
ABSTRACT
We present the debug and test strategies used in the

ThumbPod system for Embedded Fingerprint Authentica-
tion. ThumbPod uses multiple levels of programming (Java,
C and hardware) with a hierarchy of programmable archi-
tectures (KVM on top of a SPARC core on top of an
FPGA). The ThumbPod project teamed up seven graduate
students in the concurrent development and verification of
all these programming layers. We pay special attention to
the strengths and weaknesses of our bottom-up testing
approach.

1. INTRODUCTION
ThumbPod [1] is an embedded fingerprint identification

system. It allows to capture and process the latent finger-
print image of a person, and extract a unique signature in
the form of minutia data. Next, the minutia data are com-
pared to a stored template. Embedded in the form factor of
a keychain, ThumbPod is the equivalent of an electronic,
biometrically secure key. Communication with the outside
world proceeds through the use of a security protocol that
avoids direct transmission of biometric data.

The operation of ThumbPod is complex and requires
cooperation of many different design elements. Fingerprint
minutia detection and matching is a complex image pro-
cessing problem. The security aspects in ThumbPod require
the use of encryption and hashing algorithms. And the
embedded, battery-operated context requires this to proceed
in a power- and performance-efficient manner.

Our design flow uses a divide-and-conquer strategy that
considers the ThumbPod design at multiple levels of
abstraction as shown in Figure 1. For system integration
and security protocol design, we use Java programming.
Contemporary Java technology provides a smooth transla-
tion to embedded context by means of the K Virtual
Machine (KVM) [2]. For low-level programming, as well
as for integration of software IPs, we use C programming
on top of an embedded SPARC Processor. Finally, we also
make use of dedicated VHDL coding to customize the
Sparc processor with encryption- and signal-processing
coprocessors. The current prototype runs on top of a
XC2V1000 FPGA with 32MB of RAM.

The ThumbPod project (http://www.thumbpod.com)
was run over eight months with a group of seven graduate

students, who were working in small teams at different pro-
gramming abstraction levels. While the project started out
in an informal academic setting, the complexity of the veri-
fication and validation process required us to introduce
more rigorous techniques, including strict versioning, auto-
matic regression testing and daily code build.

In this paper, we first review related work. Next, we dis-
cuss the setup of the ThumbPod design flow and show what
verifications are done at each abstraction level. Following
this we highlight the difficulties we face in the design and
verification process, and enumerate specific techniques that
we used to alleviate those. Not all of them are solved, and
therefore we can also point out a few open issues in the con-
clusions.

2. RELATED WORK
Currently many fingerprint verification systems are com-
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mercially available [3]. Very few, however, are applicable
to a deeply embedded context, where the fingerprint sensor
is integrated together with biometrics processing into a por-
table battery-operated device. Yet this configuration is very
relevant since it is the only one in which the fingerprint bio-
metrics are — by definition — free from eavesdropping [4].

The use of hierarchically programmable systems with
softcores in FPGA’s, for example, sheds new light on the
verification process. Traditionally, abstraction layers in an
embedded system have been strictly separated, making the
implicit assumption of a sequential development model in
which lower levels are correct and stable [5]. In ThumbPod,
multiple levels of programming are used as a means to mas-
ter design complexity and increasing performance. How-
ever, one cannot assume the implicit correctness of the
neighbouring programming layers, as all of them participate
at the same time in the design process.

3. THE THUMBPOD DESIGN

3.1. Application Architecture
In this paragraph, we look at the system-level context of

ThumbPod, considering the operating environment of
ThumbPod. The ThumbPod application architecture is
illustrated in Figure 2. The ThumbPod keychain is config-
ured as a client to a server that requires authentication of a
ThumbPod user. This server could for example be located
at a bank institution. The client-server communication is
designed as a security protocol on top of the Internet IP pro-
tocol. The security protocol avoids the transmission of raw
biometric data by using a challenge/response mechanism.
The server will send a challenge to the ThumbPod that can
only be answered by means of a sucessful fingerprint
authentication. For this purpose, ThumbPod securely stores

two reference templates that corresponds to the true user.
Each authentication is done against both templates. As a
result, we increase the accuracy of the authentication pro-
cess.

In embedded context, the ThumbPod client decomposes
into several hardware and software processes. A Server-
Proxy, EnrollAgent and MatchAgent are used as an
intermediate between the ThumbPod keychain and the
server. The keychain contains two application processes,
EnrollApp and MatchApp, that are used for user enrolle-
ment and authentication respectively. The agent applica-
tions are running on a terminal that is located at the place of
authentication. For example, in the secure payment scenario
this can be a merchant terminal. The ThumbPod keychain
connects to this terminal by means of a serial communica-
tion link.

Although the ThumbPod keychain implements only
EnrollApp and MatchApp, it is important to consider the
overall system architecture. Indeed, the system level
testplan must take into account that ThumbPod is only the
client of a complete client-server application.

The system level model of ThumbPod was written in
Java. The use of Java is an initial design decision, moti-
vated by the natural support that Java offers for networked
and security applications. As a consequence of this the Java
Virtual Machine model has to be adapted to the embedded
ThumbPod context. Specifically we introduce native inter-
faces to make platform-specific features available as Java
methods. By careful design, this binding can be done
transparantly from the application programmer [1].

Our native interfaces fall in two categories. A first set is
defined by the integration of embedded hardware platform
features. This includes hardware coprocessors, fingerprint

Figure 2: ThumbPod Application System Architecture
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sensor and low-level I/O elements (LEDs and switches). A
second set of interfaces is defined by the integration of fin-
gerprint matching software, which was developed in C. The
native interface concept makes it easy to separate compo-
nent-level testing from system-level testing. On the other
hand, it also introduces extra design challenges, because the
development of native interfaces and their implementation
proceeds concurrently with system level developments. A
systematic design flow, introduced in the next section, is
used to combine all design levels together.

3.2. Programming Levels and IP reuse
Thumbpod has three layers of programming: Java, C and

VHDL. IP reuse was essential at each abstraction level. The
design and verification flow is illustrated in Figure 3. The
client-side of the ThumbPod application is originally writ-
ten as a high-level functional model in Java and runs on top
of JVM. The fingerprint identification subsystem is build
starting from NIST fingerprint detection code in C [6].
Using signal-processing design techniques, this code is
adapted for embedded operation with fixed-point precision.
The customized C routines are integrated into JVM using
the Java Native Interface (JNI). The high-level ThumbPod
model is then ported to an embedded Java Virtual Machine,
KVM. At this level, also other platform-specific native
functions are added. For example, networking, I/O opera-
tions and Java class loading all become platform-dependent
in embedded context. The resulting KVM port is verified
on a workstation. Next, the KVM is also ported to the
embedded LEON-2 processor, including the integration of
specific interfaces for the fingerprint sensor and the copro-
cessors. We use an instruction-set simulator to verify the
LEON-2 cross-compilation and the crypto- and signal-pro-
cesing co-processors. For this purpose we make use of an
internally developed cosimulation tool [7] that interfaces
cycle-true models of the coprocessors to the instruction-set
simulator. Finally, the LEON-2 HDL is ported, together
with a translated version of the coprocessors, to an FPGA

board 
In this design flow, there are four independent, concur-

rent development efforts. A first team concentrates on the
top-level Java code, with specific attention to the develop-
ment of the security protocol. A second team is working on
the embedded fingerprint matching software in C. A third
team takes care of the KVM platform and native interfaces
from Java to hardware. And a fourth team is developing the
hardware platform, including the copocessors and sensor
interfaces. Each of those teams is working towards a com-
mon goal and deadline. Interfacing the development efforts
of all those teams, and integrating their design results, is a
major challenge in the ThumbPod project.

3.3. Code Complexity
Figure 4 shows the absolute and relative complexities of

different components ot the ThumbPod client, taking the
amount of (non-commented) source code as a first-order
metric. The three programming levels of ThumbPod are
shown. The Top level contains Java. The second and third
levels consist partly of platform code, and partly of applica-
tion-specific code. Platform code introduces additional lev-
els of programming abstraction, and includes KVM and
LEON-2. Application-specific code implements Thumb-
Pod-specific services, and includes for example the finger-
print detection native functions in C and the coprocessor
models in hardware.

Considering the relative complexities, we find that only
31% of the code base is application specific, yet in order to

Figure 4: Code Complexity of ThumbPod
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get the application to work in an FPGA, all code must be
integrated, compiled and verified. We estimate that 31% in
our project is even a relative high number due to the large
amount of fingerprint-related C code which is application
specific. If we would leave out the fingerprint-related C
code, then only 5% of the ThumbPod code would be appli-
cation-specific.

4. TESTING THUMBPOD
Our first approach towards constructing a design and test

plan for ThumbPod is based on a bottom-up strategy that
uses point-tests for each abstraction level individually.

4.1. Java-Level Functional Test
At the Java level, we use functional simulation wich

abstracts out all implementation constraints. Such a simula-
tion tests various aspects of the communication protocol
that ThumbPod uses to address the server-side of the appli-
cation. This includes the detection of security problems in
the matching protocol (false fingerprints, replay attacks,
false thumbpod and/or server identity) as well as the detec-
tion of functional problems (timeouts and transmission
errors).

4.2. Embedded Java Functional Test
While the functional tests aim at verifying the overall cli-

ent-server protocol, a second suite of tests consider the
embedded Java context on top of KVM. The architecture of
the embedded KVM running the ThumbPod client is shown
in Figure 5. KVM defines a number of programming API
known as profiles. We use a stripped down version of the
basic CLDC (Connected Limited Device Configuration)
profile. Customizations of the KVM are done in two areas:
A custom JAR reader is developed to bootstrap Java appli-
cations onto KVM, and all native interfaces are integrated
into the KVM API.

At this level, each individual native interface is tested
separately using a small standalone program. One point of

particular attention is the transition from Java to C. While
there is a standard API in KVM to support data transfer
from Java to C, the user remains entirely responsible for the
transfer process. Consequently, coding of native interfaces
becomes highly error prone. An example of a native method
invocation in Java and the corresponding C implementation
is shown in Figure 6.

Table 1: Main Native Interfaces of ThumbPod

The use of multiple simulation platforms also requires
testing of different aspects of native function design. In
Figure 7, the example of reading the fingerprint sensor is
shown. The top of the figure shows the Java class Sen-
sorReader, which contains a native function read-
print through which fingerprint data can be read into the
virtual machine. For simulations on a workstation, the
actual sensor is substituted with the filesystem. Both a

JNIEXPORT jint JNICALL Java_insight_
InsightLeonMatch_match(JNIEnv *jenv, jobject job, 

jbyteArray array1) {

u8 array1_c[2800];
jbyte *array1_pointer;
jsize array1_len;

array1_len      = (*jenv)->GetArrayLength(jenv,array1);
array1_pointer  = (*jenv)->GetByteArrayElements(jenv,array1,0);
if (array1_len != 2800) {

fprintf(stderr, "Error - parm 1 length match() must be 2800\n");
}
...

}

public class InsightLeonMatch {
public native void match(byte[] template1);

}

Java Native Method

C Implementation of Java Native Method

Figure 6: Java Native Method Parameter Passing

Platform-Hardware Native Interfaces

Rijndael Encryption/ Decryption using AES,
either as a HW coprocessor or in SW (C)

SensorReader Interface to fingeprint sensor reader or 
filesystem, returns a fingerprint image

LED Low level IO (switches & LEDs)

Software-IP Native Interfaces (fingerprint matching SW)

DetectEnroll Accepts a fingerprint image and returns
fingerprint minutia

TemplateAccept Accepts two sets of minutia and decides if they 
are valid as a template

Match Accepts two sets of minutia and returns their 
matching score

Decide Accepts two matching scores and decides 
wether the ThumbPod user is valid or not

Figure 7: Example of native implementation of 
fingerprint sensor under multiple simulation contexts

sensor

public class SensorReader {
public SensorReader() {}
public native void readprint(byte[] values);

}

KNIJNI

readprint() {
read file

}

file

readprint() {
read file

}

readprint() {
read UART

}

JVM on
Workstation

file file

KVM on
Workstation

KVM on
ISS

KVM on
LEON-2

stdio pipe

java

C



JVM- as well as a KVM-version are required. As pointed
out the native interface mechanism of the standard JVM
(JNI) is not the same as that of the embedded KVM (KNI).
For the embedded processor target, we substitute the file
operation with a UART I/O operation. When KVM runs on
LEON-2, the sensor is accessed. But when this function is
used on top of the LEON-2 instruction-set simulator (ISS),
the UART I/O operation maps to standard I/O and ulti-
mately to a file. This way, an appropriate set of simulator
configurations is determined for each of the native inter-
faces in ThumbPod, which are enumerated in Table 1. 

4.3. Fingerprint Authentication Test
.A major component of ThumbPod are the Fingerprint

Detection and Matching routines. They are developed and
tested separately. The goal is to map the algorithms to
embedded, fixed-point (32-bit) context with good perfor-
mance. The acceptance criteria for fingerprint matching are
false-accept-rate (FAR) and false-reject-rate (FRR), which
correspond to acceptance of a false identity and rejection of
a true identity respectively. FAR is considered to be a more
critical parameter, but there is a tradoff between optimiza-
tion for good FAR and good FRR [8]. We gradually col-
lected a database of 100 fingerprints over the project. This
data is cross-matched in exhaustive overnight simulations
to establish the FAR and FRR after each improvement of
the algorithms. This way we achieved commercial-grade
0.01% FAR and 0.5% FRR.

As with many signal processing algorithms, there is no
single ‘good’ solution to quality. A particular feature is that
execution time and matching quality turn out to be iex-
changeable parameters. Figure 8 gives the example of the
execution time and detection quality of the minutia detec-
tion algorithms, which are dependent on a convergence
threshold parameter ETH. The existence of such factors
motivates a continous optimization of the algorithms
throughout the project. But as a result, it is no longer possi-
ble to say when a native method is really ‘finished’

4.4. Hardware Test
Finally, the hardware platform is simulated at RT-level

to verify the coprocessor interfaces. The simulation speed
of the HDL simulator (Modelsim XE) is in the order of ten
LEON-2 instructions per minute and too slow to consider
extensive simulations, or even to boot a complete C pro-
gram. We therefore use small boot programs that perform
dedicated tests of the coprocessor interfaces. In the end, we
also found that it is easier to debug the application by-
implementation on the FPGA. The synthesis traject of our
design, which fills 80% of a XC2V1000, has a smaller turn-
around time than the RT simulation traject.

4.5. Showstoppers
Despite the design and test at multiple levels of abstrac-

tion, we failed a crucial intermediate deadline for ‘version
1.0’ of ThumbPod. Upon investigation it turned out that our
bottom-up testing strategy was insufficient. This strategy
focuses on the correct operation of individual components
(Java application, KVM, Fingerprint C code, Hardware),
but not on the project result itself. A lot of problems show
up upon integration of individual components, as illustrated
by these examples.
• While the interface between the Java application code,
and the Fingerprint detection code is compatible, the actual
data representation exchanged over these interfaces is not. 
• The fingerprint image quality of the actual hardware
sensor is in some cases insufficient for the Fingerprint
Algorithms.
• A KVM application that works well on an ISS becomes
unreliable on the actual hardware due a memory hardware
problem.
• The codebase of the project shows a lot of redundancy.
Sharing of code is done at source code level, and multiple
copies of the same code co-exist. This is mostly a result of
incremental, bottom-up developments in a research context.

We conclude that our testing strategy should focus more
on the entire project, and have a top-down aspect. The code
base is reorganized, and a number of techniques are intro-
duced to master the integration complexity. We enumerate
those in the next section.

4.6. Project Techniques
• No Source Sharing: All sharing between the different
components (Java/C/KVM/Hardware) is done at the binary
level through the use of class libraries and object code. 
• Build Automation: Each component is organized in a
separate directory with automatic make facility. Each make
has four targets: compile, release, test, and clean.
• Daily Build: Each day, the entire project is compiled,
tested and released during an overnight compile. The error
log of this procedure is distributed each day by email.
• CVS Version Control: While the use of CVS is intro-
duced early-on in the project, we find that the usage policy
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of version control (tags and timely commit) is at least as
important as the versioning itself.
• Code Review: By explaining the organization and
structure of code to a peer, some obvious cross-component
interface problems were identified.
• Target Dates instead of Starting Dates: Our planning is
adapted to indicated the target dates of activities rather then
the starting date. This way, dependencies between compo-
nents were made explicit.

Figure 9 shows a bug curve over time, obtained by exam-
ining the reports from the daily build activity. The original
slipped v1.0 deadline was week 19 of the project. From
week 20 to week 23, the techniques indicated above were
gradually introduced. The major release points in the
project are indicated as well. While ‘zero bugs’ does by no
means imply that ThumbPod is error-free, it does imply that
the complete ThumbPod is error free to the extent of our
tests.

5. OPEN ISSUES
In retrospect we consider which testing techniques would

have allowed us to get ThumbPod right first-time. Given
the heterogeneous mix of technology that is used in this
project, clearly a lot of problems show up at the fringes, in
this case the interfaces. For example:
• The use of Java as a strongly typed language is great,
but the advantages of strong typing are lost at the native
interfaces to C.
• Multiple levels of simulation (JVM, KVM, KVM on
ISS, KVM on embedded processor) inevitably result in
slightly different behavior of a single piece of code.

A verification technology that starts from interface defi-
nition and properties could have improved the testing.
However, we are not aware of one that combines rigorous
interface testing with multiple, heterogeneous programming
languages. We also feel that such a technology must allow
for fast design exploration.

For each of the individual ThumbPod components, a fea-
sible bottom-up testing methodology was easy to find. But
in the overall system however, the development paths of all
these components overlap and the interfaces between those
components are subject to constant change. The most effec-

tive strategy to improve integration was, not surprisingly,
team communication. Figure 10 shows the traffic of
project-related email as number of messages per project
week. The release points are indicated, and show clear
peaks. The focus shifts from academic interest to a working
demonstrator. The fact that, in the end, Thumbpod works at
all is due to a continuing alignment of the individual com-
ponents to the overal system.

6. CONCLUSION
We discussed the design and testing process in the

ThumbPod project. ThumbPod combines a stack of pro-
grammable machines, that were codesigned throughout the
project. The key difficulty in testing was not in the individ-
ual components but in the overall system integration. Com-
plex design should be driven out of the interfaces between
components rather than out of the components themselves. 
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