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Abstract. Hardware implementations of block ciphers have been inten-
sively evaluated for years. The hardware profile, including the perfor-
mance, area and power of a block cipher, only considers the block cipher
as a standalone component, and does not consider it as a coprocessor in
a system design. In this paper we consider system integration of AES
and PRESENT crypto coprocessors, and analyze the system profile in a
co-simulation environment and then on an actual FPGA-based SoC plat-
form. Energy, performance and implementation results for both the AES-
and PRESENT-based systems are presented. Our research emphasizes
the need to consider energy efficiency and performance at system-level
when evaluating a block cipher for real embedded systems. Simulation re-
sults reveal that the hardware/software interfaces, as the communication
bottleneck, have major impact on the system performance. Experimental
results further demonstrate that the PRESENT, a power-efficient light-
weight block cipher with lower security level, becomes less energy-efficient
than AES when system-integration overhead is included.

1 Introduction

In recent years, Field Programmable Logic Arrays (FPGAs) have had major
impact on hardware/software codesign. Compared to the early frequent use as
devices for rapid prototyping, FPGAs are now used for final products, thanks to
their reduced time-to-market and the cost advantages of standard devices. Due
to the importance of reconfigurable devices, numerous FPGA AES implementa-
tions have been published, most of which focus on high throughput rates [1, 2].
In [3], an AES design achieves a throughput of 25 Gb/s on a Xilinx Spartan-3
FPGA. This number only reflects the raw processing ability of the hardware
to encrypt bits. However, FPGAs are now becoming a preferred platform for
System-on-Chip (SoC). By providing hard and soft embedded processors on
FPGAs, they enable on-chip integration of co-processors and processors. If we
re-examine the above high throughput designs in the context of a SoC system,
the communication bandwidth between system components becomes a critical
design factor. Fox example, If we only consider an AES coprocessor that runs
at 100 MHz and requires 11 clock cycles per encryption round, each round re-
quires a 128-bit key, 128-bit plaintext and 128-bit cryptotext, then we need an
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input/output bandwidth of about 3.5Gb/s. Dedicated communication hardware
(e.g. direct-memory-access (DMA) chips on fixed-latency buses) may achieve
this bandwidth. In many cases however, this bandwidth needs to be provided
directly through the software. The bandwidth of 3.5Gb/s indeed is outside the
capability of most embedded processors [4].

This shows the most optimal hardware design (in terms of performance) may
not always be the most optimal solution at system level. In fact, not only the
performance, but also the power or energy efficiency should be re-considered at
system-level. In this paper, we consider AES and PRESENT for hardware accel-
eration, and using hardware/software interfaces provided with StrongARM and
Microblaze processors. The results for StrongARM are estimated using cosim-
ulation [5]. The results for Microblaze have been implemented on an FPGA
board and measured using a hardware timer. In addition, power estimation was
performed at system level using Xilinx XPower.

The contribution of this article is two-fold: (1) to present a system-level de-
sign flow, covering simulation up to FPGA implementation, that evaluates the
performance and power consumption of a crypto coprocessor integrated in a
complete system; (2) to point out that a lightweight and power-efficient cipher
(PRESENT) integrated in a SoC environment may actually be less energy-
efficient than a standard block cipher (AES).

The paper is organized as follows. Section 2 briefly presents the background of
PRESENT block cipher. Section 3 explains the system-level design flow used in
the paper and performs some analysis on the performance and power consump-
tion under co-simulation environment. Section 4 describes the FPGA-based SoC
design and illustrates the experimental results. Section 5 concludes the paper.

2 PRESENT Block Cipher

Although Rijndael has been selected by the American National Institute of Stan-
dards and Technology (NIST) as the Advanced Encryption Standard (AES) af-
ter a critical assessment, which included extensive benchmarking on a variety
of platforms ranging from smart cards [6] to high end parallel machines [7], still
many new block ciphers were proposed with special implementation properties,
such as TEA, IDEA, Hight, Clefia, DESXL, and PRESENT [8]. In this paper,
we are especially interested in comparing the AES with the newly published
PRESENT block cipher, which was designed with area and power constraints
uppermost in mind.

PRESENT is an SPN-based (substitution permutation network) block cipher
with 31 rounds, a block size of 64-bit, and a key size of 80- or 128-bit. Fig. 1 shows
the top level algorithmic description and hardware structure of PRESENT. It
comprises three stages: a key-mixing step, a substitution layer, and a permuta-
tion layer. For the key mixing, simply a XOR is used. The key schedule consists
essentially of a 61-bit rotation together with an S-box and a round counter
(Present-80 uses a single Sbox, whereas Present-128 requires two S-boxes). The
substitution layer comprises 16 S-boxes with 4-bit inputs and 4-bit outputs.
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Similar S-boxes are used in both the data path and the key scheduling. The
permutation layer is a simple bit transposition and can be realized by simple
wiring [9].
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Fig. 1. Algorithmic description and hardware structure of PRESENT-80

3 System-Level Design and Analysis Using GEZEL

In order to narrow the gap between performance and flexibility, reduce the time
required to complete a design and reduce the risk of errors that might result from
translating a high-level prototype (e.g. C model) into HDLs, we use GEZEL to
perform system-level design.
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Fig. 2. Overview of GEZEL cosimulation environment

The GEZEL cosimulation environment creates a platform simulator by com-
bining a hardware simulation kernel with one or more instruction-set simulators.
The hardware part of the platform is programmed in GEZEL, a deterministic,
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cycle-true and implementation-oriented hardware description language. After
cycle-accurate simulation, the GEZEL description of hardware can be converted
into synthesizable VHDL [10].

3.1 Hardware/Software Interfaces

There are three commonly available hardware/software interfaces: direct connec-
tion busses (e.g. Fast Simplex Link), processor local busses and general-purpose
system busses (e.g. On-chip Peripheral Bus). Direct-connection buses and proces-
sor local busses are processor specific, while system busses are generic. In this
research, we will only discuss the design using OPB system bus.

The OPB interface is a traditional memory-mapped interface for peripheral
components. The OPB bus is a shared, variable latency bus which is part of IBM’s
CoreConnect specification. It is also used to interconnect soft- and hard-core
processors in a Xilinx FPGA. The hardware side of an OPB interface consists of
a decoder for a memory-read or memory-write cycle on a selected address in the
memory range mapped to the OPB. The decoded memory cycle is translated to a
read-from or a write-into a register in the coprocessor. A memory-mapped inter-
face is an easy and popular interface technique, in particular because it works with
standard C on any core that has a system bus. The drawback of this interface is the
low-speed connection between hardware and software. Even on an embedded core,
a simple round-trip communication between software and hardware can run into
several tens of CPU clock cycles [4].
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ipparm "data =0x8000000C";
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Fig. 3. Hardware/Software interface OPB

3.2 Cosimulation Based on StrongARM

Under the GEZEL simulation environment we first implement the AES and
PRESENT in GEZEL based on based on Finite State Machine with Datapath
(FSMD) model. A standalone simulation is then used to verify the correctness
of the AES and PRESENT encryption core. Next, the AES and PRESENT
cores are integrated into a coprocessor shell as follows. Three memory-mapped
registers have been added: a data-input port, a data-output port, and control
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port. Since the maximum data width supported by the OPB bus is 32-bit and
the AES-128 and PRESENT-80 used in this paper have 128-bit, 80-bit and
64-bit ports, additional registers should be added to perform serial-to-parallel
and parallel-to-serial conversions. The control shell also contains a dedicated
controller that controls the operations of the hardware/software interface, which
is OPB interface in our design. This controller implements the ’instruction-set’
for the coprocessor, and decodes the commands sent from the software driver to
the coprocessor. The final step is to write a software driver to perform a series
of memory reads and writes.
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Fig. 4. Cosimulation based on instruction-set simulators

The simulation results for the AES and PRESENT under GEZEL environ-
ment are illustrated in Table 1.

Table 1. Cosimulation performance results (100 encryptions for each block cipher)

SW HW HW/SW HW HW/SW

cycle counts cycle counts cycle counts speedup speedup

AES-128 217,603 1,200 134,599 181.3 1.6
PRESENT-80 1,924,547 3,300 85,306 583.2 22.6

Note that the AES-128 hardware implementation is based on the core devel-
oped by Rudolf Usselman, available from OpenCores, and the software version
is a 32-bit AES derived from the SSH open source package; the PRESENT-80
hardware design is based on the structure depicted in Fig. 1, and the software
version was provided by one of the PRESENT authors. Both the hardware and
software versions are basic implementations without specific optimization goals,
and here the designs consider the encryption only with each plaintext assigned an
initial key. 100 iterations for the AES and PRESENT algorithms (which trans-
mit the plaintext and key to the cipher for each iteration) result in the above
performance numbers.
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Table 2. Toggle counts (TC) of standalone simulation

TC/cycle TC/encryption TC/(encryption ∗ byte)

AES-128 3,798 45,576 2,849
PRESENT-80 2,746 90,618 11,327

From Table 1, it is obvious that if we only consider the hardware acceleration
the design speedup is often dramatic, but, if we consider the system integration
and take into account the communication overhead, the resulting speedup can
be much lower.

The GEZEL simulation environment also provides technology-independent
toggle counting at Register Transfer Level (RTL), which is useful to roughly
estimate the dynamic power consumption of a design.

The toggle counts collected in Table 2 only includes the AES and PRESENT
encryption core when doing standalone simulation. This data can be utilized to
early estimate the power- and energy-efficiency of the hardware designs of AES
and PRESENT. The first column of the table indicates that PRESENT-80 is
more power efficient than AES, in terms of dynamic power consumption. How-
ever, since most light-weight block ciphers, like PRESENT, are specialized cryp-
tographic implementations for tight cost constraint applications, such as RFID
tags, the energy-efficiency instead of power-efficiency should be emphasized be-
cause most of these applications are battery powered. The second column of the
table reflects the toggle counts per cycle multiplying the cycle counts for each
encryption, the results of which can be approximately equivalent to the energy
consumption per encryption. Further, we divide the toggle counts per encryption
by the number of plaintext bytes in one encryption. The obtained values can be
assumed to be the energy required for the block cipher to encrypt one byte plain-
text. This indicates that the PRESENT-80 might be less energy-efficient than
the AES in standalone encryption mode. Table 3 illustrates the power values
(by using post-place and route simulation model in XPower, which will be dis-
cussed later) obtained in standalone simulation on Xilinx Spartan-3 XC3S1000
FPGA, which well support our assumption based on toggle counts. Moreover, it
reflects the relative accuracy of GEZEL toggle counting when predicting the ac-
tual power consumption of designs. Note that both the quiescent and dynamic

Table 3. Power results of standalone FPGA implementations (10 encryptions for each
block cipher working at 20MHz)

Quiescent Dynamic Time Energy Energy/byte

Power(mW) Power(mW) (ms) (mJ) (μJ/byte)

AES-128 51.51 40.75 6 0.55 3.46
PRESENT-80 44.06 3.49 16.5 0.78 9.81
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power values are collected from Vccint, the FPGA core power supply voltage
since we only consider the FPGA core power variation.

4 FPGA-Based Hardware/Software Co-design

Using the above GEZEL simulation environment we can translate the GEZEL
description of the AES and PRESENT and control shells into synthesizable
VHDL, which can be then added as coprocessors in the Xilinx Platform Studio
(XPS) 9.1.02.
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Fig. 5. FPGA-based SoC platform

The SoC system is built on a Xilinx Spartan-3E XC3S500EFG320 develop-
ment board with both on- and off-chip memory. Since each on-chip memory read
or write only takes 2 clock cycles compared to 22 and 23 clock cycles for off-chip
memory read or write on our specific FPGA platform, we fully utilize the on-chip
memory for our system design. Note that our research objective is trying to ad-
dress some system integration issues or considerations for general SoC systems,
and here the selection of Microblaze as the microprocessor and OPB as system
bus is for detailed discussion.

A hardware timer module is added for measuring the speed of both crypto
hardware coprocessor and the crypto software running on MicroBlaze. The timer
will be removed when doing power estimation of the whole SoC system using
XPower.

XPower is a commercial-off-the-shelf tool to estimate power consumption of
Xilinx SRAM-based FPGAs. XPower utilizes either pre-routed or post-routed
design data, and then makes a power model either for a unit or for the overall
design. It considers resource usage, toggle rates, input/output power, and many
other factors in estimation.

To get a good indication of the power consumed by the device using XPower,
an accurate VCD file is needed. Here, we use a complete post-place-and-route,
timing-accurate model built in XPS to generate the VCD file. Other system
settings use the XPower default values.
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Table 4. FPGA implementation areas (unit: slices)

Crypto core Coprocessor with wrapper

AES-128 1,877 2,097
PRESENT-80 271 460

The areas for AES and PRESENT coprocessors are presented in Table 4.
The resources used for the other parts in both the systems are the same: 8Kb
Block RAM, 8 slices for LMB wrapper, 99 slices for OPB wrapper, 749 slices for
Microblaze and 65 slices for Debug module.

Table 5. FPGA system performance results (100 encryptions for each block cipher)

SW HW HW/SW HW HW/SW

cycle counts cycle counts cycle counts speedup speedup

AES-128 432,756 1,200 77,428 360.6 5.6
PRESENT-80 2,295,863 3,300 51,427 695.7 44.6

The numbers in Table 5 is for 100 iterations encryption for the AES and
PRESENT, and each iteration transmits plaintext and key to the cipher. The
performance improvement from using hardware/software co-design is satifying
respect to software using C codes which were compiled with -O2 optimization.
However, combined with the former co-simulation results in GEZEL we see that
the overhead is substantial. Take AES-128 FPGA codesign for example, 100 iter-
ations in hardware only should take 1200 clock cycles, while we have used 77,428.
This overhead factor (65X) is due to the communication with the processor and
implementation of various command sequences with the encapsulated hardware.
Note that the big differences in cycle counts and speedup values between GEZEL
co-simulation and FPGA SoC implementation are due to the different processors
(StrongARM vs. MicroBlaze) and compilers (arm-linux-gcc vs. mb-gcc).

In the former relative power estimation using toggle counts, we deduced that
the more power-efficient PRESENT block cipher is in fact less energy-efficient

Table 6. FPGA system power and energy simulation results (4 encryptions for each
block cipher woking at 50MHz)

Quiescent Dynamic Time Energy Energy/byte

Power(mW) Power(mW) (ms) (mJ) (μJ/byte)

AES-128 31.25 19.97 62.08 3.18 49.68
PRESENT-80 31.25 19.61 41.2 2.10 65.48
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than AES, in terms of toggles per encryption per byte together with the standalone
FPGA simulation results. When we look at this problem again in an FPGA-based
SoC platform, we can find that the system with PRESENT coprocessor consumes
slightly less total power than that with the AES coprocessor. However, still we can
find that the PRESENT-based system is less energy-efficient than the AES-based
system.

5 Conclusions

Due to the encryption speed and ease of implementation, block ciphers have
been widely used in various embedded applications. Much research effort has
been put on the trade-off designs on hardware implementation of block ciphers,
but, we think that the hardware profile is unable to predict the performance and
energy (or power) in the context of a real embedded system.

Using our design flow we can not only get some early prediction of performance
and dynamic power consumption under co-simulation environment, which can
help designers to refine the design at an early stage, but also get accurate perfor-
mance and energy values after on-board FPGA implementation, which can help
designers select the crypto coprocessor best fitted to some specific platforms.
The illustrated SoC designs with AES and PRESENT coprocessors identify the
hardware/software interfaces design as an important system integration issue,
and address the power- and energy-efficiency evaluation issue at the system level.
Our future work may focus on different hardware/software interfaces’ (e.g. FSL)
impact on the performance and energy- or power-efficiency of a typical SoC
system with different kinds of crypto coprocessors, and possible optimization
methods.
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