
Teaching Hardware/Software
Codesign to the Next Generation

of Computer Engineers

Patrick Schaumont
Virginia Tech

Dept. of Electrical and Computer Engineering

University of California at Riverside
6 June 2008

Outline

• Current Curricula and New Realities

• Codesign starts with Modeling

• A Senior-Level Course in Codesign

• Some Results

2

• Some Results

• Open Challenges & Conclusions

Current Comp Eng Curricula

Entry Level
Programming Course

Digital Design I
(karnaugh maps, …)

Embedded Systems I
(peripherals, assembly, …)

Hardware Software

3

Embedded Systems II
(threads, interrupts, …)

Digital Design II
(HDL, RTL Synthesis, …)

CPE Capstone
(Swim or drown)

Current Comp Eng Curricula - Issues

• Hardware and Software tracks are separated

• Focus is on component design, not on systems
building

• Integration & systems are considered only at
capstone (way too late)

4

capstone (way too late)

New Realities – One top, many slopes

• Embedded Systems Mountain

Specifications

Design Methodologies

cost
flexibility

efficiency

5

ASIC
Coarse-grain

processor
ASIP DSP RISC

Design Methodologies

RISC+
Coprocessor FPGA

Target Architectures

volume

efficiency

time

performance

New Realities – Codesign Comeback

CPU Memory

Memory
Controller

Bridge

Timer

High-speed
Bus

Peripheral
Bus

Parallel
I/OI$ D$

custom dp

Local
Bus

external memory

1

6

1. ASIP Design (processor extension/customization)

2. Coprocessor Design (processor specific interface)

3. Custom Peripheral Design (bus interface)

DMA Bus
Master

UART Custom
HW

Custom
HW

direct I/O

2

3

New Realities - SW is more than C

• Programmable Components rule modern
design

$109 FPGA board
.. used in 5 courses at VT

7

.. used in 5 courses at VT

250 boards in use at
any given semester

Key issue in codesign is modeling

• Objective: Learn the equivalence between a HW
(parallel) and a SW (sequential) implementation

Specification

8

ASIC
Coarse-grain

processor
ASIP DSP RISC

RISC+
Coprocessor FPGA

HW / Parallel SW / Sequential

CASMHDL adhoc C HDLHDL + C

Simple concept, easy implementation?

• Codesign Model based on HDL, Interfaces and
C: (too) complex in a senior course

Specification

9

HW / Parallel SW / Sequential

HDL CInterfaces
Codesign

Model

GEZEL Codesign Environment

• A cycle-based hardware design language combining

• Finite-State-Machine-with-Datapath models (HW)

• Custom interfaces (interfaces to SW)

• A simulation kernel
• Determinate two-phase simulation semantics

GEZEL is:

10

• Determinate two-phase simulation semantics

• Extensible through standard interface (Java, SystemC, Simit-
ARM, Dalton-8051, ..)

• A code generator

• VHDL Code

• GEZEL code is 100% synthesizable

GEZEL Implementation

Software
(main.c)

Platform Model
(system.fdl)

GEZEL

CPU Memory

Memory
Controller

DMA Bus
Master

Bridge

UART Custom
HW

Timer

High-speed
Bus

Peripheral
Bus

Parallel
I/OI$ D$

custom dp

Custom
HW

Local
Bus

FSMD

FSMD

FSMD

11

FSMD

Code Generator
fdlvhd

Cosimulator
gplatform

Standalone Sim
fdlsim

Synthesis
Profiling &
Verification

Profiling &
Verification

Advantage of GEZEL for Codesign

1. Cycle-based, implementation oriented modeling

dpcounter(out c : ns(8)) {

regr : ns(8);

always {

r = r + 1;

c = r;

}

GEZEL

12

}

}

+

1

c
r

counter

Advantage of GEZEL for Codesign

2. Explicit Modeling of Hardware Control

dpupdncounter(out c : ns(8)) {

regr : ns(8);

sfgup {r = r + 1; }

sfgdn {r = r - 1; }

always {c = r; }

13

always {c = r; }

}

fsmctl(updncounter) {

initial s0;

state s1;

@s0 if (r == 255) then (dn) -> s1;

else (up) -> s0;

@s1 if (r == 0) then (up) -> s0;

else (dn) -> s1;

}

GEZEL

Advantage of GEZEL for Codesign

3. Abstract HW/SW Interfaces

intmain() {

volatile int *d = (int *) 0x80000000;

...

*d = 15;

...

return 0;

}

C

driver.c

14

ipblockmyarm {

iptype"armsystem";

ipparm"exec=driver";

}

ipblockb_in(out data : ns(32)) {

iptype"armsystemsource";

ipparm"core=myarm";

ipparm"address=0x80000000";

}

}

GEZEL

ECE 4530: Hardware/Software Codesign

• Design Technical Elective for CPE seniors and
incoming graduate students (30 – 40 students)

• Lecture Organization

• Part 1 – Fundamentals

• Part 2 – Custom Architecture Design Space

• Part 3 – Interfaces

15

• Assignments
• Weekly assignments with hands-on design experiments

• Final project 'Codesign Challenge': Competition to create
fastest implementation for a given spec (in C)

Part 1 - Fundamentals

• Synchronous Dataflow
• Nice formal properties and practical applications

• Analysis of stability [Lee 87]

• Refinement in software and hardware

• Optimizations – multi-rate expansion, pipelining, ...

16

• Control Dependence and Data Dependence
• A data dependence must be implemented regardless of the

underlying architecture

• A control dependence may be removed if the underlying
architecture can handle the resulting
concurrency

Part 2 - Custom Architectures

FSMD

Micro-Programmed
Architecture

Hardware
Software
Codesign

Digital
Design I

17

General-Purpose
Core

System-on-Chip Embedded
Systems

Computer
Architecture

Part 2 - Custom Architectures

FSMD

Micro-Programmed
Architecture

+ Hardware Equivalent for a C function
- Non-programmable, non-scalable, complex

+ Programmable version of FSMD
- Does not cope well with pipelining

18

Architecture

General-Purpose
Core

System-on-Chip

- Does not cope well with pipelining

+ Automatic hazard resolution
- No custom hardware

+ Combines FSMD and GP Core
- May have bus bottlenecks

Part 3 - Interfaces

CPU Memory

Memory
Controller

DMA Bus
Master

Bridge

UART Custom
HW

Timer

High-speed
Bus

Peripheral
Bus

Parallel
I/OI$ D$

custom dp

Custom
HW

Local
Bus

C

19

• The path from C into hardware

• On-chip bus with memory-mapped hardware

• Processor-specific bus with coprocessor hardware

• Processor-instructions for custom datapath

• Key Elements
• On-chip busses (OPB, PLB), Interfaces (FSL)

• Control Shell for Custom Hardware

Overhead is in the interconnections

• Hardware acceleration without considering integration
is usually pointless

AES in SW
32-bit ARM

AES in HW

3627 cycles/
encryption

11 cycles/
ld doneIdeal

voidaes_enc(char *text,

char *key,

char *out)

20

AES in HW
standalone

11 cycles/
encryption

ld done

dout
key

din

ld done

dout
key

din

Control
Shell

32-bit
bus

controllerAES in HW
with memory

mapped
control shell

3338 cycles/
encryption

Ideal
Speedup

330x

Actual
Speedup

1.1x

Some Results

• Final course project is the codesign challenge

• Fall 07: Given cordic.c (64K cordic rotations), provide
maximal possible speedup in two weeks design time

cordic.c

21

Off-chip
DDR

target[]
result_X[]
result_Y[]

DDR CTL

20 clock cycles
per random r/w access

OPB Bus

MBlaze

BRAM
ilmb, dlmb

2 clock cycles
per random r/w access

up to 8 FSL links
with FIFO queue

New
OPB Slave

(IPIF)

New
OPB Master

(IPIF)

1 clock cycle
per instruction

(RISC)

Codesign Challenge: speedup vs slices

1000.00

1200.00

1400.00

1600.00

Hardware
Acceleration

+ other things

The winner ->
(speedup = 1505)

22

0.00

200.00

400.00

600.00

800.00

2000 2500 3000 3500 4000 4500 5000

Hardware
Acceleration

Codesign Challenge: speedup vs slices

1000.00

1200.00

1400.00

1600.00

• Map cordic into hardware
AND

• Move .text into on-chip memory
• Use multiple coprocessors
• Compute/Communicate overlap

23

0.00

200.00

400.00

600.00

800.00

2000 2500 3000 3500 4000 4500 5000

• Map cordic into hardware

Conclusions

• Codesign is a first step to integrate application and
architecture design

• Seniors enjoy co-design
• F06 (23), F07 (31), F08 (40?)

• Modeling is key

• HDL is not up to the job

24

• HDL is not up to the job

• Abstraction by itself is not sufficient (RTL still very useful)

• Don't forget the path to implementation

• Open challenges
• Need a textbook

• Build systems (not components) early on in CPE

• Architecture space exploding; structured approach required

