
Abstract

Most hardware description languages do not enforce
determinacy, meaning that they may yield races. Race con-
ditions pose a problem for the implementation, verification,
and validation of hardware. Enforcing determinacy at the
modeling level provides a solution to this problem. In this
paper, we consider a common model of computation for
hardware modeling — a network of cycle-true finite-state-
machines with datapaths (FSMDs) — and we identify the
conditions under which such models are guaranteed to be
race-free. We base our analysis on the Kahn Principle and
a formal framework to represent FSMD semantics. We
present our conclusions as four simple and easy to enforce
modeling rules. A hardware designer that applies those four
modeling rules, will thus obtain race-free hardware.

1  Motivation

In traditional HDL semantics (VHDL, Verilog or Sys-
temC), race conditions occur when a single global variable
is concurrently assigned by different processes. The value
stored in the global variable is indeterminate. This will
show up as 'X' in a four-state simulator, but often the result
is simply simulator dependent.

While non-determinism by itself can be useful as a spe-
cification mechanism at higher abstraction level [1], in
HDL-based design, non-determinism often sneaks in as a
side effect. For example, an HDL designer can create race
conditions without being aware of it [2]. This poses a chal-
lenge to the implementation, verification and comprehen-
sion of the RTL code [3]. Therefore we feel that irrespective
of the language of choice for RTL coding (SystemC, Ver-
ilog or VHDL), the desired model of computation for such
coding should avoid race conditions by design.

We will consider a hardware model based on a network
of finite-state-machine-datapaths (FSMDs), which execute
in a cycle-true fashion. Such a model can be easily con-
structed in various description languages, including Sys-
temC. Our contribution will be to enumerate the conditions
under which this network becomes race-free. The proof
involves two observations. First, we show that individual
hardware modules modeled as a single FSMD are race-free.

And second, we also show that the composition of those
modules in a network remains race-free. The latter property
corresponds to the Kahn Principle. This system-level deter-
minism is not a trivial consequence of FSMD-level deter-
minism. For example, in SHIM [4], system-level
determinacy is a specific objective for developing a new
system design semantics.

There is also a second, broader motivation for develop-
ing a race-free hardware design mechanism. Currently there
is a broad interest from academia and industry to bring the
design practice of hardware and software closer together
[5]. In addition, contemporary ‘software’ can take many
forms, going from C for cores to RTL for Field Programma-
ble Gate Arrays (FPGA). It is common sense to insist on a
uniform value concept (e.g. 2-state) for all programmable
elements in a design.

However, the cultural differences in hardware and soft-
ware design have led to basically different modeling
approaches. Table 1 compares contemporary practice in
hardware design (using HDL semantics) and software
design (using ANSI C). Three key differences pointed out
in Table 1 are: HDL models may be non-determinate, they
model progression of time in an irregular fashion using
events, and they model a simulation rather than an imple-
mentation. We are therefore interested in hardware models
(a) that will always be determinate, (b) that model time in
regular increments and (c) that are implementation-ori-
ented. The FSMD model that we are using has each of these
three properties, even though this paper focuses on the
deterministic property.

Table 1: Motivating race-free hardware semantics.
Software Design Hardware Design

Actual Property
(using C)

Actual Property
(using HDL)

Desired Property
(this paper)

Determinate
(for ANSI-C)

Non-determinate Determinate
(race-free)

Regular-time
(instruction-driven)

Irregular-time
(event-driven)

Regular-time
(cycle-true)

Implementation-
oriented

Simulation-
oriented

Implementation-
oriented
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1.1 Paper Organization
After a brief introduction to the Kahn Principle in section

2, we present a formal model of the components and inter-
actions in an closed FSMD network in Section 3. Such a
closed network does not interact with the environment. In
Section 4, we express FSMD networks in a formal frame-
work known as input-output automata (IOA) [6]. We show
that an individual FSMD corresponds to an individual IOA,
and that FSMD networks map into an equivalent composi-
tion of IOA. While IOA in general are non-determinate, it
has been shown that under certain restrictions they become
determinate, and that they satisfy the Kahn Principle. These
restrictions are used in Section 5 to derive four conditions
that will make FSMD networks determinate and race-free.
In Section 6, we present our results and in Section 7 we
review related work in this area.

2  The Kahn Principle

If we consider Kahn Process Networks, i.e. dataflow-like
networks of deterministic sequential processes connected
through infinite FIFO’s, the Kahn Principle states that such
networks are deterministic [7]. Such a network will deliver
the same output under the same input, regardless of the
scheduling order of individual processes. Moreover, the
network can be substituted by a single function equal to the
smallest fixed point of a suitable operator derived from the
network specification. The Kahn Principle was shown to be
applicable to several process semantics besides Kahn Pro-
cess Networks. These include (a restricted form of) input-
output automata (IOA) [8], synchronous programs [9], and
deterministic receptive processes [4]. Especially the result
for IOA is relevant for this paper, as we will show that
FSMD precisely implement such restricted IOA. Note also
that our FSMD communicate synchronously, and thus can-
not be modeled as classic Kahn Processes with infinite-
FIFO communication. In the next section, we present a for-
mal basis for FSMD networks.

3  FSMD networks

This section provides a definition of a FSMD and a
FSMD network.

3.1 Definition of a FSMD network
Definition 1. A FSMD M is a pair <D,C> where D is a
datapath with internal states, and C is a controller state
machine as defined below. A datapath D can be described
as a 4-tuple  where I is the set of input
signals, O is the set of output signals, V are names of state
elements and F is a set of functions. Any function 
takes as input a subset of the current values of the input sig-

nals and state elements. It produces as outputs a subset of
the output signals and a subset of the next-state of the state
variables.

To formally define the nature of the set of datapath func-
tion set F, we need to define a few notations. Let 
denote the set of values that an entity  can take. For
example, if we consider an input signal , then 
may be the set of all 16-bit integers, or the set of Booleans,
etc. Now, consider a vector 

The set of values that this vector can take is 

For notational convenience, we denote by : the set
of values that a vector of any size constructed from ele-
ments of A can take. In other words,

where . Further, let  denote a subset of k elements
of . Then  is a subset of  where all vectors are
of length k. We can now define the function set F as fol-
lows.

Definition 2. F is a set of functions where each function
 only depends on a subset of I and a subset of V, and

produces values to be assigned to a subset of signals in O
and subset of state elements in V. 

Since the execution semantics of a datapath is related to
the controller associated with it, we will define the execu-
tion semantics of a controller and datapath together once we
have formally defined the controller.

Definition 3. A controller C is a 4-tuple 
where  is a datapath as described above
that is associated with the controller, S is a set of state ele-
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Figure 1: A single cycle of FSMD operation.
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ments,  is the initial state and T is the transition function
defined as

From this definition one can see that the controller’s
transitions are dependent on the current values of the data-
path state elements, and its own state. When the transition
takes place, it selects a function , and executes it
while changing its own state to a new state. This is symbol-
ically represented in Figure 1.

The execution semantics of FSMD M will be defined in
terms of an execution sequence. 

Definition 4. An execution sequence is a sequence of pairs
from . V is the set of state elements in the datapath
and S is the set of states in the controller. The first element
in that sequence is the initial state, which is equal to

.
Thus, initially all datapath registers are zero, and the con-

troller assumes the initial state .
Given an element of the execution sequence, and the val-

ues at each input, one can uniquely determine what the cor-
responding values of the output signals would be. If the
values on all input signals during that cycle are expressed as
i, and the execution state is , then one can determine
the output as follows. Let  where .
Then the output o will be given by . Here,
the pair  represents the new execution state, that
will be used to evaluate the output of the next clock cycle.

A network of FSMD can now be defined as a set of
FSMD Mi and a bipartite graph G, called the connection
graph. Let IA be the set of all FSMD input signals and OA
the set of all outputs:

The nodes of the connection graph G are given by
. The edges E of G are such that if

, then  and . The special
value  is used to represent unconnected inputs with an
edge  in the connection graph. The meaning of an
edge in E is that the value of input x is instantaneously
defined by the value of output y.

We further constrain the connection graph such that any
input can connect only to a single output, while a single
output may connect to multiple inputs (Figure 2). Thus if

 and , then  and  must be identi-
cal.

The definitions of FSMD and FSMD network lead to the
following conclusion:

Theorem 1: Given a closed FSMD network consisting of
a set of FSMDs and a connection graph G, in the absence of
combinatorial loops, any output  at any point in the
execution of this network is only dependent on the state of
the execution sequence up to that point.

Proof. According to the execution semantics, the values
of the outputs o of a FSMD are defined by the execution
state  of that FSMD, and the values i at the inputs of
the FSMD. The values of the inputs i are defined, through
the connection graph, by some other FSMD outputs or .
We can thus find the values of those inputs using a recur-
sive argument. Note that  evaluates to itself: .
During this recursion, we must encounter a datapath func-
tion with empty I, for which the outputs o only depend on
the execution state. If not, the recursive expansion will
never end and we have a combinatorial loop. If on the other
hand we do find an empty I, then it follows that the outputs
of all FSMD depend only on the set of execution states in
the network, and possibly . 

In the next section, we will map the FSMD model on an
underlying formalism called input-output automata. This
will allow us to derive formally the conditions under which
a FSMD is determinate, and thus under which a FSMD net-
work can satisfy the Kahn Principle.

4  Mapping FSMD into I/O automata

In this section we map the FSMD model into input-out-
put automata, a model proposed by Lynch and Tuttle that
captures concurrent, distributed discrete-event systems [6].

4.1 FSMD = FSM + FSM
The first thing to realize is that a FSMD actually consists

of two synchronous FSM, arranged on top of each other.
One FSM implements the datapath, and the other imple-
ments the controller. Each of these FSM has its own state-
space and state transition functions, but they are able to
observe each others’ state. In addition, the inputs and out-
puts are restricted to the datapath FSM.

The composition of a datapath FSM and a controller
FSM therefore corresponds to a FSM. This joint FSM
implements a state transition function H over the combined
state space of the datapath and the controller: 
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Figure 2: FSMD network and connection graph.
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The partitioning between datapath and controller is, in
fact, driven by pragmatic concerns rather than formal ones.
Indeed, datapaths are typically designed using expressions,
while controllers are designed with state transition dia-
grams. Datapath state-transition logic tends to be regular,
while controller state-transition logic is irregular. The state
in a datapath is present already at the highest abstraction
level of a specification, such as for example in the taps of
an FIR filter. The state in a controller on the other hand is
the result of the scheduling of an algorithm onto a time axis.

Davio has shown that a FSMD can always be trans-
formed by moving logic from the controller (FSM) part to
the datapath (D) part, and vice versa [10]. 

4.2 Synchronous FSM as input-output automata
An input/output automaton is a formal model for a dis-

crete event system of concurrent components [6]. An input/
output automaton (IOA) consists of four components (We
leave the equivalence relation on non-input actions out of
consideration).
1. an action signature acts(A), containing input actions,
output actions and internal actions.
2. a set of states states(A).
3. a set of start states .
4. A transition relation steps(A) 

An action a consist of a signature and a set of operations.
The signature of an action forms the interface with the envi-
ronment. When an action executes, its signature is commu-
nicated with the environment, and the operations associated
with that action signature execute. The response of an IOA
to an input action signature is instantaneous. An output
action signature of an IOA transmits instantaneously to all
IOA that have the same action included in their input action
signature.

An action a needs to be enabled before it can execute.
Action a is enabled in state q when there exists a state tran-
sition (q,a,r) in steps(A). Because of nature of input actions,
the transition relation must be such that for each input
action a and each state q, there exists a transition(q,a,r) in
steps(A).

Lynch uses this framework to define port-automata [8].
These are IOA in which the input and output action signa-
tures have the special form , with P a set of ports and
N a set of values. Communication then proceeds as output
actions (p,n) of an IOA generate a corresponding input
action (p,n) on another IOA.

The FSM model defined above can be expressed as a
port automaton. This is done by modeling the clock as an
input action, and by creating port-input and port-output
actions for each FSM port.

5  Determinate FSMD networks

5.1 Properties of determinate IOA
Lynch derives the conditions under which networks of

port automata become determinate. She uses the notion of
an input/output relation on a port automaton, which is a set
of pairs (Hist(Pin), Hist(Pout)). Hist corresponds to the his-
tory of values on a port. She goes on to show that, if the
input/output relation of each port automaton in the network
is single-valued, then the network of port automata is deter-
minate. A single-valued input/output relation means that for
each possible input-port history, there is only a single possi-
ble output-port history. In the next subsection, we consider
the consequence of single-valued input/output relations to
the FSMD model.

5.2 Determinate FSMD networks
In a FSM model, the history of an input port reflects onto

the histories of the output port and the state variables by
means of the state transition function H. In a FSM network,
an input port history will correspond to the output port his-
tory of the output connected to this input. From Theorem 1,
we know that a loop-free network only depends on the exe-
cution state, and thus that the single-valuedness of the out-
puts only depends on the single-valuedness of the execution
state. This leads to the definition of proper FSMD network.

Definition 5. A proper FSMD network is an FSMD network
for which the execution sequence of all FSMD in the net-
work is single valued, excluding the value .

Proper FSMD networks are determinate and race-free.
We now can define four rules under which a FSMD net-
work will have single-valued execution sequences. In the
following, we will assume that the datapath function f in a
particular clock cycle is composed as a subset of functions,
expressed as g1, g2,..., gK. Each of the functions gi have
their own set of inputs and outputs, formed by datapath
inputs and outputs, as well as an internal pool of signals L.
For example, the signals that hold intermediate values of
datapath expressions are part of L. The functions g1, g2,...,
gK can be expressed with the same  notation introduced
for f, provided that we take this extra pool of signals L into
account:

A FSMD in a proper FSMD network must have the fol-
lowing four properties:

Single-assignment. A signal or register can be assigned
only once during a clock cycle. Datapath behaviors are not

start A( ) states A( )∈

steps A( ) states A( ) acts A( )× states A( )×⊆
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allowed to execute together when they would violate this
condition. Let the set of output signals and registers of gi be
given by 

The single-assignment condition requires that

This condition implies that instructions cannot execute
together if they would imply multiple assignments on a sin-
gle variable. This rule prevents races to originate in the
datapath of individual FSMD.

No undefined operands. At any particular clock cycle, all
operands of an expression inside of any gi must be defined.
In particular, dangling signals in L are not allowed. All sig-
nals from the signal pool L that are consumed (in Lp) must
also be produced (in Lq). Thus, if 

then 

Another way of stating this is that all signals created in L
during a clock cycle must also be consumed; they do not
have an existence outside of f nor outside of that clock
cycle. This rule prevents undefined values to originate in
the datapath of individual FSMD.

No combinational loops. Cyclic data precedences are not
allowed for any signals except state variables. For example
if, during a particular clock cycle, signal a is used to define
signal b, then b cannot be used to define signal a. This con-
dition holds only for signals from I, O, and L, and not for
state variables in V. This rule prevents false state in the
FSMD models. All state variables will be explicitly visible
and modeled as registers.

No undefined output signals. All outputs of a FSMD must
be defined at all clock cycles. This ensures that the value 
will not show up in the port history of a connected FSMD.
As stated, this condition is slightly too strict, since it is pos-
sible that in a given FSMD network, an output will not be
read by the input port it is connected to.

When a FSMD satisfies the above four properties, it is
part of a proper FSMD because it will never generate
unknown signal values and it will never create internal
races. While these conditions are sufficient to obtain proper
FSMD network, we have not shown that all of these are
also necessary. Thus, these four rules represent one possible
solution to obtaining a proper FSMD network.

The four rules can be statically checked on the FSMD
model, by extracting the signal sets I, O, V, and L from the
FSMD datapath and by intersecting them according to
schedule given in the FSMD controller. The meaning of a
proper FSMD network can be understood as follows. In an
HDL simulation, an indeterminate result in the simulation
shows up as an unknown (‘X’). In simulations with proper
FSMD networks, this ‘X’ does not occur. In addition,
because the initial value of registers is defined to be zero,
undefined values (‘U’) won’t occur either.

6  Results
We have implemented FSMD semantics as described

above in a design language called GEZEL [11], and we
have also build a VHDL code generator that converts
GEZEL code into an implementation. The resulting VHDL
code is race-free, obviously because of the semantic pro-
perties of the initial model. Presently, this design environ-
ment is in active use within a design group for digital
design in the area of embedded security, targeting ASIC and
FPGA. Several demonstrators have been completed that
have relied on GEZEL-generated VHDL code [12]. A sec-
ond area where the language has been useful is in educa-
tion, for undergraduate [13] as well as graduate teaching.

We also emphasize that the formal model developed in
this contribution is language-independent, and can as well
be applied to Verilog, VHDL, and SystemC. In that case
one will need to work with modeling conventions and/or
build tools that will check the source code for ‘proper
FSMD’.

7  Related Work
Most contemporary HDL do not obey the Kahn Princi-

ple, and races are a fact of life for HDL designers. Many of
them rely on guidelines such as [14] that list a set of con-
ventions leading to circuits with desirable characteristics
(including freedom of races). Those conventions translate
to similar conditions as the four rules we enumerated for
FSMD networks, with one important difference: in our
model, they can be automatically enforced rather than being
a simple convention.

SHIM [4] targets a unified design environment for deter-
ministic hardware/software systems, and is based on Kahn
Processes with rendez-vous communication. By making use
of rendez-vous communication, the requirement for infi-
nite-storage on the communication links of the Kahn Pro-
cess Network is removed. SHIM processes are strictly
sequential, meaning that communication links for individ-
ual processes will operate sequentially. In contrast, a proper
FSMD network allows the communication links on individ-
ual FSMD to operate in parallel. A second difference is that
SHIM allows processes to operate asynchronously. The
proper FSMD model that we proposed is synchronous.
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Despite these differences, there is a shared fundamental
design consideration in both SHIM and proper FSMD,
which is that design using deterministic semantics is more
convenient. SHIM approaches this design consideration in a
top-down fashion. Proper FSMDs, on the other hand, do
this bottom-up.

Bluespec [15] organizes state variables inside of modules
and then employs a rule-based coding style for the behavior
of the module. Concurrent execution of rules is allowed
provided that the result is equivalent to sequential execution
of single rules. By enforcing this constraint of equivalence
to a sequential execution, and by checking race-free proper-
ties within the context of a single rule, race-free behavior
for the entire circuit is obtained. This is similar to the
FSMD model, where only a single state transition can be
taken per clock cycle, and where race-free properties are
checked in the context of a single FSMD state transition. In
fact, by encoding the FSM state variable and any state tran-
sition conditions as Bluespec rule conditions, the FSMD
model could be expressed as a rule model.

Some other languages use correct-by-construction rules
or compiler techniques to guarantee hardware determinism.
In the case of Handel-C for example, concurrent access to
global variables is restricted [16].

Finally, we should point to an interesting feature of Sys-
temVerilog, one of the new proposals in the ESL language
space. SystemVerilog supports 2-state data types [17]. Such
a model only captures 0 or 1 (and no longer deals with ‘X’
or ‘Z’). This new data type is proposed to support 2-state
design methodologies. Indeed, for complex design the
advantage of an ‘X’ as a don’t care in logic synthesis no
longer weighs up to the added complexity in verification. In
fact, the ‘X’ is only a crude representation for the possible
values in the set (1,0). Consider the following Verilog
example by Turpin [3].

assign b = a & ~a;

This expression will always assign the value 0 to b.
When a contains ‘X’ however, the resulting simulated
value of b will still be ‘X’. In this case, the simulator looses
information on the actual value because it cannot distin-
guish between ‘X’ and its complement.. 

8  Conclusions
We have presented a race-free hardware design model,

based on FSMD semantics. Building on the Kahn Principle
and the properties of determinate Input-Output Automata,
we have defined four rules that will help the designer in the
modeling of race-free FSMD. The absence of race condi-
tions eases the validation. We have implemented the race-
free FSMD model in the GEZEL design environment,
which we use in hardware design and validation, typically

in the context of cosimulation. We are working on addi-
tional hardware language mappings out of this model, by
means of code generators that translate GEZEL code into
another model. Besides VHDL, we expect to be able to gen-
erate Verilog and SystemC.
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