
Electronic System-Level Design

338 0740-7475/06/$20.00 © 2006 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

RECENTLY, there has been an increasingly greater

variety of target architecture options for digital electronics

design. Whereas the driving applications for these archi-

tectures are often governed by standards and thus tend

to be regularized, there is still a lot of design freedom in

the target architectures themselves. There is a wide range

of programmable-processor architectures,1,2 and with any

given application, designers must balance performance,

power consumption, time to market, and silicon cost.3

The obvious question is how to choose the most appro-

priate target architecture for a given application.

In this article, we present Gezel, a component-based,

electronic system-level (ESL) design environment for

heterogeneous designs. Gezel consists of a simple but

extendable hardware description language (HDL) and

an extensible simulation-and-refinement kernel. Our

approach is to create a system by designing, integrating,

and programming a set of programmable components.

These components can be processor models or hard-

ware simulation kernels. Using Gezel, designers can

clearly distinguish between component design, plat-

form integration, and platform programming, thus sep-

arating the roles of component builder, platform

builder, and platform user.

Embedded applications have driven the develop-

ment of this ESL design environment. To demonstrate

the broad scope of our component-based approach, we

discuss three applications that use our environment; all

are from the field of embedded security.

ESL design has many faces
A common definition for ESL design

is the collection of design techniques for

selecting and refining an architecture.

But ESL design has many aspects and

forms. Even within a single application

domain, system-level design can show

wide variations that are difficult to cap-

ture with universal design languages and architectures.

Therefore, you can also think of ESL design as the abil-

ity to successfully assemble a system out of its con-

stituent parts, regardless of their heterogeneity or nature.

Consider the following three examples. All of them

closely relate to design for secure embedded systems,

but they also require very different design configura-

tions. Thus, these examples show the need for a more

general approach, which we achieve using Gezel.

Example 1: Public-key cryptography on 8-bit
microcontrollers

Sensor networks and radio-frequency identification

tags are examples of the next generation of distributed

wireless and portable applications requiring embedded

privacy and authentication. Public-key systems are

preferable because they allow a more scalable, flexible

key distribution compared to secret-key cryptosystems.

Unfortunately, public-key systems are computationally

intensive and hence consume more power. Recent pro-

posals suggest replacing the RSA (Rivest-Shamir-

Adleman) system with more economical solutions such

as elliptic-curve cryptosystems (ECCs) or hyper-elliptic-

curve cryptosystems (HECCs). ECCs and HECCs provide

security levels equivalent to RSA but with shorter word

lengths (a 1,024-bit RSA key is equivalent to a 160-bit

ECC key and an 83-bit HECC key), at the expense of

highly complex arithmetic. Figure 1 shows the hierar-

chy and mapping of such a system. On top is the HECC

A Component-Based Design
Environment for ESL Design

Editor’s note:
This article focuses on two key properties that the authors see as critical to
ESL design: abstraction and reuse. The authors present an ESL design flow
using the Gezel language. Using several very different design examples, they
show how this design flow supports their case for abstraction and reuse.

—Carl Pixley, Synopsys

Patrick Schaumont

Virginia Tech
Ingrid Verbauwhede

Katholieke Universiteit Leuven

point multiplication oper-

ation, which consists of a

sequence of basic elliptic-

curve point operations.

Each of these basic ellip-

tic-curve operations con-

sists of a sequence of

more elementary opera-

tions in the underlying

Galois field. For HECC,

this field is 83 bits. If the

system were an ECC, this

field would be 160 bits.

We implemented this

design as an 8051 micro-

controller, extended with

a hardware acceleration

unit. The 8-bit microcon-

troller interfaces are quite

narrow compared to HECC

word lengths. Therefore,

when building a hardware acceleration unit, it is crucial to

consider overall system performance. Because of the hier-

archy in the calculations, there are multiple ways to accel-

erate the HECC operations—in contrast to secret-key

algorithms, which have fewer hierarchy layers and thus

offer fewer implementation choices. As a stand-alone opti-

mized C implementation, an HECC point multiplication

takes 192 seconds to calculate. A small hardware accel-

erator, requiring only 480 extra FPGA lookup unit tables

(LUTs) and 100 bytes of RAM, improves this time by a fac-

tor of 80, to only 2.5 seconds. Figure 1 indicates the result-

ing split between hardware and software, which is not yet

optimal for an 8051.

Hardware acceleration makes HECC public key pos-

sible on small, embedded microcontrollers. But the

optimal implementation depends on the selection of

the mathematical algorithms and the system-level archi-

tecture. Only a platform-based design approach makes

this design space exploration possible and discloses

opportunities for global improvement.

Example 2: Concurrent codesign for secure
partitioning

The design of secure embedded systems leads to

design cases requiring tight interaction between hard-

ware and software—even down to the single-statement

level. Figure 2 shows a fingerprint authentication design,

the ThumbPod-2 system, which is resistant to side-chan-

nel attacks; we implemented and tested this design in

silicon.4 The protocol, shown in Figure 2a, accepts an

input fingerprint and compares it to a prestored, secret

template. The matching algorithm must treat this tem-

plate as a secret, and the ThumbPod-2 system stores it

in a secure circuit style that is resistant to side-channel

attacks. However, because the matching algorithm

manipulates the template, part of the algorithm’s circuit

must also migrate to a secure circuit style. Because this

secure circuit style consumes twice the area of normal

circuits, mapping the complete matching protocol to it

would be inefficient. We therefore separated the proto-

col into an insecure software partition and a secure

hardware partition, and we ended up with the imple-

mentation in Figure 2b. The software reads the input fin-

gerprint and feeds the data to the oracle inside the

secure partition. The oracle compares each input minu-

tia with the template minutia, returning only a global-

matching result: reject or accept. It is impossible for an

attacker with full access to the untrusted software to

determine how the oracle has obtained this decision.

The design and verification of the secure protocol

requires continuous covalidation between hardware

and software. We evaluated various attack scenarios

that attempt to extract the secret template from the

secure hardware partition, assuming that the attacker

can arbitrarily choose the software program at the inse-

cure partition. This led to an iterative refinement of the

oracle interface and the driving software, which we

designed completely within the Gezel environment.

339September–October 2006

P0 P1

CTL DATA

Software

Hardware

Hyper-elliptic-curve
cryptography (HECC)

Scalar multiplication

Point or divisor
operations

Combined
Galois field (2nelements)

operations

Basic
Galois field (2n elements)

operations

Galois field (2n)
coprocessor

8051 CPU

API

C code

Assembly
language
routines

Microcode
sequences

Data path

Figure 1. Public-key cryptography on an 8-bit microcontroller.

Example 3: Accelerated embedded virtual
machines

For a third application, shown in Figure 3, we had to

provide hardware acceleration of a cryptographic

library for an embedded virtual machine.5 We used a

Java embedded virtual machine, the Kilobyte Virtual

Machine (KVM), extended with native methods that

allow hardware access directly from a Java application.

We integrated an advanced encryption standard (AES)

coprocessor into the Java virtual machine’s host proces-

sor, and we triggered execution of the coprocessor

using a native method. The virtual machine handles all

data management and synchronization. As Figure 3b

shows, hardware acceleration can improve perfor-

mance by two orders of magnitude. Moreover, data

movement from Java, to and from the coprocessor, has

two orders of magnitude of overhead compared to actu-

al hardware execution. A combined optimization of the

Java-native API, the coprocessor, and the coprocessor

interface is necessary to avoid design errors and, more

importantly, security holes in the final system.

All three examples are practical design problems

from the field of embedded security. There is no unified

design platform or unified design language that could

solve all of them. However, it’s still possible to general-

ize their underlying design principles by using a com-

ponent-based approach.

Component-based ESL design
Each programmable architecture comes with a specif-

ic set of design techniques. ESL design, therefore, is no

tightly knit set of techniques, tools, and data models.

Unlike RTL design, which logic synthesis enabled, ESL

design doesn’t offer a standard design flow. In fact, ESL

design might never be unified in a single design flow, given

the architectural scope, the complexities in capturing all

facets of an application, and the daunting task of devel-

oping tools for these different facets. Still, all ESL tech-

nologies share two fundamental objectives: facilitating

design reuse and supporting design abstraction. These two

objectives have guided every major technology step that

has turned transistors into gates, and gates into systems.

Reuse and abstraction for ESL design, however, are

unique and different from other technology transitions.

In ESL design, reuse relates not only to architectures but

also to design environments. For example, when a

designer builds a SoC architecture around a micro-

processor, the microprocessor’s compiler and the instruc-

tion-set simulator (ISS) are as critical to the design’s

success as the actual microprocessor implementation.

Electronic System-Level Design

340 IEEE Design & Test of Computers

(b)(a)
Root of trust

ThumbPod-2 client

Minutiae
extraction

Matching
algorithm

Reject Accept

Load
bogus

Load
master

Session key Sk

Secure circuit style

Template

Master
key

Template

Oracle

Master
key

Cryptography
module

RAM or
Flash

Leon-2
processor

Bridge AMBA UART

Out port In port

Chip command
interface

Matching

algorithm

AMBA
UART

Advanced Microcontroller Bus Architecture
Universal asynchronous receiver transmitter

Figure 2. Partitioning for security in the ThumbPod-2 system: protocol for session key generation (a), and

implementation (b).

The compiler and the simulator are

reused design environments, and the

microprocessor is a reused design artifact.

As another example, consider SystemC.

You can view SystemC as a reusable

design environment for RTL hardware

components. As a C++ library, it can link

to any environment that needs RTL hard-

ware design capability; thus, the SystemC

library itself is a reusable component.

Abstraction in ESL design concerns

not only the masking of implementation

details but also platform programming

mechanisms. Finding successful system-

level abstractions is extremely difficult,

because abstractions tend to restrict the

scope of coverable target architectures.

For example, C is a successful program-

ming abstraction for a single-core system,

but it becomes cumbersome in multi-

core systems. Despite the multitude of

system-level design languages, none has

so far been able to unify the architecture

design space in a single programming

abstraction.

These two elements of ESL design—its reuse of

design environments and design artifacts, and the com-

ponent-specific nature of its programming abstrac-

tions—guided us toward a component-based approach

in system design. In ESL design, we define a component

as a single programmable element included in a plat-

form. For example, a microprocessor, reconfigurable

hardware, a software virtual machine, and the SystemC

simulation kernel are all programmable components.

As Figure 4 shows, a component-based model for ESL

341September–October 2006

0

1

2

3

4

5
5.28

3.25
Driver C

CPU

Cryptography
hardware

or

(b)(a)

Java application
electronic code book aes()

J2ME

Kilobyte Virtual
Machine (KVM)

Cryptography

Advanced encryption
standard (AES)

KVM native interface
(KNI)

AES
Core

Java API
interface

KNI
interface

Hardware-
software
interface

AES
coprocessor

O
ve

rh
ea

d
(n

o.
 o

f c
yc

le
s,

 lo
g 1

0)

Java Hardware

109×
performance

gain

160×
integration
overhead

Figure 3. Accelerated embedded virtual machine: general structure (a) and performance improvements and

associated overhead (b).

Programming interface

Simulation-and-refinement
kernel

Integration interface

Finite-state
machine with data

path (FSMD)

Instruction
set

architecture

Gezel
kernel

Instruction
set simulator

IP block Memory bus

Gezel ARM-C

Platform

Component
design

Platform
design

Platform-based
design

Application
independent

Application-domain
specific

Application
specific

Scheduling and interconnect

Figure 4. Three phases for ESL design automation: component, platform,

and platform based.

design requires a design flow with three phases of

design: component, platform, and platform based. These

phases correspond to the creation, integration, and use

of programmable components. Several different engi-

neers might work in each design phase, each with his

own perspective on an application. These engineers gen-

erally fall into one of three categories: design automa-

tion, hardware design, or software design. Figure 4 offers

the perspective of the design automation engineer.

In component design, a design automation engineer

develops a design environment for a single program-

mable component. The engineers can do this indepen-

dent of the application. Two interfaces—integration and

programming—characterize a programmable compo-

nent. Through the integration interface, a component

connects to another (possibly heterogeneous) compo-

nent. Between these two is a simulation-and-refinement

kernel. Component design can be very elaborate,

including, for instance, the development of an ISS and

a C compiler for a new processor.

In platform design, a design engineer or design

automation engineer selects various programmable

components and combines them into a single platform

by interconnecting their integration interfaces. Platform

design requires the creation of a platform system sched-

uler to coordinate the individual components’ activi-

ties. This phase also requires the creation of

communication channels between components. The

notion of a platform as an articulation point between

application and architecture is a well-known concept.6,7

In platform-based design, a design engineer devel-

ops an application by writing application programs for

each programmable component in the platform. The

platform simulator lets the designer instantiate a partic-

ular application and tweak overall system performance.

For heterogeneous components, it’s important to bring

the individual components’ programming semantics

sufficiently close together so that a designer can easily

migrate between them.

Designers have used

component-based design

approaches, typically in

software development, to

address problems requir-

ing high architectural

flexibility. For example,

Cesario et al. presents

a component-based ap-

proach for multiprocessor

SoC (MPSOC) design,8

based on four types of components: software tasks,

processor cores, IP cores, and interconnects.

Designing and integrating FSMD
components with Gezel

The Gezel design environment (http://rijndael.ece.vt.

edu/gezel2) supports the modeling and design of hard-

ware components. By integrating the Gezel kernel with

other simulators (such as ISSs), we obtain a platform

simulator. The three examples we discussed all rely on

custom hardware design, each with a different platform.

We’ve combined Gezel with other programmable com-

ponents, such as 32- and 8-bit cores. We’ve also com-

bined it with other types of programming environments,

including the SystemC simulation kernel and Java. For

the parts of the design described in the Gezel language,

the Gezel design environment automatically creates

VHDL, enabling technology mapping into FPGA or

standard cells.

Platform-based design using Gezel
The Gezel language captures hardware using a cycle-

based description paradigm based on the finite-state

machine with data path (FSMD) model. Widely used for

RTL hardware design, this model has been popularized

through SpecCharts and SpecC.9 The FSMD model

expresses a single hardware module as a combination

of a data path and its controller. You can combine sev-

eral different FSMDs into a network, as Figure 5a shows.

A pure FSMD network is only of limited value for a plat-

form simulator, because such a network supports only

communication between FSMDs. Such a network does-

n’t have the means to communicate with any part of a

platform that is not captured as an FSMD.

To employ FSMDs as platform components, Gezel

supports extended FSMD networks, as Figure 5b shows.

Such an extended FSMD network also includes a sec-

ond type of module called an IP block. An IP block has

an interface similar to that of an FSMD, but the IP block

Electronic System-Level Design

342 IEEE Design & Test of Computers

FSMD2FSMD1FSMD2FSMD1

IP block
Wire (input is

instantaneously
defined by connected

output)
(a) (b)

Figure 5. Finite-state machine with data path (FSMD) network: pure (a) and extended (b).

is implemented outside the Gezel lan-

guage. A similar concept of capturing

heterogeneity also exists in Ptolemy.10

Technically, an IP block is implemented

as a shared library in C++ and thus

can include arbitrary programming con-

structs within the boundaries of a

cycle-based interface. To the Gezel pro-

grammer, the IP block looks like a simu-

lation primitive. The platform designer

defines the IP block’s behavior. In a

component-based design model, these

IP blocks implement communication

channels, which connect Gezel to a

wide range of other components, such

as ISSs, virtual machines, and system

simulation engines.

Platform design using Gezel
Figure 6 illustrates a platform simula-

tor that uses the Gezel kernel and sever-

al ISSs. Each component simulator exists

as an individual (C++) library, linked

together in a system simulation. For this

platform simulator, we use IP blocks to implement the

cosimulation interfaces between the Gezel model and

the ISS. In addition, a system scheduler calls all the

included component simulators. We implement the

platform simulator in C++.

The extended FSMD network in Gezel, combined

with the component-based design model, offers essen-

tial advantages over a traditional HDL- or SystemC-

based approach. VHDL has no means to natively

support a simulation setup like the one in Figure 6,

because it lacks the equivalent of an IP block construct.

Consequently, an HDL-based design flow usually imple-

ments such a simulation setup at the HDL level. This

needlessly increases simulation detail and penalizes

simulation performance.

It’s also possible to implement such a simulation

setup in SystemC. But the platform and the application

are no longer distinguishable, because SystemC cap-

tures everything in C++. This complicates the synthesis

of the application onto the final platform. In other

words, SystemC does not distinguish between the plat-

form and platform-based design phases.

Table 1 lists several platform components that

we’ve used with Gezel to create platform simulators.

They include 8- and 32-bit ISSs, Java (through its native

interface), and SystemC. We coupled each of these

simulators to the Gezel FSMD model using IP blocks.

There are two categories of IP blocks, corresponding

to two different design scenarios: IP blocks that model

a processor’s bus or a dedicated communication port

to implement a coprocessor design scenario like the

one in Figure 7a. Other IP blocks capture a complete

component.

Designers can also use the Gezel IP block construct

to explore multiprocessor architectures, such as the

PicoBlaze microcontrollers shown in Figure 7b. In the

multiprocessor design scenario, the Gezel model cap-

tures the complete platform, clearly improving flexibil-

ity. In addition, this model allows dynamically selecting

the number and types of cores. The Gezel language cap-

tures synchronous, single-clock hardware designs. The

platform simulators in Table 1, however, can accom-

modate multiple clock frequencies to the individual

processors included within the simulation.

Many of the environments in Table 1 are open

source, which greatly eases the construction of platform

simulators. In commercial environments, open source

might still be an unattainable goal, but there are still sig-

nificant benefits from using an open interface. Several

of our cosimulators (including TSIM and SH-ISS) use

commercial, closed-source components, built on the

basis of an open interface.

343September–October 2006

FSMD
Embedded
software

Application

Platform simulator

Gezel kernel
(C++ library)

Parser

VHDL
code

generator

C++
code

generator

RT
code

generator

Executable-
object

hierarchy

Communication
channel

Instruction
set simulatorUser-defined

IP block
implementation

Cycle-true
system scheduler

Figure 6. Gezel platform simulator.

Systematic reuse with a component-based
approach

We can also implement IP management with Gezel.

IP transfer is notoriously difficult because reuse inter-

faces are hard to define. Microprocessor buses have tra-

ditionally been the reuse interface of choice. New

industry efforts such as the Open Core Protocol IP (OCP-

IP, http://www.ocpip.org) and the Spirit consortium

(http://www.spiritconsortium.com) have focused on

generically packaging IP components rather than using

standard buses. Spirit’s approach is to provide a meta-

data model that encapsulates existing IP components

(expressed in VHDL or

SystemC, for example).

The metadata provides

additional language-neu-

tral information on the IP

interface. However, a

component-based design

flow with Gezel does not

need this encapsulation,

because the language

directly models the reuse

interfaces. Indeed, these

reuse interfaces corre-

spond to the set of IP

blocks that connect the

Gezel models to other plat-

form components.

Consider the case in

which multiple parties

participate in the plat-

form-based design phase.

For example, for the simu-

lator of Figure 6, assume

that an IP developer cre-

ates hardware components in Gezel, and a system inte-

grator creates the system (embedded) software. In such

a case, the IP developer expects a reasonable level of

IP protection before releasing the actual implementa-

tion, whereas the system integrator wants access to the

hardware components as detailed and as soon as pos-

sible. Gezel can support this scenario, as Figure 8 shows.

We define two phases in the IP transfer. In IP creation

and evaluation, the IP developer provides a cycle-based

simulation model of the hardware IP as a black box to

the system integrator; this model provides a nonsyn-

thesizable simulation view of the IP. When the system

Electronic System-Level Design

344 IEEE Design & Test of Computers

Table 1. Platform simulators using Gezel.

Simulation Cross-compiler IP block interface

Component engine* or assembler Core Port or bus

8-bit cores

Atmel AVR Avrora GNU avr-gcc •
PicoBlaze kpicosim KCPSM3 assembler • •
8051 Dalton ISS SDCC, Keil CC • •
32-bit cores

ARM Simit-ARM GNU arm-linux-gcc • •
Leon2-Sparc TSIM GNU sparc-rtems-gcc •
SH3-mobile SH-ISS GNU sh-elf-gcc •
Simulation engines

Java JVM 1.4 javac •
SystemC SystemC 2.0.1 GNU g++ •
* Information on simulation engines is available as follows:

Avrora: http://compilers.cs.ucla.edu/avrora (open source);

kpicosim: http://www.xs4all.nl/~marksix (open source);

Dalton ISS (Dalton 8051): http://www.cs.ucr.edu/~dalton/i8051 (open source);

Simit-ARM: http://sourceforge.net/projects/simit-arm (open source);

TSIM (TSIM 1.2; cross compiler, sparc-rtems-gcc 2.95.2): http://www.gaisler.com;

SH-ISS (Renesas SH3DSP simulator and debugger, v3.0; cross compiler: sh-elf-gcc 3.3):

http://www.kpitgnutools.com

ARM
FSMD

network
FSMD

network

IP
block

IP
block

PicoBlaze
IP block

PicoBlaze
IP block

(a) (b)

Gezel model Gezel model

Figure 7. Application of different IP block categories: coprocessor (a) and multiprocessor (b) design scenarios.

integrator decides to

acquire the hardware IP,

the second phase of the IP

transfer begins. Now the

IP developer provides a

synthesizable version of

the hardware IP in VHDL.

The component-based

approach of Gezel is well-

suited for this IP design

flow. We model black

boxes as IP blocks. The IP

block simulation views are

in binary format as shared

libraries, and thus of little

value for this implementa-

tion. We wrote two code

generators for FSMD net-

works in Gezel. The first

converts FSMDs into

equivalent IP block simu-

lation views. The second converts FSMD

into synthesizable VHDL code. The IP

developer can use them together to

implement the design flow of Figure 8.

Table 2 shows several examples of IP

modules designed in Gezel. They range

from simple components, such as an

Internet packet check-sum evaluation

module (CHKSUM) to complex IP mod-

ules, such as an AES module and a high-

speed Gaussian-noise generator for

bit-error-rate measurements (BOXMUL).

For each module, Table 2 lists the line

counts of the original Gezel design and the amount of

generated code in C++ and VHDL. We also mapped the

VHDL code onto an FPGA, and Table 2 gives the area

and speed of the results. We expect the numbers shown

to be close to those of manually written VHDL. For

example, a comparable AES design by Usselman on

Xilinx Spartan3 technology lists a LUT count of 3,497.

Design examples revisited
Now, we briefly discuss how we used our compo-

nent-based approach to support the three design exam-

ples presented earlier.

Public-key cryptography
The platform simulator for the HECC application

consisted of two components: the Gezel kernel and the

8051 ISS (http://www.cs.ucr.edu/~dalton/i8051/). Using

IP block models, we designed communication links

between the 8051 ISS and the coprocessor. We devel-

oped the driver software running on the 8051 using the

Keil tool suite. The platform simulator maps the HECC

mathematical formulas into a combination of C, assem-

bly language, and hardware. After obtaining a suitable

partitioning, we converted the hardware coprocessor

into VHDL. We then combined this coprocessor with a

synthesizable view of the 8051 processor and mapped

it into an FPGA.

Security partitioning for an embedded
fingerprint authentication design

This platform contains the Leon2 ISS and the Gezel

kernel. We constructed it in a process similar to that of

345September–October 2006

C++

IP
creation
and
evaluation

IP
transfer

IP transfer VHDL
ARM
coreVHDL

bus

Platform implementation

Implementation

Hardware developer System integrator

Gezel

Gezel

IP block ARM-C

FSMD
(Black-box

view)

VHDL code
generation

Generate
simulation view Simulation

library

Platform

Figure 8. IP reuse in the platform-based design phase.

Table 2. IP model complexity. (NCLOC: noncommented source line of code)

 Model line count (NCLOC) Area (no.

Design Gezel C++ (IP blocks) VHDL of LUTs)* Speed (ns)**

CHKSUM 149 1,564 907 131 9.19

EUCLID 69 710 62 557 560.00

JPEG 526 8,091 719 5,514 14.62

AES 292 2,653 1,807 3,332 8.29

BOXMUL 763 6,105 6,282 4,225 20.30

* Target platform was Xilinx Virtex4, speed grade 12

** Speed is the clock period we recorded after place and route.

constructing the public-key cryptography platform. We

developed software using the GNU tool suite. In a later

design phase, we used the VHDL code generator to con-

vert the Gezel design into VHDL, eventually leading to

a tested and fully functional chip.4 This design, howev-

er, requires fitting the hardware coprocessor onto a non-

standard synthesis design flow based on logic for

resisting side-channel attacks. So that chip designers

could verify their custom synthesis flows, we extended

the platform simulator to record trace stimuli for indi-

vidual hardware modules. We can also provide this

capability using the IP block approach. It is important

to separate design flow issues, such as the stimuli

recording facility, from actual design issues. The design

flow in Figure 4 also supports this concept by distin-

guishing between the platform builder and the platform

user. Gezel lets users write new IP blocks in C++ accord-

ing to a standard template, and more advanced Gezel

users can develop them as library plug-ins.

Acceleration of embedded virtual machines
For the third design, we integrated three components:

a port of the Java-embedded virtual machine, the SH3-

DSP ISS, and the Gezel kernel. We developed software in

Java, C, and assembly language. In addition, this design

required a considerable number of cryptographic sup-

port libraries. This kind of design demonstrates the impor-

tance of varying the design abstraction level within a

single platform. The entire cryptographic application in

Java can take millions of clock cycles, and the hardware

coprocessor is active for a fraction of the time. On the one

hand, we need increased simulation efficiency (and

decreased simulation detail) for much of the design, but

on the other hand, at a few select places we must observe

every bit that toggles in every gate. A component-based

design approach can cope with this heterogeneity.

HETEROGENEOUS SYSTEM architectures will continue

to dominate in applications that require dedicated,

high-performance, and energy-efficient processing. The

challenge at the electronic system level will be to design

these architectures in increasingly shorter design cycles.

New tools will have to quickly create not only deriva-

tive platforms but also entirely new platforms. We are

exploring novel mechanisms in Gezel to further accel-

erate platform construction, and we are presently work-

ing on such a platform designer for FPGA technology.

We’d also like to stress that ESL design requires not

only new tools but also a change in design culture.

Designers of heterogeneous architectures will inevitably

get in touch with new design cultures and practices, not

only from those novel ESL tools but also from their col-

league designers. ■

Acknowledgments
We thank the reviewers for their constructive feed-

back. We also thank the many students who have

experimented with Gezel and whose designs we’ve

mentioned in this article. This research has been made

possible with the support of STMicroelectronics,

Atmel, the National Science Foundation, University of

California Microelectronics and Computer Research

Opportunities (UC Micro), SRC, and FWO (Fonds voor

Wetenschappelijk Onderzoek).

References
1. C. Rowen and S. Leibson, Engineering the Complex

SoC: Flexible Design with Configurable Processors,

Prentice Hall, 2004.

2. T.J. Todman et al., “Reconfigurable Computing:

Architectures and Design Methods,” Proc. IEE, vol. 152,

no. 2, Mar. 2005, pp. 193-207.

3. D. Talla et al., “Anatomy of a Portable Digital

Mediaprocessor,” IEEE Micro, vol. 24, no. 2, Mar.-Apr.

2004, pp. 32-39.

4. K. Tiri et al., “A Side-Channel Leakage Free Coproces-

sor IC in 0.18um CMOS for Embedded AES-Based

Cryptographic and Biometric Processing,” Proc. 42nd

Design Automation Conf. (DAC 05), ACM Press, 2005,

pp. 222-227.

5. Y. Matsuoka et al., “Java Cryptography on KVM and Its

Performance and Security Optimization Using HW/SW

Co-design Techniques,” Proc. Int’l Conf. Compilers,

Architecture, and Synthesis for Embedded Systems

(CASES 04), ACM Press, 2004, pp. 303-311.

6. T. Claassen, “System on a Chip: Changing IC Design

Today and in the Future,” IEEE Micro, vol. 21, no. 3,

May-June 2003, pp. 20-26.

7. A. Sangiovanni-Vincentelli, “Defining Platform-Based

Design,” EE Times, Feb. 2002, http://www.eetimes.com/

news/design/showArticle.jhtml?articleID=16504380.

8. W.O. Cesario et al., “Multiprocessor SoC Platforms: A

Component-Based Design Approach,” IEEE Design &

Test, vol. 19, no. 6, Nov.-Dec. 2002, pp. 52-63.

9. D. Gajski et al., SpecC: Specification Language and

Methodology, Kluwer Academic Publishers, 2000.

10. E. Lee, “Overview of the Ptolemy Project,” tech. memo

UCB/ERL M03/25, Dept. of Electrical Eng. and Comput-

er Science, Univ. of California, Berkeley, 2003.

Electronic System-Level Design

346 IEEE Design & Test of Computers

Patrick Schaumont is an assistant
professor in the Electrical and Com-
puter Engineering Department at Vir-
ginia Tech. His research interests
include design methods and architec-

tures for embedded systems, with an emphasis on
demonstrating new methodologies in practical appli-
cations. Schaumont has an MS in computer science
from Ghent University, Belgium, and a PhD in electri-
cal engineering from the University of California, Los
Angeles. He is a senior member of the IEEE.

Ingrid Verbauwhede is an associ-
ate professor at the University of Cali-
fornia, Los Angeles, and an associate
professor at Katholieke Universiteit
Leuven, in Belgium. Her research

interests include circuits, processor architectures, and
design methodologies for real-time, embedded sys-
tems in application domains such as security, cryp-
tography, DSP, and wireless. Verbauwhede has an
electrical engineering degree and a PhD in applied
sciences, both from Katholieke Universiteit Leuven.
She is a senior member of the IEEE.

Direct questions or comments about this article to
Patrick Schaumont, 302 Whittemore Hall (0111),
Virginia Tech, VA 24061; schaum@vt.edu.

347

Subscribe
Now!

IEEE Pervasive Computing delivers

the latest peer-reviewed developments in pervasive,

mobile, and ubiquitous computing to developers,

researchers, and educators who want to keep abreast

of rapid technology change. With content that’s

accessible and useful today, this publication acts as a

catalyst for progress in this emerging field, bringing

together the leading experts in such areas as

• Hardware technologies

• Software infrastructure

• Sensing and interaction
with the physical world

• Graceful integration of
human users

• Systems considerations,
including scalability,
security, and privacy

•• HealthcareHealthcare

•• Mining a Sensor-RichMining a Sensor-Rich
WWorldorld

•• Urban ComputingUrban Computing

•• Security & Privacy Security & Privacy

VISIT
www.computer.org/pervasive/subscribe.htm

F E AT U R I N G

IN 2007

www.computer.org/e-News

Available
for FREE
to members.

Be alerted to
• articles and

special issues

• conference
news

• registration
deadlines

Sign Up Today
for the IEEE

Computer
Society’s

e-News

Sign Up Today
for the IEEE

Computer
Society’s

e-News

