
EXECUTING HARDWARE AS PARALLEL SOFTWARE
FOR PICOBLAZE NETWORKS

Pengyuan Yu, Patrick Schaumont

ECE Department, Virginia Tech, Blacksburg, VA 24061
email: peyu1983@vt.edu, schaum@vt.edu

ABSTRACT

Multi-processor architectures have gained interest recently
because of their ability to exploit programmable silicon par-
allelism at acceptable power-efficiency figures. Despite the
potential benefit they offer over single-processor architec-
tures, it is unresolved how one can write compact and effi-
cient programs for multiple parallel cores. In this paper, we
propose the use of a synchronous hardware description lan-
guage to program a network of small PicoBlaze processors.
The partitioning of a multiprocessor program over multi-
ple cores is straightforward because the input specification
is fully parallel. A systematic transformation process con-
verts the parallel input specification into concurrent Pico-
Blaze programs. We demonstrate the mapping of a crypto-
graphic design (AES) onto four picoblaze processors, show-
ing almost linear speedup over an equivalent single-core de-
sign.

1. INTRODUCTION

While parallel cores have been hailed as the next big step
in computer micro-architecture development, it has not been
obvious how to write efficient programs for multiprocessors.
The sequential programming model of a single core is un-
able to address multiple cores at once. Designers therefore
have to make use of programming extensions such as threads
and message passing libraries, which quickly become cum-
bersome to use. In addition, a systematic transformation of
a sequential program in C to a parallel program that can run
on multiple cores is unknown, and it remains a highly skilled
design activity.

We therefore looked at the use of a hardware description
language as a means to program multiple cores. The advan-
tage is that a hardware description language is inherently
parallel. The mapping problem from specification to archi-
tecture thus does not require the detection of parallelism,
but it rather does require an efficient sequentialization. In
this paper, we will show a feasible solution for this problem.
Hardware description languages are often associated with a
low level of abstraction, unsuited for programming activi-
ties. This is indeed the case for contemporary hardware de-

Fig. 1. GEZEL Hardware Description to Picoblaze Software

scription languages such as VHDL and Verilog, which use
event-driven simulation semantics that model each signal
change separately. Therefore, we use a cycle-based hard-
ware description language, called GEZEL.

In this paper, we propose a transformation that will map
synchronous hardware designs directly into optimized as-
sembly programs that run on multiple embedded cores. The
programs are fully synchronized with respect to each other
by means of a common global clock, corresponding to the
clock of the synchronous hardware description. Each cycle
of this common global clock may take many physical clock
cycles in the implementation. Compared to a direct imple-
mentation of the synchronous hardware design, we therefore
expect a decrease in performance for the parallel software
implementation. We will show that the reduction in perfor-
mance is matched by a corresponding reduction in silicon
area.

Our method shows excellent scalability over the number
of cores in a design. In a fully parallel implementation, each
hardware module of the input description maps to a sepa-
rate core. Yet the same design can also map all hardware
modules on a single global core. Our results show that this
yields performance/area tradeoffs over a wider range than
what is achievable by classic hardware design optimization
methods, for example by logic synthesis.



Gezel_to_PicoNet_Mapping {
for each FSMD_i {

dfg = extract_Dataflow(FSMD_i);
if is(hierarchical)

for inner FSMD_j
dfg_j = extract_Dataflow(FSMD_j);
dfg = combine_Dataflow(dfg, dfg_j);

instr = convert_to_instructions(dfg);
instr = reorder_instructions(instr);
regmap = register_assignment(dfg);
assembly_i = mapping(regmap, instr);

}
synchronize(assembly_i, assembly_i+1,...);

}

Fig. 2. GEZEL to Picoblaze Mapping Algorithm

The starting point of our proposed transformation pro-
cess are hardware models described using GEZEL[1]. As
shown in Figure 1, GEZEL describes cycle-based hardware
designs as a collection of parallel and hierarchical modules.
Each module, including hierarchical ones, can be mapped
to a sequential assembly program for an embedded core. In
this way, a complete system can be mapped onto a network
of parallel cores. The cores are attached to a crossbar net-
work, which enables intermodule communication.

In our experiments, we used a Xilinx Spartan3 XC3S400
FPGA as testing platform and we chose Picoblaze micro-
processors for our multi-core network. Picoblaze is an 8-bit
soft-core developed by Ken Chapman, Xilinx Inc. It uses
1 BlockRAM and 96 slices of logic. This low resource us-
age enables typical FPGA to carry multiple Picoblaze cores.
Our XC3S400 FPGA for example, can hold up to 16 cores
including the crossbar network.

The remainder of this paper is organized into five sec-
tions. In section 2, related work in this research area is
discussed. Section 3 presents the conversion process, and
section 4 introduces a case study based on a cryptographic
processor design. Section 5 presents the results obtained
from these experiments, and section 6 concludes the paper.

2. RELATED WORK

The customizability and small size of Picoblaze makes it an
ideal processor for many applications that are area-critical.
Often, Picoblaze cores are used in small control applica-
tions. A floating-point controller[2] and neuron-network for
self-learning[3] have used original or customized Picoblaze
cores. Integrating Picoblaze processors into the system for
each of these task-dependent applications is a cumbersome
process. With our transformation process, we can map syn-
chronous systems into Picoblaze processors as efficiently as
possible independent of design tasks.

Threads are by far the most popular abstraction for par-
allel software programming. Lightweight implementations
such as protothreads[4] and quickthreads[5] are well suited
for embedded implementation. However, threads are not
an easy abstraction, and they tend to make the design of
real-time systems needlessly complicated[6]. Programming
mechanisms such as Esterel, nesC[7], and Click[8] avoid
the use of threads yet provide elegant parallel programming.
Our approach falls in this latter category, however it differs
from them in the way it explicitly models the progression of
time as ’clock cycles’ in the input description. In those other
approaches, time is modeled implicitly instead.

3. MAPPING PROCESS

In this section we introduce the mapping process to convert
a synchronous hardware description into parallel software.
We first provide an overview of the conversion process, and
illustrate our method with the step-by-step conversion of a
4-stage pipeline. Further subsections present the details of
the conversion process, including register assignment, op-
eration scheduling, operation mapping, and synchronization
of multiple Picoblaze programs.

3.1. Input Specification and Mapping Algorithm

Hardware modules in GEZEL are described using the Finite
State Machine with Datapath(FSMD) model-of-computation.
Our method is to translate each GEZEL FSMD, or each hi-
erarchy of FSMDs, into an assembly program for a Pico-
blaze processor. The pseudocode of the mapping algorithm
is shown in Figure 2.

In our current approach, we assume that all picoblazes
are connected to a crossbar network. System-level commu-
nications that cross the boundaries of an FSMD will there-
fore translate into communications over the crossbar net-
work. We now discuss the details of each step.

3.2. Dataflow Graph and Converted Instructions

The first step of the conversion is to express each GEZEL
FSMD as a dataflow graph (DFG). These are directed graphs
in which nodes capture operations and edges represent data
dependencies. The input and output nodes of the graph cor-
respond to input/output operations of an FSMD. Hierarchi-
cal FSMDs are captured in a single DFG by flattening them
first. In the DFG, this has the effect of connecting input/ouput
operations of lower-level FSMD with additional data prece-
dences.

Figure 3(a) lists the GEZEL description of a 4-stage pipeline
with hierarchical structure, containing 4 single-stage pipeline
modules. The block diagram is shown in figure 3(b). All
variables in GEZEL are assigned a single node with an unique
number. GEZEL state variables are represented with 2 nodes:



Fig. 3. (a) GEZEL description of a 4-stage pipeline using hierarchy. (b) Block Diagram of GEZEL description (c) Flattened
Dataflow Graph extracted. (d) Collected sequential operations. (e) Picoblaze assembly code

one for the current state and one for next state with same
number appended with word ”next”. In figure 3(c), the flat-
tened data-flow graph of the pipeline is shown. After the
dataflow graph is constructed, it is converted to a sequence
of instructions that simulate the original GEZEL system. A
sequence consisting of 25 instructions is created from the
dataflow graph, as shown in figure 3(d). The scheduling of
the operations in the data-flow graph to a sequential time
axis can be done in different ways. We are using an ASAP
(as soon as possible) scheduling strategy with some addi-
tional heuristics as will be discussed later. First, we explain
how the register assignment works.

3.3. Register Assignment

One problem with generating low-level assembly code is to
assign GEZEL wires and state variables to Picoblaze reg-
isters. Picoblaze has 16 byte-wide general purpose regis-
ters and 64-byte of scratchpad RAM. Operations involving
scratchpad RAM will require additional write/read opera-
tions (so-called ’spilling’), resulting in costly access. We
need to optimize the use of registers and resort to scratch-
pad only when absolutely necessary. For register allocation,
we choose to used the left-edge algorithm[9] with additional
heuristics for optimized register assignment.

3.3.1. Heuristic 1: Keep GEZEL Data State variables in a
single Picoblaze register

As seen in the dataflow graph in figure 3(c), the dashed
edges making the graph cyclic represent negative precedences,
which occurs between two nodes that represent a data state.
We use one Picoblaze register to represent each data state.
Each iteration of the Picoblaze program uses the current
state values from these registers and stores the next state val-
ues into the same registers. Shown in figure 4(a), the first 8
variables representing 4 GEZEL data states are all forced to
the same Picoblaze register before left-edge algorithm starts.
This heuristic removes 1 instruction for each GEZEL data
state update and potentially reduces the number of Picoblaze
registers in use at any time of execution.

3.3.2. Heuristic 2: Same register allocation for consumed
operand and created result

All Picoblaze instructions operate on two operands except
for shifting instructions. The result of an operation is stored
into the register containing the first operand. During register
assignment, we need to assign the same register to both re-
sult and first operand. If the first operand is still needed after
this instruction, it is possible to switch the two operands if
second operand is consumed by this operation. For instruc-



Fig. 4. (a)optimized register assignment with reorder of instructions (b) non-optimized register assignment based on original
instruction sequence

tions that are not commutative, like the subtraction opera-
tion, the content of the first register needs to be preloaded
into a temporary register, and subtraction can proceed with
the temporary register as the first operand. This prohibits as-
signing same registers to result and first operand variables.

The Left-Edge algorithm works on the birth-death table
of variables. Obviously, the operation schedule will affect
the birth and death time of variables. At least one schedule
will result in a register assignment that minimizes the num-
ber of instructions needed for the mapping process. Taking
this observation into account, we discuss some heuristics for
the rearrangement of execution sequence that will optimize
the register assignment.

3.4. Reordered Execution Sequence

Consider again the design in figure 3. If we don’t change the
execution order as defined in 3(d), we obtain a sub-optimal
solution, using 10 instructions with 7 registers. By rearrang-
ing instruction #10 to #13 and executing them backward,
we can obtain an optimal solution that will simulate above
pipeline in only 6 Picoblaze instructions with 4 Picoblaze
registers as shown in Figure 3(e). The register assignment
comparison of before and after reordering of the execution
sequence is shown in Figure 4.

To simplify the register assignment process, several heuris-
tics have been used in the execution sequence reordering:

• ASAP scheduling starts with nodes representing cur-
rent state values only. This will free up Picoblaze reg-
isters early for use in other instructions. When paral-
lelism is encountered, priority is given to instructions
closer to producing system outputs.

• All next state instructions are moved toward the end
of the program, to prevent negative precedence rule

from locking up registers.

• Inputs need to be stored into registers before arith-
metic operations such as ADD, SUB. Once loaded,
they need to be consumed as fast as possible. To
achieve this, group all instructions that depend on in-
puts together. Push this group of instructions as far
back as possible, right before next-state assignment
instructions. This will give more freedom in register
assignment for operations that do not depend on in-
puts.

After the register assignment is optimized with reorder-
ing of instructions, the operation mapping starts.

3.5. Operation mapping

Mapping starts by taking in the optimized register assign-
ment and the set of reordered instructions. Using a transla-
tion table, most operations in GEZEL can be translated to
Picoblaze assembly using 1 or 2 instructions. Certain oper-
ators supported in GEZEL cannot be translated efficiently.
Such operations are for example multi-bit extraction. These
require shifting and bit masking and are costly to implement
in PicoBlaze. Other costly operations are multiplication and
modulo-operators.

3.6. Synchronization

To ensure the correct operation of the mapped Picoblaze
network, we need to synchronize the Picoblaze programs.
Every Picoblaze instruction executes in 2 cycles. This pre-
dictable behavior makes static synchronization possible. The
two phases of synchronization are shown in Figure 5.

Phase One is internal synchronization. This phase is
required when branching occurs during execution. Data-



Fig. 5. Two types of synchronization: Internal and External

dependent branching instructions vary the program execu-
tion length. We need to balance the two branches by insert-
ing fake instructions (NOP). As shown in Figure 5(a), inter-
nal synchronization ensures that the program always takes
the same amount of clock cycles to execute from the fork
point to the join point.

Phase Two is external synchronization. Static synchro-
nization of multiple Picoblaze programs means that commu-
nication will not use explicit handshaking. During the out-
put instruction of transmitter, the receiver Picoblaze must
execute an input instruction. If delay exists in the commu-
nication network, it has to be in multiples of 2 cycles. For
2n delay, the input instruction in the receiver can be delayed
by n instructions. In figure 5(b), the top part of external
synchronization shows no delay, where each output instruc-
tion is matched with an input instruction. In the bottom part,
a 4 cycle delay permits input instructions to be offset by 2
instructions.

A combinational circuit requires current input before any
processing can be done. Synchronization with combina-
tional circuits is troublesome because the positions of input
and output instructions are fixed by the input-output data
dependency. For a sequential circuit such as the 4-stage
pipeline, sacrificing performance by adding one more in-
struction provide a better overall performance. In figure 6, a
combinational circuit that requires 8 instructions is inserted
into a 12-stage pipeline build using 3 4-stage pipelines.

For the second 4-stage pipeline, instead of executing the
same as the first pipeline, we can input data to a temporary
register and load it to the correct register later. This allows
us to move the new input instruction anywhere in the pro-
gram space before the last load instruction. From Figure 6,
we see that for the same 4-stage pipeline, by using 1 ex-
tra instruction like the second pipeline, we can efficiently
synchronize sequential circuits with each other. With com-
binational circuit in the picture, we have to synchronize the
sequential circuits with respect to the combinational circuit.
Unfortunately, if 2 combinational circuits are connected di-
rectly, then no optimized synchronization can be done be-
tween these 2 blocks.

Fig. 6. Synchronization With Respect to Combinational Cir-
cuits

4. CASE STUDY WITH AES

Advanced Encryption Standard (AES)[10] is a block cipher
algorithm that can be implemented quite efficiently on a
byte-wide processor. Its modular structure also makes it
ideal for running on a Picoblaze network.

4.1. Picoblaze Network

In order to run AES on multiple Picoblaze cores, we need
to efficiently allocate the plaintext and userkeys into each
core. In our example, we used 4 Picoblaze processors. We
will use column allocation so MixColumn operations can be
done directly while ShiftRow operations will be routed on
the network. Shown in figure 7 is the Picoblaze network
structure and AES data and key states distribution.

4.2. AES Mapping

Sbox requires 256 bytes of storage space. This forces us to
use synchronous BlockRAM on our XC3S400 FPGA to im-
plement ROM storage. Each ROM storage can be connected
to either 1 or 2 Picoblaze cores using single-port or dual-port
configuration. Each Picoblaze has a 8:1 multiplexor select-
ing different inputs. Four inputs are connected to the 4 out-
puts of ROM. Three inputs are connected to the Picoblaze
outputs other than itself. The last input is for new data.

ShiftRow operation can be combined with Subbyte op-
eration because the ROM outputs can be routed to any Pico-
blaze processors. On the fly key-expansion takes almost
50% of runtime. This is because key expansion is not paral-
lel since each column of key depends on previous columns.
This creates a combinational circuit behavior that does not
map to Picoblaze as efficiently as sequential circuits.

5. RESULTS

The optimized mapping of AES in Picoblaze assembly pro-
duces competitive results against other 8-bit processors. The
resulting cycle count is much less than other 8-bit processors



Fig. 7. Picoblaze architecture in cross-bar topology. Each
Picoblaze can communicate with any other Picoblaze.

Table 1. AES on 8-bit processors

Instructions Cycles/Instr. Cycles

8051 3168[12] 12 38016
68HC08 8390[12] 1 8390

AVR 4009[13] 1 4009
1 Pico* 3270 2 6540
2 Pico* 1304 2 2608

4 Pico 791 2 1582
*estimated numbers

such as Intel 8051, Motorola 68HC08 and Atmel AVR. The
results are shown in Table 1.

Compared with above 8-bit processors, running AES on
4 Picoblaze cores is considerably faster, using less than 1/5
of the cycle count for 68HC08, 2/5 of the cycle count for
AVR, and less than 1/20 of the cycle count for 8051 pro-
cessor. Cycle counts are estimated for 2-Picoblaze and 1-
Picoblaze network. The cycle counts are not linear because
we have to use scratchpad memory in both cases and key ex-
pansion does not scale well with the number of processors.

The FPGA implementation of an AES algorithm will
take between 3000 to 10000 slices depending on the de-
gree of unrolling and pipelining[11]. The performance is be-
tween 200Mbits and 2Gbits. In comparison, simulation in
4-Picoblaze network is considerably slower. Using 4 Pico-
blaze in crossbar network for AES, the area is estimated to
be 500 slices. This is a lot smaller than the solutions ana-
lyzed in [11].

6. CONCLUSION AND FUTURE WORKS

This paper shows a method to convert hardware descriptions
into software for parallel processors. The result shows ex-

cellent scalability over the number of cores in terms of area
and performance. Hardware designers, who are used to de-
sign parallel behavior, can make use of a tool to convert
hardware into parallel software. In case of AES, where data
flow is a more important task than control, parallel Picoblaze
produces reasonable and better result than other similar pro-
cessors.

This mapping process is not complete yet. We are work-
ing on the automation of entire process. Currently, auto-
mated conversion for longer word length and multiple in-
put/output are not optimized. In the future, additional fea-
tures such as combining smaller FSMDs into bigger FSMD
to match the result with other big FSMD will be explored.

7. REFERENCES

[1] The GEZEL Design Environment, Virginia Tech. [Online].
Available: http://rijndael.ece.vt.edu/gezel2

[2] J. Kadlec and R. Gook, “Floating point controller as a pico-
blaze network on a single spartan 3 fpga,” in MAPLD05,
2005.

[3] J. A. Starzyk, Y. Guo, and Z. Zhu, “Dynamically reconfig-
urable neuron architecture for the implementation of self-
organizing learning array,” in Proceedings of the 18th IPDPS,
2004.

[4] A. Dunkels, “The protothreads library.” [Online]. Available:
http://www.sics.se/ adam/pt/documentation.html

[5] D. Keppel, “Tools and techniques for building fast portable
threads packages,” in UWCSE 93-05-06. U. Washington,
1993.

[6] E. A. Lee, “Absolutely positively on time: what would it
take?” IEEE Trans. Comput., vol. 38, no. 7, pp. 85–87, 2005.

[7] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler, “nesc language: A holistic approach to networked
embedded systems,” in In Proceedings of Programming Lan-
guage Design and Implementation (PLDI), 2003.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The click modular router,” in ACM Transactions
on Computer Systems 18(3), August 2000, pp. 263–297.

[9] T.-Y. Wu and Y.-L. Lin, “Register minimization beyond shar-
ing among variables,” in Proceedings of 32nd Design Au-
tomation Conference. ACM, 1995, pp. 164–169.

[10] AES Rijndael Algorithm Specification. [Online]. Available:
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf

[11] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An fpga-based
performance evaluation of the aes block cipher candidate al-
gorithm finalists,” IEEE Trans. VLSI Syst., vol. 9, no. 4, pp.
545–557, Aug. 2001.

[12] J. Daemen and V. Rijmen, “The block cipher rijndael,” in
Smart Card Research and Applications. Third International
Conference, CARDIS’98, ser. Lecture Notes in Computer Sci-
ence, vol. 1820. Springer, 2000, pp. 277–284.

[13] AES Software Modules for Atmel AVR Microcontrollers.
[Online]. Available: http://jce.iaik.tugraz.at/sic/products
/c products/crypto software for microcontrollers


