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Abstract

Networked reconfiguration is an enabling technology for
cost effective service deployment and maintenance. A hard-
ware virtual machine to enable this networked reconfigura-
tion is presented. An abstract FPGA model is the core of
such a hardware virtual machine. Based on this abstract
FPGA model, the traditional implementation flow of FPGA
has been separated into two parts: the service provider’s
side and client’s side. We show how to split the FPGA
design flow to enable this networked reconfiguration and
present first results in the efficiency of the bytefiles for a
hardware virtual machine.

1. Introduction

It is expected that in the coming years, more and more
new services will be developed and offered by the service
providers to their clients. Although this is predicted to be
a huge market, some enabling technologies are needed to
reduce the business cost in new service deployment and
maintenance. Networked reconfiguration [1] is one of such
technologies. In the networked reconfiguration, as shown in
Fig.1, the service deployment and maintenance are done in
an easy way. Whenever one client wants to receive a new
service, he will send a specific service request to the service
provider. Once the service provider receives this request,
it will send both hardware reconfiguration information and
service data to the client. By preparing the reconfigura-
tion information in a hardware bytecode format (which is
abstract enough to be implemented on a wide variety of
FPGA platforms, just like what Java bytecode [2] does for
software), the service provider does not need to know on
which kinds of reconfigurable resources (e.g., which series
of FPGAs from which vendors) his hardware bytecode will
be implemented . This hardware bytecode is transported
from the service provider to the clients via the network.
With the reconfiguration information contained in the hard-

ware bytecode, the client is able to do customized data pro-
cessing by first dynamically reconfiguring itself. The dy-
namic reconfiguration is achieved through the reprogram-
ming of Programmable Logic Devices (PLDs) like FPGAs.
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Figure 1. Networked Reconfiguration

To support the networked way of hardware reconfigura-
tion mentioned above, the traditional FPGA implementation
flow as shown in Fig. 2 has to be changed. In the networked
reconfiguration, the application description and FPGA re-
configuration are no longer done in the same geographic
site. Instead, service application is developed in the service
provider’s side, while the FPGA implementation is done in
the client’s side. This feature influences the FPGA mapping
tools. To fully support FPGA implementation in the net-
working context, FPGA mapping tools have to do a tradeoff
in their realization.

There are three options for the FPGA mapping tools.
Firstly, the mapping tools can be totally put in the service
provider’s side. This is what Xilinx Online [3] adopted.
It is easy to implement in theory, but very troublesome in
maintenance. Since the service providers cannot limit and
know what type of FPGA their respective client will use,
they should maintain a large amount of FPGA CAD tools
from different FPGA vendors, and create bitstream when-
ever a new client uses a new FPGA. As a second choice, the
mapping tools can be totally put in the client’s side. It is an
easy way both for implementation and maintenance (from
the point of view of the service provider), but too expen-
sive for the terminals. Finally, as a third choice, mapping
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tools can be separated into two parts, partially in the service
provider’s side (Map S), and partially in the client’s side
(Map C). We call the Map C block as hardware virtual ma-
chine (HVM), while Map S block as HVM-compiler. As the
benefits of this approach, the service providers only need to
maintain a single or few FPGA CAD tools to distribute and
update their new services, while at the same time, the client
does a reasonable portion of the mapping task.

BitstreamVHDL
Application Map FPGA

Traditional Implementation Flow

Implementation Flow in Networked Reconfiguration

BitstreamVHDL

Application Map_S FPGAMap_C

Network

Figure 2. Separation of Traditional FPGA Im-
plementation Flow to Achieve Universal Net-
worked Reconfiguration

This paper discusses the implementation of a hardware
virtual machine for the networked reconfiguration. In the
next section, a revised FPGA implementation flow to uti-
lize the hardware virtual machine is reviewed. An abstract
FPGA model is the core of the hardware virtual machine,
and it works as the bridge between service provider and
client. In section 3, the architecture details of this abstract
FPGA model are described. Besides, reasons to choose
some parameters of it are also introduced. In section 4, we
will discuss the algorithms for mapping hardware bytecode
back to a local FPGA architecture. Finally, experimental
results are analyzed in section 5.

2. FPGA Design Flow in Networked Reconfig-
uration

To implement the networked reconfiguration, the FPGA
design flow [4] is modified as in Fig. 3 [1]. The new im-
plementation flow is divided into two parts. The service
provider’s part and the client’s part. Considering the fact
that we normally have a powerful service provider but a
poor client with limited resources, most of the work load is
assigned to the service provider. Although that may influ-
ence the efficiency of the whole implementation, it greatly
eases the job for the client, and lowers its requirements for
computing resources. On the other side, as had mentioned
earlier, the mapping task cannot be totally assigned to the

service provider, for the easy deployment and maintenance
of new services. The implementation flow split-up should
consider the compromise of performance for both service
providers and clients.

In the service provider’s side, an application design is
first compiled and technology mapped to the abstract FPGA
architecture model which will be discussed in the next sec-
tion. Then it will be placed and pre-routed on the same
model. The resulting physical design information will be
written into a hardware bytecode file, and then will be trans-
ported via the network to the client. In the client’s side, the
received bytecode file is converted to the physical design
information for that of the local FPGA architecture. The
algorithms used to realize part of the converter will be dis-
cussed in section 4.
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Figure 3. An implementation flow for the
FPGA applications in networked reconfigura-
tion
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3. Abstract FPGA Model

In the previous section, a modified FPGA design flow
has been described. It explains the application context of
the hardware virtual machine. In this section, we will focus
on the description of an abstract FPGA model, which is the
core of the hardware virtual machine. Additionally, hard-
ware bytecode will be introduced. They are the intermedi-
ate mapping results on the server side. Implementation of
the abstract FPGA model converter is the topic of the next
section.

For the definition of the abstract FPGA model, we start
from the observation that, all commercial FPGAs are com-
posed of three fundamental components: logic blocks, I/O
blocks and programmable routing. A circuit is implemented
in an FPGA by programming each of the logic blocks to
implement a small portion of the logic required by the cir-
cuit, and each of the I/O blocks to act as either an input
pad or an output pad, as required by the circuit. The pro-
grammable routing is configured to make all the necessary
connections between logic blocks and between logic blocks
and I/O blocks.

Corresponding to commercial FPGAs, the abstract
FPGA model (see Fig. 4) also contains three blocks. They
are abstract logic block, abstract routing architecture, and
abstract I/O pad.

Y channel
segment

Abstract 
logic block

I/O block

X channel
segment

Input Pin

Output pin

Figure 4. An abstract FPGA architecture

3.1. Abstract Logic Block and I/O Block

The logic block used in an FPGA strongly influences
the FPGA speed and area-efficiency. While many differ-
ent logic blocks have been used in FPGAs, most current
commercial FPGAs are using logic blocks based on look-up
tables (LUTs). Accordingly, in our research, we will only
build abstract logic block for those LUT-based FPGAs.

One abstract basic logic block is shown in Fig. 5. It con-
tains a K-input LUT (we choose K=4 in the example) to im-
plement combinational logic, a D Flip-Flop to implement

sequential logic, and a multiplexer to choose output [8].
The pin locations of an abstract logic block are chosen ran-
domly, because they will be mapped to the real pin locations
of the client FPGA later.

Combination of abstract basic logic blocks can be used to
describe a series of commercial logic blocks, such as those
used in Altera 8K and 10K FPGAs [5], Xilinx 4000 and
5200 series [4].
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Figure 5. A basic logic block in the abstract
FPGA.

Abstract I/O blocks, in many ways, can be treated as a
simpler logic block. It comprises M pads (we choose M=2
in the example) which are programmed to be either input or
output pad. Similarly as the pins in an abstract logic block,
I/O pad locations can be chosen freely.

The position for an abstract logic block or I/O pad is
specifically defined in the coordinate system as shown in
Fig. 6.
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Figure 6. The coordinate system for the
abstract FPGA architecture
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3.2. Abstract Routing Architecture

Based on their routing architecture, commercial FPGAs
can be classified into three groups. The FPGAs of Xilinx,
Lucent are island-style FPGAs, while Actel’s FPGAs are
row-based, and Altera’s FPGAs are hierarchical. The rout-
ing architecture in our abstract FPGA model can describe
all of the three groups. It consists of an array of X channel
segments and Y channel segments like in Fig. 4. Any path
between two pins or one pin and one pad can be abstractly
described by the combination of X and Y channel segments.
The position for a X or Y channel is specifically defined in
the coordinate system as shown in Fig. 6. Part of Fig. 7
shows an example to describe the net 0 in Fig. 6.

3.3. Hardware Bytecode Format

Based on the coordinate system and paths that net 0 use
in Fig. 6, the routing information for net 0 can be described
by Fig. 7(a). This text description of routing information is
then converted into a binary bytefile segment (Fig. 7(c)) ac-
cording to the format defined in Fig. 7(b). Fig. 7(d) shows
the code used to represent different kinds of routing re-
sources in bytefile.

application name
  array size
      .
      .
      .
   net number
   net_0 name
node number (net_0)
  node type 
 node attribute
      .
      .
End of Application

Hardware Bytefile Format
          (b)

Bytefile Segment for net_0
          (c)

Begin of application
Name: Example

Net 0  (net0_name)

1   OPIN  (1,4) Pin: O_1
2  CHANY  (1,4) 
3  CHANY  (1,3) 
4  CHANX  (2,2) 
5  CHANX  (3,2) 
6  ChANX  (4,2)
7  CHANY  (4,2) 
8   IPIN  (4,2) Pin: I_4
9  CHANY  (1,3) 
10 CHANX  (1,2) 
11 CHANY  (0,3) 
12  IPIN  (0,3) Pad: P_2

Net 1  (net1_name)
......
   ......
      ......

Net 50 (net50_name)
......
   ......
 IPIN  (6,9) Pad: P_1

End of application

  Routing results of one
example application on the 
abstract FPGA architecture
         (a)

IPIN  OPIN  CHANX  CHANY

 0     1      2      3

Code used for node type
        (d)

...

...
net0_name
12
1  1  4  0
3  1  4  
3  1  3  
2  2  2  
2  3  2  
2  4  2
3  4  2  
0  4  2  4
3  1  3  
2  1  2  
3  0  3  
0  0  3  2
net1_name
...

Figure 7. The hardware bytecode for the
abstract FPGA architecture

4. Abstract FPGA Model Converter

The abstract FPGA model converter fulfills the task to
interpret abstract hardware bytecode into local FPGA pro-
gramming files, where the hardware bytecode is received
from the service provider via the network. The converter
partitions its job into eight steps, logic block rebinding, lo-
cal routing modification (LRM) for illegal tracks, coordi-
nate adjustment, pin reassignment, local routing modifica-
tion (LRM) for pins, I/O pad reassignment, LRM for I/O
pad, and detailed routing.

4.1. Logic block rebinding

In the logic block rebinding phase, the abstract FPGA
model should be mapped to the local logic block architec-
ture (shown in Fig. 4). Depending on how large the lo-
cal logic block is, several 4-input logic blocks in Fig. 4
will be combined to make a new big logic block. After
this technology mapping, some of the channels disappear
in the new architecture. For example, if two abstract logic
blocks are combined, there will be one X-channel or one
Y-channel removed (see Fig. 8(a)). If four abstract 4-input
logic blocks are combined, there will be two X-channel and
two Y-channel removed (see Fig. 8(b)).

(a) (b)

Figure 8. Channel disappear when (a) Two
logic block combined to one local logic block.
(b) Four logic block combined to one local
logic block.

4.2. LRM for illegal tracks and coordinate adjust-
ment

If the path of a net in the hardware bytefile passes any
channel that is illegal after logic block rebinding, it should
be modified to use legal channels. Fig. 9 illustrates two such
situations.

When the abstract logic blocks are rebound to make local
logic blocks, and illegal tracks have been removed, the co-
ordinate system of the abstract FPGA is converted to that of
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Local routing part
Global routing part

(a)

Local routing part
Global routing part

(b)

Figure 9. Example of routing modification for
illegal track . (a) The original global connec-
tion in the abstract routing architecture. (b)
Modified global connection in the local rout-
ing architecture.

the local FPGA coordinate system. The routing information
is now represented on the local coordinate system.

4.3. Pin reassignment and LRM for pin

In the pin reassignment phase, the pin location in each
new logic block should be reassigned. This pin reassign-
ment is based on the pin location information contained
in several abstract logic blocks which composed this new
block. Fig. 10 is used to illustrate this.
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Original pin locations 
in Abstract FPGA

(a)

pin locations in 
local FPGA

(b)

Figure 10. An example of pin reassignment

The results from the pin reassignment phase provide the
basis to the local routing modification (LRM) for the pins.
Because although pin location may change from one side
to another, this change can be updated through local rout-
ing modification. Compared to a complete rerouting algo-
rithm, LRM can greatly reduce the computation complexity.
Fig. 11 is used to illustrate this.

Local routing part
Global routing part

(a)

Local routing part
Global routing part

(b)

Figure 11. Example of pin local routing mod-
ification. (a) The original connection in the
abstract logic block. (b) Mapped connection
in the local logic block.

4.4. Pad reassignment and LRM for pad

Similar to the objective and approach in pin reassign-
ment, I/O pad will be reassigned to accommodate the dif-
ference between abstract I/O pad and local I/O pad. In the
LRM for pad phase, the converter does the job quite sim-
ilar to what it does in the LRM for pin phase. The only
difference is that it is the pad that has been adjusted.

4.5. Detailed routing

In the detailed routing phase, the path of each net will
be accurately assigned to each track. Because the global
routing information contained in the hardware bytefile has
given an easy start for the detailed routing, detailed routing
is simplified to a track scheduling task.

5. Experimental Results

Bytefiles for ten large MCNC benchmark circuits have
been generated. Each of the MCNC benchmark circuits
was synthesized with the SIS [6] tool and then tech-
nology mapped to our abstract FPGA architecture using
Flowmap [7] and VPACK [8]. The outputs of VPACK are
then passed to VPR [8], which generates the placement and
global routing information on our abstract FPGA architec-
ture. This placement and global routing information is fi-
nally converted to our bytefile using the format defined in
Fig. 7.

To make a comparison with commercial FPGA bitstream
files, Xilinx 4000 series have been chosen to implement the
same benchmark circuits. Results for both bytefiles and bit-
stream files are summarized in table 1. It reveals that, byte-
files are normally larger than bitstreams although the byte-
file contains less and abstract information. That is because
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Circuit #Gates #FF Device Bitstream (bits) Bits Per Gate Bytecode (bytes) Bytes Per Gate

alu4 3915 0 XC4005E 95,008 19 314,178 80
apex4 3206 0 XC4005E 95,008 19 289,186 90
bigkey 4675 224 XC4005E 95,008 19 324,638 68
clma 22136 33 XC4025E 422,176 17 1916,162 87
dsip 4330 224 XC4005E 95,008 19 273,462 63
elliptic 9475 1266 XC4010E 178,144 18 712,704 75
ex5p 2768 0 XC4003E 53,984 18 248,990 90
s298 5049 8 XC4006E 119,840 20 360,090 71
s38417 16911 1463 XC4020E 329,312 16 112,296 66
spla 10182 0 XC4013E 247,968 19 880,228 86

Average 18 78

Table 1. Bytecode vs bitstream comparison

in a bitstream, the coordinate information for one routing
resource (X-channel or Y-Channel) is implicitly indicated
by the bitstream sequence, but the abstract bytefile has to
explicitly specify it using four or more bytes. Since our
project is now not going to the optimization phase, we only
use simple and direct way to write abstract routing informa-
tion into bytefile (see Fig. 7). We expect the bytefile size
can be greatly decreased by doing encoding.

We are now working to build a reference implementa-
tion for the client converter to measure Ta and Tb (Let Ta
be the time for a client to get global routing results from
the bytefile, Tb be the time for a client to get global routing
results from the scratch). The client converter uses the al-
gorithms introduced in section 4. It is predicted that Ta will
be much faster than Tb, because placement and global rout-
ing tasks are much more computation intensive than local
routing modification [9].

6. Conclusions

We have developed an abstract FPGA model and a split-
up implementation flow to realize a hardware virtual ma-
chine. By introducing the local routing modification (LRM)
methods, most of the time consuming mapping tasks (place-
ment and global routing) have been assigned to the service
providers, and only reasonable portions of the mapping task
are done by the client terminals.
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