Design of a Secure, Intelligent, and Reconfigurable Web Cam Using a C Based
System Design Flow

Diederik Verkest, Dirk Desmet, Prabhat Avasare, Paul Coene, Stijn Decneut,
Filip Hendrickx, Théodore Marescaux, Jean-Yves Mignolet, Robert Pasko
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
diederik.verkest @imec.be

Patrick Schaumont
UCLA, EE Department, Los Angeles CA 90095-1594
schaum@ee.ucla.edu

Abstract

This paper describes the design of a reconfigurable
Internet camera, Cam-E-leon, combining reconfigurable
hardware and embedded software. The software is based
on the uClinux operating system. The network appliance
implements a secure VPN (Virtual Private Network) with
3DES encryption and Internet camera server (including
JPEG compression). The appliance’s hardware can be re-
configured at run-time by the client, thus allowing to switch
between several available image manipulation functions.
This paper focuses on the design process used to implement
the appliance starting from a high-level executable specifi-
cation.

1. Introduction

Future networked appliances should be able to download
services from the network and execute them locally. To sup-
port this process, the implementation of a network appliance
should be flexible. This flexibility is traditionally provided
through the incorporation of a programmable instruction-
set processor (ISP) of which the behavior can be changed
by downloading new software over the network, possibly
using JAVA technology. However, computational perfor-
mance of software based solutions is inadequate for many
modern multi-media applications (e.g. image processing)
which typically need to run on such a networked appliance.
In addition, the high power dissipation of a software based
solution is incompatible with the need for portability and
wireless Internet connectivity. The advent of large Field-
Programmable Gate Arrays (FPGA) has opened up the pos-
sibility to offer flexibility through hardware reconfiguration.

0-7803-7147-X/01/$10.00©2001 IEEE 463

The power dissipation and computational power of an appli-
cation implemented on such an FPGA lies between software
based implementations and complete custom implementa-
tions (ASICs) [1]. In this paper we describe the design of
a secure web camera that supports dynamic modification
of its image processing capabilities by downloading of ser-
vices from a configuration server in the network. The ob-
jectives of this design exercise were twofold:

o to demonstrate the concept of hardware plug-ins: user
initiated run-time dynamic reconfiguration of part of
the system functionality. This paper does not further
elaborate this aspect. More details can be found in [2].

e to evaluate the use of a software-centric approach to
embedded system design where many of the system’s
components are based on open source software pack-
ages and hardware acceleration is introduced where
needed by using a C++ based hardware/software co-
design environment called OCAPI-xI {3].

The demonstration platform consists of a processor
board from Axis Communications [4] running pClinux {5}
and a custom designed board with 2 XILINX Virtex800 FP-
GAs [6]. The board is connected to an IBIS4-camera, a
1.3 megapixel CMOS image sensor developed by IMEC’s
spin-off FillFactory [7]. The embedded software uses a
standard third-party embedded Linux platform. This soft-
ware is handling the network protocol layers, as well as the
(re-)configuration and control of the FPGAs. The use of
Linux eases reuse of existing open-source software mod-
ules, which allows us to design the full system in a short
time.

The design process starts from a full-software reference
implementation, re-using a lot of open-source C and C++
based software. The design of the hardware accelerated



modules, that are executed on the FPGAs, starts from this
full-software reference implementation. The design is car-
ried out using OCAPI-x], a C++ based embedded system
design environment [3]. OCAPI-x! offers the ability to de-
scribe the system in C++, using a class library that sup-
ports a system model described as a number of concur-
rent processes that communicate through primitives like
semaphores, messages and shared variables. From this sys-
tem model, a refinement process allows to translate the pro-
cesses and communication into a mixed hardware-software
implementation, all within a traditional C++ development
environment. A final automated HDL code generation step
makes the link to traditional hardware development envi-
ronments to complete the FPGA implementation. In addi-
tion, OCAPI-xI supports easy integration of external inter-
faces and of existing software functions through a mech-
anism called foreign language interface. This mechanism
was used here to link the hardware-models and the embed-
ded Linux software.

In Cam-E-leon, FPGAs are used where a software imple-
mentation can not meet the performance requirements, but
where flexibility is still desired. In our example this is the
case for the image acquisition functionality, consisting of
the camera interface (the camera is sampled at 10 MHz), the
color reconstruction (de-mosaicing), user-dependent image
manipulation, JPEG compression and the 3DES encryption,
used in the VPN IPSEC security layer.

A number of image manipulation plug-ins, selectable at
run-time by the user from a web browser and downloaded
over the network from a reconfiguration server, demonstrate
the concept of networked reconfiguration [2]. Specifically
for the Cam-E-leon web camera, we developed the Boot-
Up Reconfigurable Platforms Protocol (BRPP), a new pro-
tocol similar to BootP and DHCP, to allow the camera plat-
form to discover and retrieve the available configurations
and services on the network. At boot time the reconfig-
urable embedded device localizes a neighboring “reconfig-
uration server”, a machine that stores and serves a number
of HW/SW configurations to its clients. During a second
phase, the reconfigurable appliance negotiates its character-
istics and required services with the reconfiguration server.
The server will then respond by providing the list of avail-
able services. On request, the reconfiguration server up-
loads new services to the reconfigurable platform that dy-
namically reconfigures its FPGAs and adapts the HW/SW
communication, to.interface with the new application.

Section 2 provides details about the system functionality
including the network protocol layer, the image capture and
compression, and the security aspects. Section 3 provides
details about the architecture of the implementation plat-
form. Section 4 explains the design flow that was used to
design the Cam-E-leon. Finally, in section 5 we summarize
the main points of the paper.

464

2. System functionality

i %e!scape

Adp swycat

Figure 1. Cam-E-leon system functionality.

Figure 1 gives an overview of the system functional-
ity. The left-hand side of the picture shows a user termi-
nal (client) that runs a regular browser and connects via
the Internet (TCP/IP, HTTP, ...) to the Cam-E-leon appli-
ance. Some specific application software (CGI and JAVA
scripting) allows to control the remote device. The right-
hand side of the picture shows the Cam-E-leon functional-
ity. On top of the network protocol stack, we implement the
web camera functionality (camera interface, RGB recon-
struction, image manipulation, JPEG compression, video
streaming), a web server (boa) that serves HTML pages to
the client, and - not shown in the picture - some functional-
ity to reconfigure the platform.

The physical connection is done via Ethernet. On top
of that we run TCP/IP with IPSEC and VPN functional-
ity. VPN is a technology that allows a secure connection
(commonly referred to as a “tunnel”) between two network
devices. The security is provided through a mechanism of
authentication, encryption (in our case using 3DES), and
key exchange. In Cam-E-leon we use freeS/WAN [8], a
public domain IPSEC library for Linux. The main perfor-
mance bottleneck in the network functionality consists of
the 3DES encryption. As will be explained further on, this
bottleneck is removed by integrating a hardware accelerated
implementation of 3DES in the system.

The image capture functionality of the system consists
of the following steps: the camera interface, the RGB re-
construction (or demosaicing) and the JPEG compression.
The IBIS4 CMOS camera we used in Cam-E-leon provides
a picture of 1280 x 1024 x 10 bit at a sample rate of 10 MHz.
The RGB reconstruction transforms this picture into a 640
x 480 pixel RGB image (3 x 8 bits), suitable for JPEG com-
pression. The JPEG algorithm works on 2 YUV decimated



image (in our case YUV 422) and achieves a compression
ratio of a factor 30, from 900 KB/frame to 30 KB/frame.
Finally, the compressed frames are streamed to the client
using a modified version of Camserv [9], agam a public do-
main software package.

In between the RGB reconstruction and the JPEG com-
pression functionality, optional image manipulation can be
performed. This part of the functionality can be down-
loaded over the network under control of the user.

3. System Architecture

Figure 2. Cam-E-leon system architecture.

Figure 2 shows the hardware architecture of the com-
plete system. The system is implemented on three boards.
The CMOS image sensor is mounted on a separate board
together with some I/O and is clocked at 10 MHz. All
the system software, including the pClinux OS, runs on
an ETRAX100 processor that is mounted on a board ob-
tained from Axis Communications running at 100 MHz.
This board contains 4 MB DRAM and 16 MB Flash mem-
ory, interfaces, and the Ethernet physical interface that is
used to communicate with the client. A third, custom de-
veloped, board contains the two Virtex800 FPGAs together
with 2 Mbit SRAM memory each for data storage. This
board can operate between 20 MHz and 50 MHz!. The
two Virtex800 FPGAs are connected directly to each other.
Each Virtex800 FPGA further has a connection to the bus
on the Axis board and a dedicated interrupt line is foreseen
from each Virtex800 FPGA to the ETRAX processor.

The software image (¢Clinux , Camserv, IPSEC, drivers,
TCP, ...)) resides in the Flash memory of the Axis board.
The compressed uClinux kernel including basic applica-
tions and patched with FreeS/WAN requires approximately

1The Ethernet connection on this board is not used in this particular
experiment. Its purpose is to allow a direct download of the hardware (re-
Jeonfiguration data to the FPGAs without passing via the processor board.

465

1 MByte (uncompressed this becomes 2.5 MB). The Flash
memory further contains a file system (/mnt/flash) of about
900 KByte containing the Camserv executable, JPEG image
data files, configuration files, default HTML pages, BRPP
daemon, etc. Approximately 2MB of the Flash memory are
used as a RAM drive to store downloaded Virtex configura-
tion files and HTML pages. The hardware configuration
files for the Cam-E-leon board are downloaded (in com-
pressed format) over the network via the Axis board and
uncompressed on the ETRAX processor before being used
to reconfigure the FPGAs. In our case the configuration
file for a single FPGA is approximately 50 KB when com-
pressed with gzip. After uncompressing it becomes approx-
imately 500 KB.

In the experiment described in this paper, one of the FP-
GAs contains the camera interface, RGB reconstruction,
image manipulation and JPEG compression functionality.
The other FPGA contains the 3DES encryption function-
ality. In principle all functionality could have been imple-
mented on a single Virtex800 FPGA. The only concern was
bandwidth to the memory and therefore, the JPEG compres-
sion writes its results in the second memory attached to the
second FPGA.

4. Design flow

The design of a complex hardware-software system like
the one at hand, necessitates a high-level reference model,
from which every component can be refined towards its
implementation description (HDL or C). For this design
we start from a full software implementation of the sys-
tem, making use as much as possible of Linux and open-
source software. The hardware design process starts from
these C/C++ implementations, and uses the OCAPI-xI de-
sign flow to gradually refine these C++ implementations to a
level from which VHDL code for final implementation can
be generated automatically. The design of the large JPEG
encoder is explained in more detail in section 4.2. We also
show how an existing VHDL module (the 3DES encryption
block) can be included in the design.

4.1. C++ for hardware design

C++ based design methodologies are among the latest at-
tempts to deal with the complexity of system-on-chip (SoC)
designs by introducing the object oriented programming
paradigm (OOP) into the design process [10]. The essen-
tial idea of all C++ based methodologies is to provide a
set of semantic primitives required for the design of hard-
ware (and software), complemented with the necessary sim-
ulation and code-generation engines, in a form of an ex-
tendible library of classes. The amount of semantic primi-
tives, as well as the underlying computational model(s) can



vary from one methodology to another.

The OOP paradigm is very well suited for such approach,
since it allows to define and use the new primitives in the
same way as the built-in data types and functions. When
using a C++ based methodology, the designer must devise
the system description using the predefined objects, or his
own extensions. Afterwards, the description is compiled us-
ing a C++ compiler, resulting in an executable specification
providing simulation and/or code generation.

OCAPI-x! can be considered a good example of a C++
based design methodology [3], specifically intended for the
design of heterogeneous HW/SW systems. It features a
unified approach to hardware and software code, provides
parallelism at a process level, and supports communication
primitives like messages or semaphores.

The basic quantum of computation is an instruction. The
necessary set of arithmetic, logic, assignment, as well as
looping and branching instructions is defined. To support
parallel execution, OCAPI-xI provides the notion of a pro-
cess as the basic level of parallelism and hierarchy. Com-
munication between processes is implemented via three ba-
sic communication primitives: messages, semaphores, and
shared variables. Finally, to increase flexibility, a direct in-
terface to C++ is implemented via a so-called Foreign Lan-
guage Interface (FLI). It makes possible to run any snippet
of C++ code during an OCAPI-x1 simulation.

Finally, the OCAPI-x1 description compiles into exe-
cutable code. In addition, it supports code-generation to
other languages: VHDL/Verilog for hardware and C for
software. The FLIs are appearing in the generated code as
- function calls in the C code and black-boxes with appropri-
ate ports in the VHDL/Verilog code.

 4.2. Design of a JPEG encoder with OCAPI-xl

The design of a JPEG encoder demonstrates how a C++
based methodology allows a step-wise gradual refinement
of the target application starting from a high level C code.
The complete design effort can be divided into several ma-
jor phases, as shown in Figure 3.

We start from an openly available JPEG encoder model
included in a video conferencing software application [11].
In the first step, the parallel threads inside the encoder were
identified and the corresponding C code was partitioned
into OCAPI-xI processes using the FLI mechanism, as in-
dicated in Figure 3{b]. The communication between pro-
cesses was still implemented via C buffers. The following
JPEG processes were identified: Color convertor trans-
forms the color information from RGB to YUV encoding,
Line buffer re-groups the camera input into 8 x 8 blocks,
2D-DCT calculates the two-dimensional DCT, Quantizer
quantizes the DCT output and simultaneously performs the
zig-zag re-ordering, Huffman performs the run-length and

466

("{aj Open Source = o N
JPEG C Code e, | ] m—, | | t——
— ] | —
fr— s 1, Siimitte],
| | e [ %] e
fre———— el B e
- é % _/
(" [b} Partitioning into processes (FLI based C code) * T
RGB2YUY LINE 20-DCT '."'., QUANT "‘-,_ RUNLEN
n e BUFFER Q ZGZAG “4 HUFFMAN| Out
» El BUF BUF 4] cxmment m —
p_———— § e L/
(¢ Refi of ication + partial of code related to the Communication )
RGB2YUV ';f,, UNE 2D-0CT "' QUANT RUNLEN
n = % |eurrer 00 ! | 20200 HUFFMAN| Out
» :::.—} — = 1:.. el = |
;'—‘_— _— —?___/
(" 1d] Complete refinement into Ocapi-XL code w
RGB2YUV 7.:: UNE 20-DCT QUANT RUNLEN
N | spamen 4 o BUFFER — A-GZAG )-IEF-FMAN Out
&" BRI =" = 1 == %)
Figure 3. JPEG Encoder Design Flow
Table 1. Simulation times for JPEG
Image size 32x32 | 256x 256
Software reference code 1 sec 30 sec
High-level OCAPI-xI code 6sec | 289sec
Refined OCAPI-x] code 15 sec 650 sec
Generated VHDL code 3min | > 60 min

Huffman encoding.

In the second step, the communication refinement takes
place. This includes introduction of the appropriate com-
munication primitives, i.e. messages and memory buffers
instead of the C buffers, as well as writing the OCAPI-x1
communication code inside of each process, as shown in
Figure 3{c]. However, the core functionality is still imple-
mented via the FLIs, so the communication sCheme can be
tested before coding of the behavior starts.

Finally, the C code in each FLI is gradually rewritten
into OCAPI-xI code, resulting in executable specification,
out of which the VHDL code can be generated. The ob-
vious advantage of the presented methodology is the pos-
sibility to approach a design in a completely incremental
way. At each stage, the complete simulation test benches
from previous refinements are available and new code can
be cross-checked against any of them.

Table 1 gives an overview of simulation times for differ-
ent versions (image size, abstraction level) of JPEG models
during the OCAPI-xI refinement.

After synthesis of the generated VHDL code, the JPEG
block occupies approximately 38 % of the Virtex800 FPGA
running at 33 MHz.



4.3. Interfacing a VHDL block in the system: the
3DES encryption

The VPN layer is based on the Linux IPSEC implemen-
tation of freeS/WAN. The computationally most intensive
part in IPSEC is the 3DES encryption. Therefore we opt for
an implementation where the IPSEC layer runs mainly in
software, with an hardware acceleration of the encryption
function.

Rather than implementing the 3DES function ourselves,
we have chosen to integrate an existing hardware imple-
mentation of this block, thus demonstrating the feasibility
of IP integration. The DES hardware module was obtained
from [12]. In order to connect this block in our system a
hardware wrapper module needs to be written. This wrap-
per maps the (relevant) IO ports of the block on the avail-
able HW/SW communication primitives: memory-mapped
registers and interrupts. For Cam-E-leon only memory
mapped registers were used. With this interface an efficient
driver can be easily written in software. Since it works fully
without interrupts (polling), this driver can be easily used
in the IPSEC routines, which are implemented as interrupt
handlers in Linux.

When using this hardware accelerated encryption to-
gether with freeS/WAN on the processor, we can observe
an important speedup. Indeed, while the elapsed time mea-
sured to transmit a 20 KB packet over the network in an all
software version was 550 ms, the time with the hardware
accelerated 3DES was 130 ms. This can be compared to 75
ms, when using clear text (without encryption).

5. Conclusions

In this paper we described the design of a smart net-
worked camera the behavior of which can be changed over
the network. The camera implements video streaming func-
tionality using motion-JPEG over a secure IPSEC/VPN net-
work link. Both image processing functionality and en-
cryption functionality are accelerated through FPGA hard-
ware implementations. In addition, extra image manipula-
tion services (plug-ins) which are available on the network
can be selected by the user and dynamically downloaded on
the platform where they reconfigure both hardware and soft-
ware aspects. Figure 4 shows a picture of the Cam-E-leon
platform.

The Cam-E-leon platform serves about 5 frames/second
in normal operation (with images of 640 by 480 pixels) and
uses about 6.5 Watt. Compared to a software JPEG solution,
the hardware accelerated version results in a speed-up of a
factor 10, improving the energy efficiency of the platform
also with a factor of 10?

2The power dissipation does not change significantly by hardware ac-

467

Figure 4. The Cam-E-leon boards.

References

[1] A. DeHon, “The Density Advantage of Configurable
Computing”, IEEE Computer, pp. 41- 49, April 2000.

D. Desmet et al., "Design of Cam-E-leon, a Run-time
Reconfigurable Web Camera”, to appear in “Simula-
tion, Architecture and Modeling of Systems”, LNCS,
Springer-Verlag.

[2]

(3]

G. Vanmeerbeeck et al., “Hardware/Software Parti-
tioning of Embedded Systems in OCAPI-xI”, Pro-
ceedings of Ninth International Symposium on Hard-
ware/Software Co-design (CODES-2001), Copen-
hagen, Denmark, pp. 30-35, April 2001.

[4] Axis Communications, http://www.axis.com/

5] uClinux, http://www.uclinux.org/

[6] Xilinx, http://www.xilinx.com/

[7] FillFactory, http:/www.fillfactory.com/

[8] LINUX FreeS/WAN, http://www.xs4all.nl/~ freeswan/
[9] Camserv, http://cserv.sourceforge.net/

[10] D. Verkest, J. Kunkel, F. Schirrmeister, ”System Level
Design Using C++”, Proc. of Design, Automation
and Test in Europe conference (DATE-2000), Paris,
France, pp. 74-81, March, 2000.

(11] UCB/LBNL Video Conferencing Tool
http://www-nrg.ee.lbl.gov/vic/

(vic),

[12] http://www.ra.informatik.uni-
stuttgart.de/~ stankats/pg99.html

celeration of JPEG. Software related power remains unchanged as the pro-
cessor is 100 % busy with pClinux and other software anyhow. Hardware
related power increases only slightly (from 3.78 Watt to 4.05 Watt) by the
hardware acceleration of JPEG.



