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Abstract 
 
     While a communication network is a critical 
component for an efficient system-on-chip 
multiprocessor, there are few approaches available to 
help with system-level architectural exploration of such 
a specialized interconnection network. This paper 
presents an integrated modeling, simulation and 
implementation tool. A high level description of a 
network-on-chip can be simulated and converted into 
VHDL. The system simulation supports multiple 
instruction-set simulators, and obtains cycle-accurate 
performance metrics. This way, an optimal network 
configuration can be determined easily. We discuss our 
approach by designing a flexible network-on-chip and 
present implementation results after mapping into 
FPGA. The performance of our automatically 
generated network is comparable with a reference 
design directly developed in HDL. 
 
1. Introduction 

 
    Modern System-On-Chip (SoC) contain multiple 
processors, dedicated hardware processing units and 
peripherals. Such a distributed architecture is required 
for reasons of performance and energy-efficiency, but 
it also introduces the requirement of an efficient 
system-level communication. As technology advances 
with ever increasing processor speed, global wires 
spanning across significant portion of chip size will 
dominate the propagation delay [3], which becomes a 
performance bottleneck for SoC design. 
     In recent years, significant research has 
demonstrated that an on-chip packet interconnection 
network is a better candidate for handling on chip 
communication [2]. System modules communicate to 
one another by sending packets across the network. 
This approach has the advantages of both performance 
and modularity. In another example [11], researchers 
implemented such a reconfigurable interconnection 
network on FPGA for improved hardware-software 
multitasking. In the result section, we will make 

performance comparison between our automatically 
generated prototype network and their design. 
    The system level components of a SoC include, 
besides the on-chip network, also embedded cores and 
embedded software. Some on-chip communication 
networks that target general-purpose multiprocessors 
are the J-Machine [4] and Smart Memory [10]. 
However, very few research has been done on 
modeling the on-chip communication architecture and 
integrating the communication network with processor 
units in a single simulation environment. Architectural 
exploration of a network should be done in the early 
stages of the design, using system-level simulation. 
This exploration is required because the 
communication requirements of a SoC are often 
determined by the application. Also, making changes 
to the communication protocol at late stages of the 
design cycle is a costly and complicated matter.  We 
are therefore interested in combining the tasks of 
network design and embedded software development. 
This includes concise capturing of the interconnection 
network architecture together with the embedded 
software, cosimulation of the architecture with multiple 
instruction set simulators, and implementation. 
 
2. Related Work 
 
     There has been very few research on modeling 
methodologies that fill the design gap from high level 
evaluation of communication network architecture with 
processing units down to implementation. A research 
group at Princeton University [14] has proposed a 
hierarchical modeling framework for an on-chip 
communication architecture using the Liberty 
Simulation Environment (LSE) and PtolemyII. LSE is 
a fast simulation and modeling environment with a 
dedicated machine description [9]; while PtolemyII is 
an object-oriented modeling framework written in 
JAVA [12]. Although both design environments can 
model system simulation between communication 
network architecture and processing units at a higher 
abstraction level, neither of them provides a code-
generation interface to VHDL. A network design 



modeled in LSE or PtolemyII would have to be 
manually translated into a hardware description before 
it could be synthesized. 
     We present an integrated approach to cosimulation 
and implementation of a reconfigurable 
interconnection network for system-on-chip. Our 
environment, called GEZEL, captures the architecture 
of the network at high abstraction level and enables 
cosimulation with instruction-set simulators. The 
network description can be readily translated into 
VHDL for synthesis. The proposed design flow 
significantly reduces the time spent going from high 
level design of a multi-processor network to system 
verification and implementation.  Our interconnection 
network is scalable and it can easily be changed to 
handle different routing strategies and network 
topologies.  
     In the following section, a brief overview of the 
GEZEL environment will be given. Section 4 describes 
our interconnection network design in detail. Section 5 
presents the system evaluation and verification 
approach. Section 6 describes the code generation 
model for hardware synthesis. Section 7 discusses the 
implementation results of the interconnection network 
onto FPGA and compares the proposed network with 
related work. Finally, we draw conclusions and discuss 
future work.  

 
 3. Tool Overview 

 
     Figure 1 demonstrates the main characteristics of 
the GEZEL environment. GEZEL is a C++ library that 
can be linked to a system simulation with one or more 
instruction-set simulators (ISS) [6], illustrated in step 1. 
To describe hardware, GEZEL uses a dedicated 
language. This language uses finite-state-machine 
datapath (FSMD) semantics, which allows designer to 
capture datapath and control operations of hardware 
models independently. The FSMD models are cycle-
true. When the GEZEL library initializes, it can read in 
one or more hardware models described in this 
language.  
     The embedded software part of the system runs on 
the ISS, and interfaces with hardware using a memory-
mapped interface. To model a SoC environment, 
multiple ISS are used, one for each embedded 
processor core. They are connected together with the 
interconnection network and hardware accelerator units 
and modeled in the GEZEL description language. The 
system simulation runs with cycle accuracy and returns 
various metrics of performance as shown in step 2 of 
figure 1. This way, system exploration can be done 
interactively. After this, the hardware description 
modeled in GEZEL code can be converted into 
synthesizable VHDL code and this process is labeled 
as step 3 in the figure. We will now describe the 

features of our interconnection network and how it is 
modeled using FSMD semantics.  
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Figure 1: GEZEL System Exploration and Code 

Generation Process 
 
4. Reconfigurable Network 

 
4.1 Network Exploration 
 
    The interconnection network provides a fixed 
communication layer between various components of a 
SoC.  In traditional design flow, the development of 
embedded application and communication layer are 
separated.  The communication scheme is 
predominantly based on point-to-point or shared bus 
architectures.  While this is suitable for today’s 
embedded application that mostly comprise of a single 
processor core with memory modules and peripherals, 
the next generation SoC will demand more 
computation power and processing units, memory 
modules and on-chip traffic.  With the increased 
complexity of the application, the interconnect design 
should be flexible to adapt to the needs of the system.  
Prior on-chip network design is typically arranged in a 
pre-defined form.  The 2D mesh topology mapping for 
example proposed by Hu [7], the SPIN micro-network 
that uses a fat-tree topology [1], or the octagon network 
topology [8].  In these interconnection schemes, system 
modules connect to each other through the network in a 
fixed architecture.  However, it is possible to further 
optimize the system by taking into account the specific 
task distribution pattern of the application during 
design exploration.  Future SoC will likely consist of 
application specific node processor, video/image 
processing unit and general purpose micro processor 



coexisting on the same chip.  Our design environment 
can provide the flexibility to support different system 
configuration.  Given an application, a communication 
optimal network topology can be derived that can 
balance the throughput, give a shorter transmission 
latency and provide better resource utilization.  This 
will also result in a system with improved power 
consumption, by reducing the congestion probability.  
Our proposed methodology allows designer to 
investigate on a variety of architecture during design 
space exploration, and finally determine an optimal 
topology and network configuration for a given system. 

 
4.2 Network Structure 
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Figure 2:  Example of a Network Topology 

 
     In general, the network complexity is characterized 
by two parameters: the routing algorithm and the 
network topology.  Both parameters can be configured 
with our models.  The tool can model any one or two-
dimensional array of processor cores running 
embedded software. Each processor core is connected 
to a dedicated router for communication into and out of 
the network as illustrated in Figure 2. 
    These routers are addressable for communication 
among processors. The network uses a deterministic 
routing algorithm in the form of a lookup table inside 
each router for routing to the neighboring node. 
Although flow control is not supported, a deterministic 
routing approach significantly reduces hardware 
complexity and overhead. Reconfiguration of the 
network topology and placement of processing units 
only requires a modification to the routing table. 
Designers can arbitrarily instantiate multiple 1D- or 
2D-routers library block to build a dedicated network. 
Furthermore, they can reconfigure internal buffer size 
of each router, and in this way, trade area for speed. 
These two features allow creation of a network 
topology that is matched to the traffic patterns of a 
special purpose SoC. It also allows for more efficient 
use of routing resources, which is an important design 
factor in embedded system design.  

 
4.3 Router Interfaces and Packet Format 
 
    The 2D router shown in Figure 3 has data flowing in 
two directions.  Each router has three input interfaces 
and three output interfaces dealing with synchronized 
communication between routers and the network 
interaction with processors. The communication 
reliability is guaranteed through a two-way handshake 
for each packet transmission. Each router performs 
wormhole routing with a packet size of 32 bits. This 
number is chosen to match a 32-bit embedded 
microprocessor. The transmission does not make any 
assumption on maximum message size or on the 
message data type as long as the proper packet format 
is abided. The first 2 bits of each packet contain control 
information indicating a header packet, a tail packet or 
a normal packet. The header packet will contain 
additional information on destination port. Furthermore, 
the transmission sequence is pipelined to obtain a 
transfer rate of three cycles per packet among routers.  
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 Figure 3: 2D Router’s architecture 
 
4.4 Router Architecture 
 
     As illustrated in Figure 3, the router contains three 
concurrent controllers: an input controller, a router 
output controller and a processor output controller.  
The input controller handles simultaneous input 
requests from neighboring routers and the processors.  
Priority is given to router inputs because the processor 
interfaces are driven by software, which is typically 
slower.  A round-robin scheme is employed to arbitrate 
requests of equal priority. The router output controller 
and two virtual channels handle communication to 
neighboring routers. The two virtual channels can 
avoid deadlocks in a two dimensional torus network 



topology [5]. Finally, the processor output controller 
interfaces with the processor core to receive packets 
from the network. Because the communication 
between network and processor is handled in a 
blocking-send and receive manner, an additional output 
buffer is added between the routing channel and the 
processor output to relieve possible congestion caused 
by the blocking. A 1-D router has a similar structure 
but with a reduced interface and reduced number of 
virtual channels. A routing table is used to determine 
the subsequent routing path of each packet.  
 
4.5 FSMD Model of the Network 
 
     The interconnection network is described in GEZEL 
in a FSMD model. The input controller, router output 
controller and processor output controller are modeled 
in a finite state machine with input requests triggering 
state transitions. Control signals generated from the 
finite state machine direct the operation of the datapath.  
 

dp_inputcontroller(in inreq1:ns(1); out inack1_out:ns(1); in indata1:ns(8); 

in inreq2:ns(1); out inack2_out:ns(1); in indata2:ns(8); 

out ctlread:ns(2); out ctlch:ns(2); out ctlbuf:ns(1); 

in ch0size:ns(5); in ch1size:ns(5); in bufsize:ns(5) ) { 

sig ready1 : ns(1); //input1 ready with resource 

sig ready2 : ns(1); //input2 ready with resource

. . .

sfg idle {. . .  /* sfg to clear all register, datapath idle */ . . .}

sfg chkack1first {. . ./* handle processor input handshake */ . . .}

sfg chkack2first {. . ./* handle router input handshake    */ . . .}

sfg read {. . .  /* sfg read input into virtual channel/buffer */ . . .}

. . .

}

fsm ctl_inputcontroller(dp_inputcontroller) { 

initial s0;

state s1,s2,s3,s4,s5,s6,s7;

@s0 if(inreq2 & ~inreq1) then (chkack2first) -> s1; // input priority

else if(~inreq2 &  inreq1) then (chkack1first) -> s4; 

else (resetctl)                      -> s0;

@s1 if(~inack2) then (idle)     -> s0; //granted admission

else (read)                          -> s2;

@s2 if(statecontinue & inreq2) then (chkack2)-> s3; //further request

else if(statecontinue)     then (idle)   -> s2;

else (resetctl)                          -> s0;

@s3 if(~inack2)         then(idle)    -> s2; //read/idle further packets

else (read)   -> s2; 

. . .  }

 Figure 4: FSMD model of a 1D Router’s input 
controller 

     As an illustration of the compactness of the 
language, a GEZEL description of the input controller 
is shown in Figure 4. The FSM controls the execution 
sequence of sfg, which includes idling, handling input 
from neighboring routers, granting input admission, 
acknowledging requests, and reading input data. These 
concurrent operations (sfg) are specified in the 
datapath. Likewise, the output controller is modeled 
with an FSMD description. Because GEZEL supports 
hierarchical datapaths, a router is built by instantiating 
the components which include the FSMD model of 
virtual channel, input controller and output controller 
and making the connection. This way, the entire 
interconnection network is created by interconnecting 
multiple routers. GEZEL is an abstracted machine 
description language that has a simpler syntax than a 
traditional hardware description language such as 
Verilog or VHDL [6].  
  
5. System Verification 
 
5.1 Simulation Platform 
 
     The performance of the interconnection network is 
verified through a cycle true simulation that combines 
embedded software and simulation of the 
reconfigurable network (see figure 5). Embedded 
software written in C is cross-compiled into 
executables to be simulated on an ARM instruction-set 
simulator (ISS). They communicate with other C 
programs by sending packets using a set of API calls 
into the network. The API is an abstraction layer 
handling precise packet format and handshaking 
sequences between software and hardware. The system 
uses a memory-mapped interface between ISS and 
hardware, and all components in the system run in 
lock-step. If, besides the network, dedicated hardware 
processing units are needed, they are modeled as part 
of the GEZEL description. 
     The system simulation returns some important 
performance parameters of the communication scheme, 
allowing better design choice to be made in early 
stages of the design phase. The execution of a single C 
instruction often takes multiple hardware cycles due to 
the complexity of the processor architecture (cache 
misses, pipelining etc). Therefore, it is difficult to 
predict the performance of the handshaking sequence 
between the processor and network communication 
interface. With our co-simulation platform, cycle true 
measurements can be made. This gives us actual cycle 
count for a sequence of packet transmissions among 
parallel-embedded programs. The accuracy of the 
instructions-simulators we used is better then 3% [13], 
while the network is modeled exactly. 

state machine controls 
which sfg to execute 

sfg contains operators, that 
describe the datapath 
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5.2 Simulation Results 
 
     Table 1 presents various performance numbers of 
our 1D/2D torus network of four parallel processors.  
The evaluation platform is a DELL 3.2GHz Pentium 4 
PC, with 512 MB RAM. The 1x4 1D torus network 
connects four processors in a ring. The 2x2 2D torus 
network connects four processors in a 2 by 2 array. 
Simulation numbers are taken between the 
communication of two neighboring processors 
(processor A to B), and of two processors that are two 
hops apart (processor A to D). The unit of transfer is a 
single 32 bits packet. 
    The input handshake synchronizes the input 
interface between embedded software and hardware, 
and takes 14 cycles in steady-state.  From cold-start of 
the ARM software (with clean caches), these cycle 
counts are slightly higher (91 cycles for input and 11 
cycles for output).  
     The cycle-per-hop performance number of 1D torus 
and 2D torus are the same. However, a 2D torus 
network gives a higher transmission bandwidth for the 
cost of increased area and reduced speed (as will be 
discussed in section 7). In the case where processor A 
sends a packet to processor D, a 2D topology gave a 
shorter routing path and faster transmission time.  Most 
of the simulation time is spent on simulating software 
execution. Simulation of one packet’s transmission 
from one processor to the next takes roughly 2 second 
for a 1D network.  
     Table 2 shows the simulation results of 1000 
packets transmission.  The average round trip time 
(RTT) for sending a packet from source to destination 
(1hop) is estimated to be 17 cycles.  This number 
includes the handshake process that is needed to 
synchronize between hardware and software.  As 
mentioned, the cycle require for the handshake process 
can varies and it depends on the state of the ARM 
processor.  Therefore our RRT number is obtained 

from an average of 1000 transmissions.  A simulation 
of 1000 packets transmission in a 1D network 
approximately takes 46226 cycles and 19 seconds to 
simulate.   

SIMULATION OF 1 (32-BITS) PACKET 
 Processor A to B Processor A to D 

 cycles simulation 
time Cycles simulation 

time 
Input 

handshake 91 -- 91 -- 

output 
handshake 11 -- 11 -- 

cycle per hop 3 -- 3 -- 
1x4-1D torus 
(without init) 105 2 sec 

(total) 111 2 sec 
(total) 

2x2-2D torus 
(without init) 105 6 sec 

(total) 105 6 sec 
(total) 

 
Table 1: 1 Packet Simulation Result 

 
 

SIMULATION OF 1000 (32-BITS) PACKETS 
 Processor A to B Processor A to D 

 cycles simulation 
time Cycles simulation 

time 
average RTT 

(1x4 – 1D 
network) 

17 -- 17 -- 

1000 packets 
(1x4 – 1D 
network) 

46226 19 sec 46231 21 sec 

 
Table 2: 1000 Packets Simulation Result 

 
6. Code-Generator Model 
 
     After performance evaluation and architecture 
exploration, the selected network architecture can be 
converted from GEZEL into synthesizable VHDL.  
This feature closes the design path for hardware 
implementation. The architectural exploration process 
involves design changes only in the GEZEL 
description. After design exploration, the target 
architecture will be implemented through the VHDL 
code-generator.  
     VHDL code-generation of the network model is 
implemented in three steps.  Upon parsing, an 
intermediate representation (IR) of the interconnection 
network described in GEZEL is created in the form of 
a symbol table.   In the first step, an internal object 
hierarchy is build through the symbol table interface. 
Figure 7 presents this object hierarchy, which captures 
the hardware model for each component in the design. 
With this representation, the code generator can 
reconstruct the hardware model in VHDL syntax. In 
the next stage, the code-generator goes through each 
datapath, controller and system to construct inter-block 
control signals and the system interconnect. In the final 



stage, the objects in the structure are mapped into 
corresponding VHDL syntax. As an example, a 
datapath object will consist of numerous signals and 
registers which will be mapped into a VHDL clocked 
process with signal update. Likewise, each of the 
GEZEL operators will be mapped into VHDL 
arithmetic operators from the IEEE standard library. 
Following this approach, a .vhd file is generated for 
each unique datapath and system.  The code-generator 
and network source file is available for download on 
GEZEL homepage.  

VHDL GENERATOR
C++

datapath

system obj datapath obj controller obj

portmap variable net fsmhardwiresequencer

state ctlstepsfgexevariable sfg control control tableportmap lut port

combinational operator register operator

assign lutopbinop dunop terop assign lutopbinop dunop terop

condition

Figure 7: Code Generator object structure 
 

7. Results 
 
     Synthesis results of the prototype reconfigurable 
interconnection network from the GEZEL description 
will be presented in this section. The synthesis 
software is Xilinx ISE. Table 3 shows the synthesis 
results of a 1D and 2D router supporting internal 
buffering up to 2 packets, which has the same 
parameter as the reference design [11]. However, it is 
important to notice that the reference design uses a 16-
bit data bus while our design uses a 32-bit data bus. 
 

GEZEL Reference [9]  
 slices speed slices speed 

1D-Router 253 - 223 n/a 

2D-Router 674 - n/a n/a 

1x2 1D torus 531 104MHz n/a n/a 

1x4 1D torus 1061 104MHz 2385 n/a 

2x2 2D torus 2733 85MHz 3227 n/a 

 
Table 3: Router’s Synthesis Result 

 
    As shown, the resulting area used for each router is 
comparable to their design.  In a network of four 
routers, our area used is actually smaller. The area of 

our network scales proportionally with the number of 
routers in the network. The clock speed supported by 
the 1D network goes up to 100MHz and it is 
determined by the longest propagation delay between 
two communicating routers. The 2D network has a 
lower clock speed of 85MHz but it achieves a higher 
transmission bandwidth (illustrated in section 5). If the 
1D network is clocked at 100MHz, the maximum 
transmission bandwidth goes up to (32-bit ∗ 100MHz/3 
∗ 30/32) = 1G-bit/s among routers. However, due to 
the limitation of the software speed (details in section 
5), the transmission bandwidth of a packet is estimated 
to be (32-bit ∗ 100MHz/17 ∗ 30/32) = 177M-bit/s 
between ARM cores. A maximum speed comparison 
with the reference design cannot be made because this 
number was not available from publication. 
 
8. Conclusion 
      
     We proposed an integrated modeling framework to 
generate an efficient reconfigurable network on chip. 
With our development tool, a designer can easily make 
architectural reconfiguration on the interconnection 
network targeting their specific application. Design 
changes can be verified through a cycle true system 
simulation, and a hardware model is readily available 
in synthesizable VHDL. The synthesized result is 
comparable to a network implemented with a 
traditional hardware design flow. With the GEZEL 
design environment, a close connection between 
system simulation and platform implementation can be 
made. We are currently developing a methodology to 
explore and select different on-chip reconfigurable 
network architectures. We are also developing a 
demonstrator that uses this technology.   
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