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A Senior-Level Course in
Hardware–Software Codesign

Patrick Schaumont, Senior Member, IEEE

Abstract—Modern electronic system design makes extensive use
of programmable architectures, and requires designers to consider
hardware and software jointly in their design. A senior-level course
named Hardware/Software Codesign provides a practical intro-
duction to these complex system design issues. The challenge is
to bring a subject, which is traditionally covered as a graduate-
level course, to senior undergraduate students without overly nar-
rowing down the scope, and without turning the course into an
ad-hoc design project. The course combines an incremental, struc-
tured overview of hardware/software codesign with practical as-
signments that emphasize key concepts. This paper reviews the mo-
tivations for this course, the curriculum, the lab materials and tools
used, and the results of the first offering of the course in fall 2006.

Index Terms—Computer architecture, education, hardware de-
sign languages, logic design, modeling, simulation software.

I. INTRODUCTION

I N fall 2006, a senior-level (fourth-year) course named
Hardware/Software Codesign was organized at Virginia

Polytechnic Institute and State University, Blacksburg. The
course is targeted at undergraduates and explores the possi-
bilities of hardware/software codesign as a standard design
technique.

Academics and industry have praised the virtues of hard-
ware/software codesign for many years [1], [2]. However, nei-
ther has shown the willingness truly to change their ways. Aca-
demic curricula tend to show a strong bias to either software
design or hardware design. Industry employs the graduates in
separated hardware and software teams as well. This approach
is not viable in the long term.

Modern applications, especially those in the embedded area,
make extensive use of programmable architectures such as
shown in Table I. The reasons for this are well known. Being
programmable, these components offer shorter application
development times and lower design costs, and they enable
a smooth tradeoff between application–flexibility and perfor-
mance. But the use of specialized programmable architectures
also poses new design challenges. First, design engineers have
to learn new programming models and tools. In addition, a solid
understanding of the underlying target architecture is essential
in order to write efficient programs. Table I demonstrates
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TABLE I
ARCHITECTURE DESIGN SPACE OF CONTEMPORARY PROGRAMMABLE CHIPS

that for design with contemporary components, the design of
hardware and software can no longer be kept separate.

The objective of the senior-level course in hardware/software
codesign is to help students think of Table I as a design space
rather than as a collection of point solutions. Hardware/soft-
ware codesign is well suited for this because it naturally deals
with specialized programmable architectures. For example,
hardware/software codesign recognizes that an application
will be implemented as the sum of a fixed part in hardware
with a flexible part in software. Hardware/software codesign is
also concerned with the design of efficient interfaces between
hardware and software, which is critical to obtain efficient
programs. Thus, rather than studying each of the individual
components in Table I, students will learn the fundamentals by
studying the principles of hardware/software codesign.

The paper uses the following outline. Section II reviews
important concepts in the field of hardware/software codesign,
and clarifies the obstacles in developing a course on this topic at
undergraduate level. From these observations, three principles
are derived for a senior-level course on hardware/software
codesign. Section III introduces the course topics and empha-
sizes the important theoretical concepts and course structures.
The section also reviews the supporting course materials.
Section IV reviews related work and Section V analyzes the
results of this course in terms of measurable learning objectives
(MLOs). Section VI concludes the paper.

II. MAPPING HARDWARE/SOFTWARE CODESIGN INTO AN

UNDERGRADUATE COURSE

Hardware/software codesign is a design technique that
jointly addresses the creation of hardware and software in a
design flow. The objective of codesign is to optimize perfor-
mance and resource-usage of a design. Hardware and software
do not have strict definitions. As illustrated in Table I, hardware
includes a broad range of programmable components while
software covers the programs written for those components.
Proposed almost two decades ago, and continuously researched
since then, hardware/software codesign has evolved into a
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Fig. 1. (a) Function–architecture codesign. (b) Incremental hardware–software codesign.

well-established field. This section presents a short comparison
between two mainstream approaches in codesign, highlighting
the challenges faced in undergraduate course development.
This analysis leads to the three principles used for development
of this course.

Fig. 1 shows two approaches to hardware/software codesign.
Fig. 1(a), function/architecture codesign, is the most general
formulation. Also known as platform-based design [3], this
technique starts from a system description of the application
and a set of programmable components (called a platform).
During system mapping, the application is mapped onto one
or more programmable components, such that the resulting
system architecture, the component interfaces, and the compo-
nent programs are obtained. Platform-based design is a broad
design technique and covers a wide range of architectures and
applications. However, system-mapping is a designer-intensive
and complex task, and there are currently no tools available
that target design refinement for an arbitrary selection of pro-
grammable components.

Incremental hardware/software codesign, shown in Fig. 1(b),
assumes that the target architecture template is fixed – for ex-
ample a microprocessor with a field-programmable gate array
(FPGA) attached to the processor bus. The system is mapped
initially onto a single programmable component, and next re-
distributed incrementally over multiple components in order to
obtain better overall system performance. Coprocessors and ap-
plication-specific instruction-set processors are often designed
in this manner [4]. The incremental nature of this process makes
it easier to manage than function/architecture codesign. In ad-
dition, tools can automate large parts of the design process [5].
However, because of the predefined architecture template, the
traversed design space is smaller.

The objective of the senior-level course in hardware/software
codesign is to teach the fundamentals that govern the design
flows in Fig. 1. In order to ensure that this material is manage-

able for senior-level students, the course adopted three design
principles, which are discussed next.

A. Principle 1: Teach Incremental Concepts

In contrast to professional engineers in industry, students
have limited upfront experience. This relative inexperience
makes the flow of Fig. 1(b) easier to handle than Fig. 1(a).
Indeed, with incremental hardware/software codesign, students
can start from a concrete, working implementation, and observe
the effect of small, incremental modifications. In contrast,
function/architecture codesign requires more insight and ex-
perience. For example, the technique provides no suggestion
on how to partition the system description initially over pro-
grammable components.

B. Principle 2: Simplify the Design Semantics

General-purpose codesign models for hardware and software
span a broad range of abstraction levels. “Software” includes ev-
erything from a small dedicated assembly program up to a mul-
tithreaded application on top of an embedded operating system.
“Hardware” includes everything from an instruction-set model
of a microprocessor up to a low-level event-driven model of an
asynchronous interface. Obviously this implies a wide range in
design semantics. Since the focus in hardware/software code-
sign is on the interfaces between hardware and software, the
course restricts hardware models and software models to have
the following properties.

• Software is captured by single-thread sequential C pro-
grams, optionally extended with inline assembly code.

• Hardware is captured by cycle-based register-transfer level
models. Note that this restricts hardware targets to syn-
chronous components.

A rigorous application of this distinction then leads to two
dual design views, illustrated in Table II. As a result, hardware
and software can be used to address each others’ weaknesses.
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TABLE II
DUALISM BETWEEN HARDWARE AND SOFTWARE

What is difficult with a hardware design approach is often easy
with a software design approach and vice-versa.

Recent trends in design have suggested unifying hardware
and software in a single language (such as C or SystemC). This
unification makes sense from an industrial perspective. For
educational purposes, the unification instead blurs the dualism
between hardware design and software design. In addition,
Edwards points out that moving hardware and software into a
single syntax (in C) does not unify the semantics of hardware
and software as well [6]. Therefore, the course makes explicit
distinction between hardware models and software models.
In fact, part of the lectures are spent discussing techniques to
convert software models into hardware models and vice-versa.

C. Principle 3: Simplify the Tools

The tools required to simulate hardware/software models, and
to compile or to synthesize them into an implementation, can
require a steep learning curve. In addition, the current market
of tools for hardware/software codesign, and more recently for
electronic system level (ESL) design [7], is very dynamic. Other
than standard modeling languages [like C, very-high-speed inte-
grated circuits hardware description language (VHDL)], no gen-
erally adopted industry-standard design tools exist.

Therefore, the course uses an open-source cosimulation en-
vironment, called GEZEL [9], [10]. GEZEL offers cycle-based
hardware modeling [based on finite state machine with data-
path (FSMD) semantics] in combination with software mod-
eling using instruction-set simulation. GEZEL is currently being
used in educational projects at Virginia Tech, Katholieke Uni-
versiteit Leuven, Belgium, and the Denmark Technical Institute,
Copenhagen, Denmark. The environment provides direct sup-
port for the simplified design semantics mentioned earlier. The
strength of GEZEL is its simplicity; in fact only a single lec-
ture is spent on the use of the tool and the creation of GEZEL
models. At the same time, GEZEL can be easily extended with
new cosimulation interfaces.

The next section explains the actual course content, which
was devised following the principles outlined in this section.

III. COURSE DESIGN

Since hardware/software codesign is a relatively new tech-
nique, there is no generally accepted list of topics to be covered.
This section explains the reasoning behind the course content,
and elaborates upon several core topics. Table III lists the topics
covered in the course. There are four major parts: 1) basic
concepts; 2) fundamentals of custom architecture design;
3) methods to map applications into architectures; and 4) recent
developments in codesign.

TABLE III
COURSE TOPICS

Fig. 2. Control-dependence graphs and data-dependence graphs help in ana-
lyzing software–hardware correspondence.

A fundamental idea in an incremental codesign flow is that
hardware and software are two alternative implementation
styles: any given system behavior that is captured as a software
program can also be expressed as a hardware architecture. This
observation, made by Madsen in [8], is the key to unifying
hardware and software design topics in a single course. Even
though the observation itself seems trivial, its implementation
can be tricky due to the dualism between hardware and soft-
ware. For example, given a function in C, it is not directly
obvious how that function can be expressed as a cycle-based
hardware model. Therefore, the initial discussions in the course
aim to convince the students of the equivalence of hardware
and software, and to make them comfortable moving from one
world to the other. The following subsections will present three
of these discussions, including data dependence and control
dependence, concurrency and parallelism, and the design of
custom architectures.

A. The Importance of Data Dependence

The first concept is the distinction between control depen-
dence and data dependence. As illustrated in Fig. 2, any C pro-
gram can be deconstructed into a control dependence graph and
a data dependence graph. A control dependence graph repre-
sents each C statement as a node and each control transition
as an edge. A data dependence graph maps each C statement
as a node and each production/consumption of a variable as an
edge. This analysis can be quickly understood by students and
applied to various C programs, including programs with simple
control structures. The importance of being able to analyze the
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TABLE IV
CUSTOM ARCHITECTURE DESIGN SEQUENCE

Fig. 3. Example assignment on concurrency: Students have to transform the
SDF graph so that it concurrently generates two elements from the Fibonacci
series rather than a single element.

data and control dependencies in a C program can hardly be
overstated. Data dependencies are a genuine property of a spec-
ification, and will appear in any implementation of that speci-
fication. Control dependencies, on the other hand, are artificial.
They are induced by the underlying sequential machine model
from C. Consequently, an easy way of analyzing a C program
with a parallel hardware implementation in mind is to focus on
the data dependencies and to “ignore” the control dependencies.
Fig. 2 illustrates the obvious correspondence between the data
dependence graph of the example C program and a single-cycle
hardware implementation of that program. In the course, stu-
dents learn how to translate scalar C programs (including con-
trol flow statements) to hardware structures.

B. The Importance of Concurrency

The second important concept is the distinction between par-
allelism and concurrency. Both of these express the concept of
simultaneous operation, but with an important difference. Paral-
lelism relates to simultaneous activities of distinct components
(such as the parallelism between two microprocessors). Con-
currency, on the other hand, relates to design specifications, and
expresses activities that potentially can execute simultaneously.
Concurrent specifications are generally accepted to be better
suited for system design than sequential specifications. Concur-
rency is important for the codesign course, because the combi-
nation of hardware and software leads to a concurrent system
model. However, the course discusses concurrency separately
from designing hardware and software models. Concurrency is
studied by means of the synchronous dataflow (SDF) model of
computation [11].

An example of an SDF graph, which is given as an assignment
to the students, is shown in Fig. 3. The SDF model is a classic
concurrent system model that maps functionality as a number
of concurrent actors, which scan their inputs for the availability
of tokens (input values). If a valid input is available, the actor
will fire and produce a new token at its output. The fork actor
duplicates a single input token on both outputs, while the add
actor merges two tokens into a single one holding the sum of

the input tokens. The communication channels in Fig. 3 are in-
finite queues that do not loose data. The model also contains
two initial tokens, which hold the value of the first and second
Fibonacci numbers. As tokens circulate around, the model gen-
erates the Fibonacci number series (0, 1, 1, 2, 3, 5, ...) into the
single-input sink (snk) actor.

The objective of the assignment in Fig. 3 is to transform the
graph so that it can generate two subsequent Fibonacci numbers
for each iteration of initial tokens around the dataflow model.
To solve this, students must replace the snk actor with a dual-
input sink actor (snk2) and then unfold the graph. The simplicity
and elegance of the SDF model allows students to focus on the
concept of concurrency.

C. The Design Space of Custom Architectures

After a discussion of control/data dependencies, and of
concurrency, the course addresses a core topic: a systematic
overview of custom architectures. The objective is to grad-
ually build up a system-on-chip architecture by considering
increasingly complex architectures. This discussion crosses
the boundaries of hardware and software. Indeed, the typical
“hardware” textbook ends with a showcase of datapaths and
state-machine controllers, while the typical embedded-software
textbook starts from an microprocessor-based architecture with
peripherals. However, from the viewpoint of hardware/software
codesign, the architecture space is a continuum.

Table IV lists the sequence of architectures discussed in the
course, in each case pointing out the “hardware” part, the “soft-
ware” part, and the limitations that make designers abandon that
architecture for a more sophisticated one. The following enu-
meration illustrates the line of thought in this lecture sequence.

The starting point of the discussion is the single-cycle custom
datapath, which is fixed and which does not support control (de-
cision making) very well. FSMD models express control and
data processing separately [12], and can resolve these control
issues. However, the FSMD model is not very good at handling
complex decision making. Two well-known problems in this
area are state explosion and awkward exception handling.

The next step is to initiate a discussion on micropro-
gramming, which provides a more systematic design for the
next-state logic in a controller. The micro-engine is the first
programmable architecture covered in the course. It is remark-
able that a design technique, invented 50 years ago by Maurice
Wilkes, still plays a role in the systematic development of
hardware/software codesign. But the micro-engine is also not
without design complexities: as students can experience during
an assignment, introducing pipeline stages in either the datapath
or the microprogrammed controller complicates the design of
microprograms.
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Fig. 4. System-on-chip architecture with interfaces for tightly-coupled and
loosely-coupled hardware acceleration units.

This observation then leads to a machine that handles system-
atic pipelining very well: the reduced instruction set computer
(RISC) processor. At this point in the course, the detailed
behavior of hardware is abstracted out and replaced with the
instruction-set architecture of the processor. The discussion
on RISC resolves the pipelining issue, and also provides a
starting point for hardware/software interfaces. These inter-
faces are discussed in context of the final custom architecture,
the system-on-chip (SoC).

Different types of hardware/software interfaces can be
introduced in the context of the SoC architecture. The inter-
faces can be classified based on the nature of the interaction
between hardware and software (loosely-coupled versus
tightly-coupled, memory-mapped versus port-mapped). Some
advanced hardware–software interfacing mechanisms, such as
direct-memory-access (DMA) and interrupts, are at present
not included in the course material. The course discusses the
interfaces illustrated in Fig. 4, which include a loosely-coupled
memory-mapped interface typically used for peripherals, a
local-bus interface for coprocessors, and a custom–instruction
interface for tightly-coupled custom datapaths.

During the systematic development of hardware–software
codesign, students use the GEZEL environment to simulate all
these different forms of custom hardware and software.

D. Course Integration and Prerequisites

The course is part of the undergraduate computer-engi-
neering curriculum at Virginia Tech. By their senior year,
computer engineering students have taken a course on intro-
ductory digital design (covering combinational and sequential
logic) and on microprocessor interfacing. The hardware–soft-
ware codesign course for seniors uses these basic courses as
prerequisites. Thus, students do not need to be familiar with
hardware-description languages, or with advanced embedded
software programming before entering the codesign course.
The codesign course focuses on the transition area between
hardware and software, and avoids overlap with existing
courses in advanced computer engineering.

IV. RELATED WORK

As pointed out above, hardware/software codesign is a novel
topicat theundergraduatelevel.Aninsightfulobservationismade

by Grimheden and Torngren on the didactics of embedded sys-
temseducation [13], and their conclusions arevalid for hardware/
software codesign courses as well. They observe that present em-
bedded systems education is done on a thematic, application-
driven basis, often motivated by practical needs of industry. They
also observe that embedded systems courses tend to be project
driven and are taught in an interactive manner. This approach is
incontrast toclassicacademicsubjectssuchascalculus, forwhich
there exists a broad consensus on the structure of the field, and
which can use a disciplinary (rather than a thematic) approach.

An example of a graduate-level course that builds along the
“platform-based” codesign model [see Fig. 1(a)] is Sangio-
vanni–Vincentelli’s at the University of California, Berkeley
[14]. However, teaching undergraduate-level codesign with
complete architectural freedom remains difficult. Therefore,
undergraduate courses in codesign tend to fix the platform
upfront, and work along an incremental codesign model [see
Fig. 1(b)]. An example of an early course that relied on the
combination of a microprocessor and an FPGA is by Pottinger
[15]. Contemporary FPGA technology enables users to com-
bine a microprocessor and custom hardware. Therefore, more
recent courses can migrate completely into FPGA, as described
by Chamberlain [16] and by Bieser [17]. A hardware/software
codesign course can also be formulated as a capstone project,
such as for example that proposed by Klenke [18].

At present, education in hardware/software codesign faces
two problems: the lack of an adequate textbook, and the lack
of easy-to-use tools. The lack of textbooks may be caused by
the absence of a generally agreed-upon structure for a codesign
curriculum. Vahid and Givargis wrote one of the few recent un-
dergraduate-level codesign books [19]. An older example is the
book by Gajski [20]. Because of the lack of textbooks, students
in the senior-level codesign course described here make use of
instructor-provided course notes. A second problem is the lack
of easy-to-use tools. Most of the abovementioned courses rely
on standard hardware description languages (VHDL, Verilog)
in combination with C programming. Since HDLs are very dif-
ferent from C, this complicates the learning process [21]. By
using cycle-based modeling using FSMD semantics, GEZEL
models avoid many of these problems.

V. RESULTS

At the end of the course, students were asked to comment on
the MLOs which are defined for this course. The five MLOs are
listed in Table V. For each MLO, the 14 students that returned
their feedback form (of the 17 students in the class) could rank
the MLO from “Strongly Disagree” to “Strongly Agree.”

Students were most positive about the first two MLOs, which
reflect the understanding that hardware and software are equiva-
lent forms (as discussed in Section III). They were less positive
about the last two MLOs, which relate to the practical design
aspect of hardware/software codesign. In hindsight, this impres-
sion seems to be caused by covering too much material, a com-
ment some students made offline. In terms of the outline shown
in Table III, this implies that parts 3 and 4 of the course should
concentrate on the use of hardware–software interfaces rather
than on system-level aspects.
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TABLE V
MEASURABLE LEARNING OBJECTIVES

VI. CONCLUSION

The development of this undergraduate level course in
codesign was motivated by the present evolution in the archi-
tecture landscape. The capabilities of modern architectures,
such as million-gate FPGAs and multicore SoCs, are rapidly
outgrowing the content of present software-oriented and hard-
ware-oriented courses. In addition, each new architecture can
no longer be taught separately because there are too many and
too great a variety of them. Therefore, this course attempts
to approach hardware/software codesign as a structured field,
rather than an ad-hoc review of solutions.

Simplifying the design semantics and tools, and covering the
subject in an incremental approach are both crucial to tackling
the complexity of the subject and presenting it at undergrad-
uate level. The idea that hardware and software can be treated
as equivalent is the key to exploring various embodiments of
hardware platforms, software applications, and frequently-used
hardware/software interfaces.
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