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Abstract

This paper describes the system-level design process followed
for the implementation of a 72 Mb/s OFDM (Orthogonal
Frequency Division Multiplexing) transceiver for 5 GHz
wireless LAN (Local Area Network) that is realized in 0.18 um
CMOS technology. The starting point is a high-level
specification using the general-purpose programming language
C++. By making use of a set of class libraries developed
internally at IMEC, architectural trade-offs can be easily
explored. The open nature of a C++ based design environment
supports the re-use of previously designed building blocks and
allows designers to extend the typically supported design-flow
eliminating the need for manual generation and correction of
synthesis and verification scripts. Automated HDL (Hardware
Description Language) code generation from the C++
descriptions creates the link to standard synthesis tools and
back-end flows.

Introduction

OFDM forms the physical layer for upcoming broadband
wireless LAN standards such as IEEE 802.11a (1) and ETSI
Hiperlan/2 (2). A throughput of 72 Mb/s after coding within a
20 MHz bandwidth requires spectrally efficient modulation
schemes up to 64-QAM (Quadrature Amplitude Modulation).
The design discussed in this paper includes a parameterized
interpolating equalizer architecture, clock offset tracking, and a
robust programmable acquisition, covering all transmission
modes from BPSK (Binary Phase Shift Keying) to 64-QAM
extending capabilities of classic OFDM signal processing (3) to
fast burst communication in a multi-path indoor environment.

The traditional design process of such a telecom system starts
at the level of MATLAB (4) models. Extensive simulations
allow to decide on the algorithms and system parameters that
meet the system requirements. From this high-level
algorithmic specification, HDL coding is started without any
intermediate design steps. All decisions related to architecture
and implementation are coded immediately in the RT (Register
Transfer) level HDL code suited for synthesis. Because of the
low simulation speed of the RT-level HDL code, exploration of
architectural trade-offs is limited and algorithmic changes
imply a long and cumbersome iteration over the MATLAB
specification. To bridge this gap from algorithmic

specifications to HDL code, IMEC developed OCAPI (5): a
C++ based design flow consisting of a set of class libraries that
support the designer in making architectural trade-offs starting
from an algorithmic data-flow level specification and ending
with automatic generation of synthesizable HDL code. The use
of object-oriented programming techniques supported by the
general purpose programming language C++ (6) allows to
abstract away low-level details of the implementation that are
irrelevant when deciding upon architectural issues, resulting in
a more efficient design process. A process of incremental
refinement allows the designer to gradually introduce the
implementation detail required for an efficient implementation
of the circuit.

The next sections describe details of the architecture and
implementation of the OFDM transceiver, details of the C++
based design flow and its support for architectural trade-offs, IP
(Intellectual Property) re-use, and HDL code generation.
Finally, results of application of this design flow to the OFDM
transceiver are discussed and conclusions presented.

OFDM transceiver architecture and design

A.  Principles of orthogonal frequency division multiplexing
The OFDM transceiver is intended for a wireless indoor LAN.
The indoor propagation channel is frequency selective due to
multi-path fading, with dips up to 30 dB, meaning that the
transmission in these frequencies will be dramatically
degraded. OFDM is a technique that exploits this frequency
diversity to improve the communication performance. OFDM
allows the transmission of data on different orthogonal carriers,
which are created by means of an FFT. The carriers are
modulated (PSK or QAM) independently and can be
considered as narrow band signals that see a flat fading
channel. This makes it easier to estimate the channel
characteristics and results in a simpler, frequency domain,
equalization in which the coefficients can be updated
independently per narrow band.

B.  Transmit and receive path

In this section we briefly describe the transmit and receive
path of the modem (see (7) for more details). Fig.1 shows the
architecture of the transceiver IC containing all digital signal
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FIGURE 1. Architecture of the OFDM transceiver. The transmit path — from TX data input to DAC output — is shown at the top. The receive
path — from ADC input to RX data output — is shown at the bottom. Both share the (I)FFT and symbol reordering blocks.

processing of an OFDM WLAN physical layer except channel
(de)coding. It achieves BPSK, QPSK, 16- and 64-QAM
transmission up to 72 Mb/s after and 54 Mb/s before coding as
required by current standards. The IC has a synchronous
FIFO-like host interface and communicates to 8-bit DAC and
10-bit ADC I/Q pairs in the front-end. All data-path and
parameter RAM, 78 Kb in total, is integrated on chip.

Depending on the modulation scheme, up to six bits are
mapped on the sub-carriers. Reference symbols and/or a
rotating BPSK pilot pattern are inserted into the data stream.
Spreading allows frequency diversity and a programmable
spectral mask performs pulse pre-shaping at OFDM symbol
level.

The FFT, symbol reordering, pilot and reference symbol
generation make up approximately 14.5% of the hardware
and are common to transmit and receive path. The 64-point
(DFFT performs the actual OFDM (de)modulation. It is
based on recursive decomposition. The symbol reordering
(SSR) rearranges carriers within an OFDM symbol by means
of two single-port RAMs and a set of address generators. It
transforms bit-reversed (I)FFT data to linear order, in
transmit mode it inserts the guard interval and the acquisition
preamble, while in receive mode it interleaves the carriers.

In the receive part, symbol-spaced timing synchronization
determines the FFT frame start, carrier frequency offset and
clock offset. The rest of the circuitry is powered up only on
successful detection of the frame start — in listening mode
only 2% of the chip is active. The adaptive equalizer
sequentially processes the individual carriers, compensating
amplitude and phase distortion due to the multi-path channel
and removing the phase errors due to group delay variation
and carrier frequency offset. A demapper provides hard
decisions in case of BPSK or QPSK or, for the other
modulation schemes, two times six bits soft output to be used
by the subsequent channel decoder.

C. Implementation

Distributed control, based on token flow semantics, facilitates
the on-chip communication. The use of token flow greatly
simplifies the management of global timing constraints and
allows concurrent design of the various blocks. In this chip,
distributed control is combined with distributed local clock
gating which reduces -the average power consumption,
simplifies individual block idle state control, and enables
receiver sampling rate adaptation. Preamble, symbol and burst
structure of the OFDM transceiver are programmable to
operate the modem efficiently under varying channel
conditions and service requirements.
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TABLE 1. IC key figures

Technology

0.18 um CMOS, 1.8 V core, 3.3 V1I/O

Nominal clock frequency

20 MHz

Package

160 pin PQFP

Equivalent gate count
active in receive mode
active in transmit mode

431,000 =100 %
416,000=96.5 %
79,000 =18.0%

equalizer | 270,000 = 62.6 %
FFT | 42,000= 9.7 %
RAMs | 78,000=18.1 %
Die size 20.8 mm?
Measured power dissipation
in [EEE mode at 20 MHz 33VI/O 1.8Vcore Total
in transmit mode 156 43 199
in receive mode 66 146 212
in programming mode 35 81 116

The transmit delay is 150 cycles from data input to preamble
output. The receive delay is 243 cycles from payload input to
data output. The essential figures of the IC design are
summarized in Table 1 and Fig. 2 shows the layout of the chip.

C++ based design flow

The demands of high-speed modems in terms of delay, area,
and power dissipation are approaching the technological limits.
Therefore, a joint optimization of algorithm and architecture is
required to come to a feasible solution. Many of the blocks in
the OFDM architecture are flexible to be able to accommodate
several (sometimes emerging) standards. Investigation of
reasonable parameter ranges and their interdependencies
requires a fast high-level simulation model. On the other hand,
the architecture must eventually be implemented in silicon and,
consequently, a smooth path from the high-level simulation
model towards a synthesizable RT-level description is vital. In
this process, architectural exploration must be maximally
supported.

The OCAPI technology supports the gradual refinement of an

object-oriented C++ model starting from behavioral code. Its

application to the design of the OFDM transceiver consists of
several phases:

1. Behavioral description of the algorithm using a set of class
libraries to express data-flow semantics;

2. Design partitioning in which functionality is being
grouped in larger entities to be mapped onto single
hardware units.

3. Scheduling of the operations inside each entity to get a
clock cycle-true description and formal mapping to finite-
state machines (FSMs) and signal flow graphs (SFGs)
resulting in a register-transfer description;

4. Automatic generation of synthesizable RT-level VHDL
code.

Fig. 4 shows the OCAPI design flow as part of the global ASIC

design flow used for this design.

FIGURE 2. Layout of the OFDM transceiver in 0.18um CMOS. The
high-lighted rectangular shapes are embedded memories.

In most cases, the initial description of the algorithm will use
floating-point signals and operations. For efficient hardware
implementation, these operations have to be transformed into
fixed-point arithmetic. Because this refinement is orthogonal
to the other refinement steps, the signal representation can be
chosen freely throughout the refinement. This allows for
mixed data type (floating- and fixed-point) simulation
throughout the design, which in turn allows fixing the
representation of signals very late in the design cycle. In
addition, it allows re-use of the same test-benches throughout
the design trajectory. The operator-overloading feature of C++
allows the designer to make this floating- to fixed-point
exploration with minimal code changes. As illustrated in Fig. 3,
only the declarations of the signals need to be changed slightly,
no other code changes are required.

dfix a(42.2);
dfix b(23.6);
dfix c(0);

dfix a(4,10,2);
dfix b(2,10,2);
dfix c(0,10,2);

c=a + b ¢ =a+ b;
cout << C; cout << ¢;
// prints “ 65.8" // prints “ 65.8"

FIGURE 3. Floating-point to fixed-point refinement is supported very elegantly
by exploiting operator-overloading features of C++. Only the signal
declarations need to be changed in the left-hand side floating-point code to
obtain fixed-point code at the right-hand side, which in this case behaves
identically as the floating-point code.
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FIGURE 4. C++ based design flow on top of traditional back-end flow.
The OCAPI flow covers algorithm exploration down-to register-transfer
implementation in an open C++ environment

A.  OCAPI flow
In this section, the refinement steps are explained in more
detail.

In many single-carrier applications, control is limited to the
basic granularity i.e. a data symbol. However, OFDM offers
an additional higher level of granularity, the OFDM frame,
which is reflected in its architecture. It consists of a low
number of control-intensive building blocks. Because the
parameters of these blocks are adapted on the fly between
transmission bursts and the scheduling of the blocks is
parameter dependent, an architecture with centralized control is
not feasible. Instead, a data-flow processor architecture is used
in which each block has a firing rule that determines the
condition for execution of the block. When the firing rule is
true, the block is executed without timing constraints or
scheduling limitations. OCAPI offers a class library that
contains support for the modeling of data-flow semantics.

Each block is modeled by instantiating a data-flow object. The

data-flow objects are connected using data-flow queue objects.
The class library contains a scheduler that will execute the
specification by testing the firing rule of each data-flow object.
When the firing rule is true, the corresponding block behavior
is executed and new tokens are produced.

At this level of abstraction, performance simulations are done
to verify system parameters such as bit-error rate, packet-error
rate, signal-to-noise ratio, etc. Also when floating-point to
fixed-point refinements are done, simulations are performed to
verify the implementation loss due to quantization errors.

In the next step, the design is partitioned into entities that
correspond to the final hardware units. Blocks with related
control functionality are grouped together to reduce
interdependencies. This reduces the number of data queues
required to communicate control parameters between blocks.
This reorganization is accomplished by manual rewriting of the
code and verification by simulation. At this level, data-transfer
and data-storage optimizations are done. This process is
explained in more detail in section C below.

In the third step, the operations inside each block are scheduled
to obtain a cycle-true description. Loops are unrolled and local
variables are translated to registered variables. Local counter
constructs result in state machines with parameter dependent
branching. Because the token flow separates functionality of a
block from connectivity, we can co-simulate blocks at different
abstraction levels. This supports a scheduling process through
gradual refinement: individual blocks can be refined separately
and independently of each other and simulated with the non-
refined blocks (at high abstraction level) resulting in superior
simulation speed. The result is described in OCAPI by refining
the program into FSMDs (Finite State Machine with Datapath).
The operations per branch are grouped in a SFG per state and
transition. This level of description is semantically equivalent
to an RT-level description.

In the final step, the FSMD-level description is flattened. Each
block now consists of one FSM with one SFG assigned to each
state-transition pair such that synthesizable VHDL code can be
generated automatically from the RT-level C++ code. For each
block (FSMD) of the transceiver, a synthesizable RT-VHDL
file is created. For the overall OFDM chip, a system net-list is
generated that connects the different FSMD blocks. Finally,
the C++ test vectors are translated into FSMD-level and
system-level test-bench vectors to allow verification of the
synthesis results.

The synthesis of the final chip is a fully automated process
using elaborate scripting (generated automatically from the
C++ code base).
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B. Verification in the OCAPI flow

During the design process, simulation-based verification is
used extensively to track correctness of the design refinements.
C++ based simulation is used during the system-level design
phases, VHDL-based simulation is used during the synthesis
and back-end flow.

The design of test benches is done in C++. The mixed
abstraction level simulation capabilities of OCAPI (floating-
point/fixed-point and data-flow/FSMD) allow the construction
of an end-to-end test-bench in which the architecture of the
design under test is gradually refined while keeping the
remainder of the test-bench unchanged. The transition from
C++ based simulation to HDL based simulation is done by the
automatic generation of HDL level test-benches and test
vectors that correspond to the C++ test benches. HDL test-
benches are generated both at the block and at the systemn level.

In case of the OFDM design, separate block-level tests were
performed to compare the generated RT-level VHDL code
with the RT-level C++ code for each block. Automatic cross-
checking of the two simulation results is achieved through the
use of automatically generated scripts. The generated VHDL
description of the complete system was verified by comparing
the VHDL simulation results with the system-level data-flow
simulation results.

C. Memory exploration

Since multi-carrier systems introduce a second hierarchy of
signals (the OFDM symbol/frame), they work effectively on
vectors. As such, memory optimizations are much more
important than in single carrier systems to obtain efficient
implementations in terms of power and size. Memory
exploration was performed initially at the C++ data-flow level
by introducing storage models and access profiling, and later at
C++ RT level for accurate feedback after synthesis using the
VHDL code generation. As an example, we discuss the
memory selection in the equalizer circuit.

The equalizer coefficient memory is both read and written in
each clock cycle. We investigated several trade-offs with
respect to RAM partitioning, including a single dual-port RAM
(DPRAM) of 256 words, two single-port RAMs (SPRAM) of
each 256 words, two single-port RAMs with 128 words, and
four single-port RAMS of 64 words. With respect to area and
power, the solution with two SPRAMs of 128 words gains at
least a factor of 2.25 for the power-area product compared to
the other solutions for the same throughput. When more but
smaller RAMs are used, the fixed area overhead becomes
dominant. DPRAMSs have a severe initial power and area

penalty.

Memory optimizations were also performed at the level of the
data queues between the blocks. Data-flow transformations of

the code inside each block were used to modify the production
and consumption order of tokens, thereby reducing the required
buffer size in between functional blocks. The data-flow
simulations are very useful in providing feedback during this
exploration as they provide statistics about size and occupancy
of the data-flow queues.

D. Re-use of IP blocks in OCAPI

The open nature of a C++ based design flow such as OCAPI
allows a very efficient re-use of IP blocks. The (I)FFT of the
OFDM transceiver was already available as an IP block
(because it was developed using a standard, VHDL based,
design flow prior to availability of the OCAPI flow). The
strategy to integrate such an IP block in the OCAPI models,
includes two activities. First, the existing VHDL code is
encapsulated to make it compliant to the data-flow semantics of
the rest of the system. This is done by manually adding VHDL
code to the controller. Secondly, a data-flow abstraction of the
IP block is constructed for use in the system-level simulation.
To that effect, the internal structure of the FFT implementation
is maintained and reflected in the system-level data-flow model
of the FFT. The implementation of the FFT controller is
abstracted into a data-flow scheduler that organizes the data-
flow between the sub-blocks of the system-level FFT model.
Finally, an extra controller block is added to hook up the FFT
internal scheduler to OCAPI’s data-flow scheduler. This
process allows for an easy re-use of already synthesized blocks
in the OCAPI flow.

A second form of re-use is required when using macro cells
such as memories. In that case, the high-level behavior of such
a macro cell is encapsulated in a C++ class and special code
generation methods are added to the C++ class definition to
instantiate the specific macro during VHDL code generation.

In addition, re-use of specifications is supported efficiently by a
C++ based design flow. The OFDM transceiver
implementation described in this paper is a second-generation
system that was implemented starting from the OCAPI
specification of an older 80Mb/s OFDM transceiver that was
not standard compliant (8). A complete redesign for the 16/64-
QAM requirements led to a new bit-true specification. The
distributed control scheme aliowed efficient incorporation of
the 16/64-QAM functionality and extensive re-use of the C++
data-flow and RT-level code base. Table 2 gives an overview
of re-use of blocks between the first- and second-generation
OFDM transceiver.

E. Extensions to the design flow

Apart from efficient support for re-use, the openness of a C++
programming environment allows designers to accommodate
deviations from the standard flow easily. The error-prone
process of writing synthesis, verification, and test scripts can be
completely automated by adding a few extra lines of C++ code
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TABLE 2. Re-use of blocks between first- and second-generation OFDM
transceiver.

Functional block Re-use first-generation block
Burst controller 100 %
Clock generator 100 %
Demapper 10 %
Equalizer 0%
FFT 90 %
Mapper 10 %
Micro-processor interface | 100 %
Pilot generator 0%
Reference symbol | 50 %
generator

Symbol reordering (SSR) 50 %
Synchronization (CFO) 100 %
Clock offset 10 %
Timing synchronization 100 %
Top level description 0%

to the descriptions. Iterating through the design then becomes
a process of changing the specification code and running
through the (automated) code and script generation process
again. It is this capability of extending a typically supported
design environment with personal productivity tools that allows
for major productivity gains. Because of the object-oriented
nature of the OCAPI environment all meaningful design
concepts (FSM, state, transition, clock, register, etc.) are
modeled as objects and hence can be readily manipulated by
the designer. To that end, the designer adds extra methods to
the already defined classes (much in the same way that one
would traditionally write complex scripts to browse through
design databases to extract relevant information). These
methods have direct access to the objects of interest. This
technique has been used, for example, to automatically

perform:
e verification tasks such as checking consistency of
connections;

e design for test tasks such as introduction of scan chains
and connecting scan chains that operate on the same clock
e hierarchy related tasks such as clock-tree routing.

In the context of the OFDM transceiver design, this capability
was also use to completely automate the loop from RT-level
C++ code changes to VHDL synthesis for the individual
blocks. Typically, timing problems are discovered after
synthesis of the VHDL code generated by OCAPI. These need
to be resolved by (sometimes small) architectural changes in
the RT-level C++ code. The complete process of VHDL code
generation, simulation of the generated VHDL code,
comparison of simulation results with the original RT-level
C++ simulations, and generation of the required scripts for
synthesis has been automated such that the complete loop from

TABLE 3. Statistics related to use of OCAPI for OFDM design

C++ data-flow 11,000 lines

C++ architecture 18,067 lines

C++ system test-bench 1,599 lines (+11,000)
RT VHDL code 50,884 lines

Gate level VHDL 465,828 lines
Extensions to OCAPI 9,741 lines of C++

architectural change in the RT-level C++ code, to synthesis-
ready VHDL code for the block takes only minutes.

F.  Statistics related to the use of OCAPI

Table 3 gives an overview of the complexity of the different
descriptions made for the OFDM transceiver design using the
OCAPI flow.

The difference in line counts between the semantically
equivalent RT-level C++ code and RT-level VHDL code is due
to the abstraction mechanism offered by OCAPI. The class
libraries used to represent a design at the RT-level C++ code
encapsulate the concept of FSMDs (FSM with Data-path) in a
very concise manner. In contrast to HDL descriptions, where
the complete behavior of the FSMD has to be expressed using
the event-driven simulation semantics of the HDL, OCAPI
provides for a declarative type of description.

Because the system model is used for an end-to-end simulation,
the OFDM transceiver is instantiated twice in the model. One
of the two instances, however, is not refined towards an
implementation and should be counted as part of the test-
bench. Hence the extra 11,000 lines in the row corresponding
to the test-bench in Table 3.

Conclusions
In this paper, we presented the design process of an OFDM
transceiver for wireless LAN. A C++ based design flow,
OCAPI, was used to make a behavioral data-flow model of the
system and gradually refine it to a C++ RT-level description
from which synthesizable VHDL code was generated
automatically. This C++ based design flow bridges the gap
between MATLAB-like specifications and traditional hardware
design entry at VHDL or VERILOG level. It allows a designer
to efficiently make architectural trade-offs, it supports re-use
and incremental design, and the openness of a C++
environment allows the designer to extend the standard design
flow with personal productivity tools.

Apart from two generations of OFDM transceivers, several
other ASICs have been designed with the OCAPI flow such as
an arithmetic coder of a Wavelet compression system (9), a
HFC cable modem (10), and a flexible up-down converter (11).
Some of these designs were implemented as data-flow
processors much like the OFDM transceiver presented in the
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current paper. Others were implemented as VLIW
architectures containing a centralized controller orchestrating a
number of data-paths. In addition, systems containing
embedded software, such as an ADSL modem, have been
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