
Finding the best System Design Flow for a High-Speed JPEG Encoder

Abstract - 26 students at the University of California, Los
Angeles (UCLA) studied system level design methodologies
through the design of a high-speed JPEG encoder. The results
produced by 5 different design flows onto various target
platforms demonstrate the high impact of tools on design
quality.

I. Introduction
Growing system complexity and shrinking turn-around

-times for silicon chips require the use of efficient design
methods and tools. Tool support is needed throughout the
design flow, starting with capture of system level models all
the way down to detailed implementation. Design decisions
at system level have most impact on the final performance,
yet the least amount of design support and no textbooks or
educational material are available.

Thus the Spring 2002 EE201A class [1], a graduate-level
class at UCLA, conducted an experiment to design a high-
speed JPEG encoder. Such an encoder is used in image
compression applications. A high-speed, energy-efficient
implementation is required for embedded applications such
as for instance digital cameras. In the class, 5 different
approaches were taken to implement the JPEG encoder. We
used 3 different design languages (SystemC, HandleC, and
SpecC) [2,3]. We targeted 4 different platforms: 2 DSP
processors (TI C5410, Analog Devices Blackfin), and 2
dedicated FPGA implementations. One was a VLIW
processor created with Adelante Technologies A|RT
Designer [4] and the other a dedicated hardware
implementation created with Celoxica DK1 [5]. Starting
from a single specification in C, we thus could compare a
wide variety of design approaches.

II. Overall of Design Flow
 The design flow was assigned to the teams as shown in
Fig.1. It starts with a single specification and runs through
several different design phases. Several tools and
environments are used at each level. The numbers next to the
arrows indicate the number of teams that followed a
particular design trajectory.

At the first step, a data-flow analysis is done of the C
code to identify the individual processing stages in the JPEG
encoder. In addition we also analyze the background
memory requirements of the JPEG encoder in order to
optimize the memory architecture of the target platform.

In a second step, each team translates the C reference

implementation into a system level modeling environment,
which is one of SystemC, HandleC, or SpecC.
 The third step deals with fixed point refinement.
Depending on target platform, appropriate fixed-point
refinement has to be done. In case of C5410 or Blackfin, all
calculations should fit in 16 bits of precision. In the case of
FPGA targets (A|RT Designer or DK1), wordlengths can be
custom chosen but should be minimized to reduce resource
consumption. For shared busses, it also makes sense to
reduce the number of different wordlengths so as to
minimize type alignment hardware cost.

The last step is the implementation phase, where each
team implements their design on one of 3 reference PCBs: A
Spectrum Digital board with C5410 [6], an Analog Devices
Blackfin evaluation board [7], and an Insight Electronics
board with a Xilinx Virtex-II [8]. The teams that used TI and
Analog Devices Blackfin started from the C reference code
optimized in the previous steps and compiled the code. A|RT
Designer and Celoxica DK1 produce Verilog code, which
was implemented with Xilinx ISE software and ported to the
FPGA board.

A crucial constraint for all these designs is the design time,
which was limited to the time of one quarter (10 weeks).

III. Results

 The data flow of the JPEG encoder is based on the block
diagram as shown in Fig.2. It has 5 functional units and 7
memory units. The functional units implement the different

System Level
Model

Implementation
Model

SpecC HandleC SystemC

Fixed-Point Refinement

 C code for
Blackfin

C code for
TI C5410

Verilog + ROM
code by A|RT

Verilog by
Celoxica DK1

5 4 4

3 4 1 2 3

Data Flow Analysis

Behavioral Model C code

Fig. 1. Design flow for the JPEG encoder. The numbers
indicate how many teams were assigned to use the models.

Kazuo Sakiyama

UCLA Dept of EE
Los Angeles, CA 90095

+1-310-267-4940
kazuo@ee.ucla.edu

�Patrick R. Schaumont

UCLA Dept of EE
Los Angeles, CA 90095

+1-310-267-4940
schaum@ee.ucla.edu

Ingrid M. Verbauwhede

UCLA Dept of EE
Los Angeles, CA 90095

+1-310-794-5209
ingrid@ee.ucla.edu

S/W S/W+H/W H/W

steps of JPEG encoding, including reading an image, RGB
to YUV color space conversion, DCT coding, quantization
and Huffman encoding.

A. The Number of Memory Access

Fig.3 shows the number of memory accesses optimized by
each team using ATOMIUM [9], a tool that evaluates the
read and write access count in the C code. The goal of this
step is to reduce the number of memory accesses, and in turn
this enables more efficient use of storage. More than half of
the teams were able to reduce the access count by 50% or
more.

B. System Level Model
 The number of lines of code programmed with each
system language is shown in Fig.4. The design time for this
step was two weeks. The result with SpecC says that 4 teams
out of 5 wrote about the same amount of program working
correctly. On the contrary, the code did not work
successfully by the due date with 3 SystemC teams and 2
HandleC teams out of 4 each, and varied enormously in
programming style among the teams. We attribute this
variation in results mostly on the lack of a clear
well-documented design approach at the time of the project.

Table I
The JPEG encode performance for each platform

Platform
(source code)

Average of
Required Cycles
[cycles/64blocks]

Code
Length
[lines]

JPEG encode
Performance

[blocks/s]
Blackfin
(C code)

1,524K 879 12,602
@300MHz

TI C5410
(C code)

1,499K 707 6,835
@160MHz

A|RT
(SystemC) 677K 1,015 -

DK1
(HandleC) 700K 1,312 1,357@15MHz

(Simulation Value)

C. Implementation on the reference board
 After the fixed-point refinement suitable for each
platform, every team tried to run the JPEG encoder on the
reference boards. All of the teams using DSP platform could
implement their design successfully onto the boards.
However, no team targeting the FPGA board could obtain an
implementation within the 10 weeks time limit.

Based on the data reported by the teams, the JPEG encode
performance is calculated and compared in Table I.

IV. Summary and Conclusions
 We draw a fourfold conclusion from this design
experiment. First, high-level design greatly benefits from
advanced optimizations such as reduction of memory
accesses. Next, the use of a system level design language
requires a well-documented design methodology to be
effective. Third, current FPGA-based design flows do not
yet have the same ease of use as equivalent DSP-based
design flows. Finally, gaps in the design flow have been a
constant source of extra effort during the entire project.
These gaps cause overhead because they require rewrite of
code, such as for instance to go from SpecC to a DSP. A
design flow must be closed to be fully effective.

Acknowledgements
We would like to acknowledge all of the graduate students

who enrolled EE201A in Spring Quarter at UCLA. We also
acknowledge the logistical contributions from Analog
Devices, Adelante Technologies, and Celoxica.

References
[1] http://www.ee.ucla.edu/~schaum/ee201a/
[2] http://www.systemc.org/
[3] http://www.ics.uci.edu/~specc/
[4] http://www.adelantetech.com/en/html/algemeen/AboutA

delante/Partners/Academic/EducationalProgram.asp
[5] http://downloads.celoxica.com/dk1eval/
[6] http://focus.ti.com/docs/tool/list.jhtml?familyId=114&to

olTypeId=30
[7] http://www.analog.com/technology/dsp/products/ads/bla

ckfin/index.html
[8] http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp

?title=Platform+FPGAs
[9] http://www.imec.be/design/multimedia/atomium/

Fig. 2. The block diagram of the JPEG encoder.

0

100

200

300

400

5 9 13 12 1 11 6 3 10 7 4

ORG 2

Team number (ORG: original code)

M
em

or
y

ac
ce

ss
 [K

 ti
m

es
]

996K

8

Fig. 3. Optimization of the memory accesses for each team.

Fig. 4. The program length for each system model language
and the correctness of the code.

0

500

1000

1500

2000

2500

SystemC SpecC HandleC
Team number / System model language

3 12 10 6 2 13 11 9 5 1 8 7 4

Correctly working
Synchronization Error
Other errors

P
ro

gr
am

 le
ng

th
 [l

in
es

]

