.

Figure 5 shows the target platform for the Codesign Challenge. A
DDR RAM memory contains a vector angle with 65536 values.

The design in the FPGA must read this vector, and transform each
element in the vector to an (X,Y) tuple representing the sine and
cosine of that angle. The result is stored in the DDR RAM. A
CORDIC algorithm with 20 successive rotations is used for this
transformation [11]. The reference design in the FPGA includes a
MicroBlaze processor with local memory and a peripheral bus
system with timer. The students also received a software
implementation of the CORDIC design for this reference
platform. The performance of their design is measured as the wall-
clock time needed to rotate 64K vectors stored in off-chip
memory.

Modeling & Design
(using GEZEL KNOPPIX)

Prototyping
(using XILINX EDK & FPGA)

SDF
Modeling

FSMD
Modeling

Debugging
+ Profiling

FSL
Coprocessor

MM (IPIF)
Coprocessor

The Codesign Challenge

EDK + Kit
Installation

Adding
Peripherals

Debugging
(Chipscope)

FSL
Coprocessor

MM (IPIF)

Coprocessor

Lab 1 Lab 2

Lab 3 Lab 4

Lab 5 Lab 6

Lab 7 Lab 8

Labs 9 & 10

Figure 4: The Lab Series combines modeling and
prototyping and merges into a 'Codesign Challenge'

DDR RAM
(64 MB)

angle resultX resultY

DDR ctl

MicroBlaze

BRAM

LMB

OPB

FPGA
Spartan 3ES500

timer

FSL

MM

64K

Figure 5: The 'Codesign Challenge' in fall 2007 was to
optimize 64K CORDIC rotations.

After two weeks of design time, the students turned in their
results. Figure 6 reflects the speedup of their design (over the
reference software implementation) versus resource usage. A wide
variation can be observed for each parameter - as could be
expected in such an open-ended assignment. Figure 6 shows that
the student designs can be partitioned into in two groups: those
with a speedup lower than 200, and those with a better speedup.
All of the students implemented a hardware accelerator for the
CORDIC computations, with a typical design computing a
rotation in 20 clock cycles. However, as can be observed from the
system architecture in Figure 5, each rotation requires three off-
chip memory accesses, and the performance of the reference
design was around 20 cycles per memory access. The designs
bounded at a speedup of 200 are those that did not take this
bottleneck into account.

About one third of the class figured that hardware acceleration
alone would not save the day and that further optimization of the
system architecture was necessary. The results obtained in their
designs illustrate the case that embedded system architecture
design goes beyond hardware/software partitioning. Among the
optimizations performed by this group of students are the
following:

• Allocate multiple coprocessors, and exploit the parallelism
available in 65536 independent CORDIC rotations;

• Write driver software that overlaps input/output
communication with coprocessor computation;

• Move the .text segment of the code to on-chip memory

and free up the system communication bus.

Two students from those with previous Verilog experience
decided to develop hardware directly in Verilog (rather than in
GEZEL) for compactness and performance; however, the resulting
system was harder to debug because cosimulation at RTL is
inadequate and time-consuming.

Another interesting issue is how students allocated design time
under a limited time budget. The best designs were those that
focused (almost exclusively) on the embedded system architecture

and the implementation of system-level data streams. Those top
students were also able to decide how much effort a given
optimization was worth, because they started by estimating the
performance limits in their platform.

5. CONCLUSIONS & FUTURE WORK

The breakneck speed of technological development enables
senior students to complete in a class project what was considered
a high-end design 10 years ago. The technologies and tools are
available, and they are cheap. However, the computer engineering
curriculum is lagging. The idea that digital design education
should start with digital gates is losing its relevance when
designers are no longer concerned with individual gates.
Educators are in need of more effective design abstractions. We
have used hardware/software codesign as a step towards
structured thinking about embedded systems architecture design.
It is not possible to cover each programmable technology that is
being proposed today. Hence, our objective is to produce
engineers that can quickly adapt to new programmable systems
architectures.

As a positive note, the embedded systems design space has
never been more interesting and offered more opportunities, for
students and educators alike. There are significant opportunities
available in the computer engineering curriculum for new tools,
subjects, and course projects.

6. REFERENCES
[1] M. Grimheden, M. Torngren, ”What is Embedded Systems

and How Should It Be Taught?” ACM Trans. on Embedded
Computing Systems (TECS), 4(3): 633–651, ACM Press,
NY, 2005.

[2] P. Schaumont, "A Senior-level Course in Hardware/sofwtare
Codesign,", MSE 07, 7-8, June 2007.

[3] R. Chamberlain, J. Lockwood, S. Gayen, R. Hough, and P.
Jones, "Use of a soft-core processor in a hardware/software
codesign laboratory," in Proc. IEEE Int. Conf.
MicroElectronics System Design Education, Anaheim, CA,
97-98, June 2005.

[4] C. Bieser, K.D. Muller-Glaser, and J. Becker,
"Hardware/software co-training lab: From VHDL bit-level
coding up to case-tool based system modeling," in Proc.
IEEE Int. Conf. MicroElectronics System Education,
Anaheim, CA, 134-135, June 2005.

[5] S. Tsao, T. Huang, C. King, "The Development and
Deployment of Embedded Software Curricula in Taiwan,"
ACM SIGBED Review, 64-72, 2007.

[6] J. Sztipanovits, G. Biswas, K. Frampton, A. Gokhale, L.
Howard, G. Karsai, J. Koo, X. Koutsoukos, D. Schmidt,
"Introducing Embedded Software and Systems Education
and Advanced Learning in an Engineering Curriculum,"
ACM Trans. on Embedded Computing Systems, 4(3):549-
568.

[7] D. Patterson, J. Hennessy, "Computer Organization and
Design: The Harwdare/Software Interface," MKP Publishers.

[8] E. Lee, D. Messerschmitt, "Synchronous Data Flow," Proc.
IEEE, September 1987.

[9] GEZEL homepage,
http://rijndael.ece.vt.edu/gezel2

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

2000 3000 4000 5000

Slices

Speedup Speedup vs Slice Usage for CORDIC Design

Figure 6: The results of the Codesign Challenge. Design
performance is measured as a speedup over the intiial

reference implementation. Each dot is one student.

[10] P. Athanas, C. Patterson, "A Holistic Approach towards a
Unified CpE Laboratory Platfrom", MSE 07, 73-64, Juen
2007.

[11] R. Andraka, “A Survey of CORDIC Algorithms for
FPGA’s,” Proc. FPGA 1998, 191-200, 1998

7. APPENDIX A: Course Topics

The following enumerates the lecture topics of the course.
This material is covered in approximately 22 lectures,
excluding reviews, midterms, and exam.

Fundamentals

• What is hardware-software codesign?
o Flexibility versus performance
o Concurrent and sequential specifications,

parallel implementations
o Modeling abstraction levels

• Synchronous Data-flow Modeling (as an example of
concurrent specification)

o Semantics of SDF
o Analysis of SDF
o Implementing SDF in Software

o Implementing SDF in Hardware

• Control Edges and Data Edges (of a C program)

The Custom Architecture Design Space

• FSMD: a systematic but inflexible model for hardware

• Micro-programmed Architectures: Flexible, scalable
control, but hard to program and optimize (e.g.
pipelining)

• General-purpose Embedded Cores: Flexible, scalable
control, easy to program, but hard to specialize

• System-on-Chip: Flexible, scalable control, easy to
program, feasible to specialize

The Custom-Hardware/Software Interface

• On-chip busses

• Memory-mapped interfaces

• Coprocessor (dedicated processor-HW) interfaces

• Control Design in Co-processors

• Intellectual-property Interfaces

• Advanced solutions
o ASIPs
o Using C for Hardware Design

