
High Level Analysis of Clock Regions in a C�� System Description

Luc Rynders Patrick Schaumont Serge Vernalde Ivo Bolsens

DESICS�DBATE DESICS�DBATE DESICS�DBATE DESICS
IMEC IMEC IMEC IMEC

B����� Leuven B����� Leuven B����� Leuven B����� Leuven
rijnders�imec�be schaumont�imec�be vernalde�imec�be bolsens�imec�be

Abstract� Timing veri�cation of digital syn�

chronous designs is a complex process that is tradi�

tionally carried out deep in the design cycle� at the

gate level� A method� embodied in a C�� based de�

sign system� is presented that allows modeling and

veri�cation of clock regions at a much higher level�

By combining event�driven� clock�cycle true and be�

havioral simulation� we are able to perform static and

dynamic timing analysis of the clock regions� In addi�

tion a signi�cant increase in the design cycle speed is

obtained�

I� Introduction

Let�s �rst consider a small example	 that illustrates the
targeted applications� In a cable communication system	
there is a need for a 
exible setting of the carrier fre�
quency� At the source side the system contains a transmit�
ter	 which converts the digital input data into a complex
QAM modulated signal� This band�limited QAM signal
is up�converted to a selectable carrier frequency before it
is send over the cable� At the receiver side the band of
interest is down�converted and demodulated to retrieve
the digital data�

H0 

10 MHz 40 MHz 160 MHz
f ffc

H1 H2 

Fig� �� Architecture of �exible digital up and down conversion
requires communicating clock regions�

The architecture of the digital �lter banks	 shown in
Fig� �	 allows for 
exible setting of the carrier frequency
both for up� and down�conversion ��
� It consists of pro�
grammable multi�rate �lters and complex rotators� It is
divided in � parts that are clocked at di�erent frequencies
����	 �� and �� MHz�	 where the lower frequency clocks
are derived from the highest frequency clock�
From the speci�ed behavior it is clear that the hardware

in the � clock regions need to communicate data in both
directions � for up� and for down�conversion�

Design experience shows that designing the separate
�lter stages is fairly easy compared to all interconnection
problems that are expected between the di�erent clock re�
gions internally	 as well as with the external components�
More over	 the timing problems of these interconnections
only start to appear when the design is presented at the
gate level and all detailed timing e�ects are taken into
account ��
�
We have developed a method in a C�� based design

environment that allows us to analyze this problem e�ec�
tively at a higher level� The design environment ��
 sup�
ports the design of hardware circuits by means of an ob�
ject library� It has an elaborated code generation back end
that produces synthesizable HDL code and test benches
from the high level C�� description�
Our �rst concern is thus that we want to describe the

design including communication aspects over the clock
regions� The design approach we follow is discussed in
Section �� In Section � we present the computational
model ��
 behind the design description� With a classi�
cal design approach	 the clock system is only checked and
veri�ed at the gate level ��
	 especially regarding skew	
minimum width	 setup�hold time	 critical path�� In Sec�
tion � we show that similar checks are possible at the
RT�level within the high�level design environment�
The last sections show the path to implementation and

summarize the results� We also highlight the bene�ts of
the design strategy used�

II� Design Approach

Our design approach is based on a 
exible	 extendible
design environment in C��	 making use of an object li�
brary ��
� This allows the designer to use the same en�
vironment for executable speci�cation and test bench de�
scription down to the RT�level architecture� The environ�
ment further allows to use the same description for sim�
ulation	 for hardware code generation and for lower level
test bench generation� During the description of the ar�
chitecture and the simulation	 numerous veri�cations and
analysis are possible� We �rst concentrate on the archi�
tectural description related to the clock regions and in the
following sections	 the simulation and veri�cation issues



are highlighted�
The design is described by using an object hierarchy for

synchronous digital circuits� The basic building blocks of
the architecture are �nite state machines with data paths
�FSMDs�� These blocks are interconnected via commu�
nication channels� The data paths consist of signal 
ow
graphs �SFGs�	 while the FSMs contain states and transi�
tions between these states� At each transition	 SFGs are
selected to be executed�
Other types of blocks e�g� to describe test benches or

memories can be integrated into the same description as
the designer has all programming language features at
his disposal ��
� Whenever the design at�hand uses new
design concepts	 the object library can be extended to
include them� This is what is done for the application
described above by using the concepts that are related to
clock signals and clock regions� New classes of objects and
functions are de�ned for these concepts to incorporate the
presented timing veri�cation�
Current approaches to timing veri�cation are de�ned

either at the system level ���	 �
� or else at the structural
gate level� Our contribution is to de�ne a timing veri��
cation framework at the RT�level� This allows structural
timing veri�cation without doing costly logic synthesis it�
erations�

A� Design Example

To illustrate the architectural description of the FSMDs
and the clock generation concepts	 an example of a clock
divider by a factor of � �from ��� MHz to �� MHz� is
given below �

���� Define ��� MHz clock

CLK�FIX �ck����� ��	

CLK�INV �ck�����inv� ck�����	

���� Clock divider

FSMD �clock�div
� ck�����inv�	

��� Data Path

REG �ck�gen�	

SFG �clk��	 ck�gen � �	

SFG �clk��	 ck�gen � �	

��� Finite State Machine

STATE �s��	 STATE �s��	

STATE �s��	 STATE �s
�	

AT �s�� DO �clk�� GO �s��	

AT �s�� DO �clk�� GO �s��	

AT �s�� DO �clk�� GO �s
�	

AT �s
� DO �clk�� GO �s��	

���� Promote data signal to clock

CLK�REG �ck�
�� ck�gen�	

We �rst de�ne the independent clock ck���� of ���
MHz	 with a clock period of � ns� A simple inversion is
enough to generate the inverted clock ck�����inv� This
inversion is however not described as such but as a clock
object CLK�INV� In this way the semantics of a clock signal
are valid for the inverted clock�

The next part describes the FSMD	 called clock�div�	
which will enable us to form the lower rate clock signal�
The FSMD is clocked by ck�����inv� It contains � regis�
ter ck�gen	 which is also an explicit object� All registers
inside the FSMD are clocked at the clock of the FSMD�
The data path contains � SFGs	 which set the register to
a �xed value �� or ��� The controller contains � states	
which are traversed in a loop� This generates a data wave�
form �	�	�	�	��� at the register output�
This register output is still a data signal� It is seman�

tically translated into a clock signal by the clock object
CLK�REG	 called ck���	 that can drive a di�erent clock re�
gion� The clock divider and its clock waveforms are shown
in Fig� ��

ck_160

ck_40

ck_160_inv

1

ck_gen

ck_160_inv

FSM

0

ck_160

ck_40

CLK_FIX CLK_INV

CLK_REG

Fig� �� Correct clock waveforms are generated by a clock divider
containing an FSMD and � clock objects�

III� Simulation strategy

The simulation strategy in the C�� design environ�
ment is based on the usage of quantum of computation
�QoC�	 which means that all processing is done in small
pieces� Whenever a block is allowed to run	 it will per�
form some little action and then give control back� The
control which triggers the execution of the computation
quanta is external to the blocks�
This strategy implies that there is no strictly imposed

master simulation model	 and it allows that di�erent de�
sign entities can be used within a higher level simulator�
It also allows to realize co�simulations with other blocks
or descriptions styles	 e�g� for hardware�software co�design
or instruction�level simulations ��
�

A� Block behavior

Data Flow � When control is given to a data 
ow
block	 it �rst checks by means of a �ring rule if enough



tokens are present at its input queues� In this way it is
possible to adhere to the data 
ow semantics� After the
processing or when the �ring rule is not satis�ed	 the data

ow block returns control to the caller	 and the QoC for
this block is �nished�
FSMD � When a FSMD is triggered	 it selects a tran�

sition to a next state based on the current state and the
input condition values� The SFGs	 associated to the se�
lected transition become active� Data path operations can
read data from input channels and write data to the out�
put channels� After the execution of these action	 which
all happen in � clock period	 control is returned and the
QoC is �nished�
Clock � When a clock block is given control it deter�

mines the new value of the clock signal� This is a simple
boolean operation �for a derived clock� or a function of
time �for an independent clock��

B� Communication

Data �ow queues � A �rst communication channel
is through data 
ow queues �FIFOs�� They are meant to
interconnect the data 
ow blocks	 but they can as well be
used between FSMDs�
Data value � A second type of communication is a

direct connection� At the input side a data token can be
put on it and the data value remains valid until the next
token is put	 overwriting the current value�
It has been shown that this type of communication is

useful to combine data 
ow system level with event driven
simulations ��
�
Clock � Clock signals are also seen as communication

channels� Whenever an event occurs at a clock signal it is
communicated to all blocks that are in some way related
to it � derived clocks and FSMDs that trigger on the active
clock edge�

C� Hierarchy of Computation

Registers

Clock Region

Clock

EventQueue

Time

Derived
Clock

FSMD
Data
Flow

Event

Clock

Time Loop

Fig� �� A hierarchical computation model combines event�driven�
clock�cycle true and data �ow simulation�

A hierarchical computation model	 putting all the
blocks and communication channels together	 is con�
structed in the following way �see Fig� �� �

Time loop � At the highest level of computation	 we
use a loop over the simulation time until a speci�ed end
time� Time is advanced when nothing remains to be pro�
cessed at the current point in time� To be able to know
what is to be processed	 a global queue of events is used�
This simulation engine is summarized in the following
code �

�� main time loop

while �curTime � endTime� �

�� delta time simulation

while �eventQ�getTime�� �� curTime� �

�� process current event

curEvent � eventQ�pop��	

curEvent�run��	

�

�� advance time to next event

curTime � eventQ�getTime��	

�

Clock event � The event queue contains only the
events of the clock signals� Because clocks can be de�
pendent on each other	 all events on clock signals must be
propagated� Propagation is done by running each of the
clock blocks that can be activated by the current clock
event� New events are added to the queue at the same
time point �delta time� or at some future time point for
independent clocks� Whenever a clock event has an ac�
tive transition	 the clock region is activated with its run��
method� This simulation is summarized in the following
code �

�� current clock

cur�clock � curEvent�clock��	

cur�clock�run��	

�� derived clocks

FOREACH �derived�clock� cur�clock� �

derived�clock�run��	

�

�� clock region

if �cur�clock�active�edge��� �

cur�region � cur�clock�region��	

cur�region�run��	

�

Clock region � On activation of a clock region	 each
of the FSMDs of the clock region is activated� Whenever
a token is put on some data 
ow queue	 the data 
ow
block at the receive side of the queue is also given control
to run� This is needed because data 
ow blocks do not
belong to a speci�c clock region and also need activation
from the simulation engine� When all computations as
belonging to the current clock cycle are done	 the registers
are updated� This simulation behavior is summarized in
following code �

�� FSMD blocks

FOREACH �fsmd� cur�region� �

fsmd�run��	

�� Data Flow Blocks

FOREACH �output�queue� fsmd� �

if �output�queue�new�token��� �

output�queue�receiver���run��	

� � �



�� Update registers

FOREACH �fsmd� cur�region� �

fsmd�registers���update��	

�

IV� Verification and Analysis

Using the concepts of clocks and clock regions	 speci�c
veri�cation and analysis methods related to these classes
become possible�
In order to verify successfully timing properties at the

RT level	 we de�ne a minimum set of clock attributes�
The following properties are essential features of the clock
signal at the RT level � RT minimum width	 RT setup
and RT hold time� These properties are de�ned using
the CLK�TIME method on the clock object� An example
is shown below for the ck��� clock and is illustrated in
Fig� � � CLK�TIME �ck���� ��� �� �	


ck_160

ck_40

> 12 > 12

Minimum Width

== 6

> 9

Setup Time

> 9

Hold Time

Fig� �� The timing constraints for the ck �� region span several
clock cycles of the ck �	� region� They are automatically veri
ed
during simulation�

Most requirements of proper clock generation and clock
relations between di�erent clock regions can not be ana�
lyzed statically� Indeed	 the generation of the clock edges
can be a complicated combination of other clock signals
and might also be data dependent or controlled by the
states of a FSM� The following checks are performed and
are illustrated in Fig� ��
RT Minimum Width � For a proper operation of

the clock regions	 we require that the clocks satisfy the
minimum width requirement� At the gate level this mini�
mum width speci�es the minimum time a clock level must
be stable to enable the proper operation of a register ele�
ment �
ip�
op�� This type of minimum width is identical
for each clock as it is not related to the clock region but
to a register cell�
At the RT�level	 this requirement is reformulated to be

the minimum time that the clock signal must be stable
for proper functioning of the whole clock region� Using
a symmetric clock waveform	 this minimum width is half
the clock period� As the clock period might be di�erent
for each clock region	 so may be the minimum width�
RT Setup and Hold Time � For proper operation of

the 
ip�
op not only the clock signal must be su�ciently
stable	 but also the data signal must be stable at the

CK CK

CK CK_INV CK_BUF

OK

CK CK_INV

OK

CK CK_BUF

RT SETUP
VIOLATION

CK_BUF CK

RT HOLD
VIOLATION

CK

CK_INV

CK_BUF

CK_AND

CK_AND

RT WIDTH
VIOLATION

∆

∆

∆

∆

∆

comb

comb

∆
comb

∆
comb

Fig� �� Overview of the dynamical checks of clock timing rules
that are veri
ed during simulation�

active edge of the clock� This means that the data must
be stable some time before �i�e� setup time� and after �i�e�
hold time� the clock edge�
At the RT�level we do not know the exact delays of

the data signals	 except that they are constrained to �t
within the clock period� We assume that these delays take
minimum time	 which means that the SFGs are simulated
in delta time in the same way as is done for the event
driven clock signals� In this way possible minimum delay
timing problems on data signals between di�erent clock
regions will be detected�
Similar to the minimum width	 the setup and hold times

can be set di�erently for each clock region� This was e�g�
done in the application for the communication between
the ck �� region and the ck ��� region	 where we used a
setup and hold time of � ns	 which is ��� times the clock
period of the ck ��� region�
To know if data�clock time violations appear during the

simulation	 we observe all accesses �read and write� to the
data registers� As we simulate per clock region	 only �
clock is active at a particular point in �delta� time� Each
register knows by which clock it is driven	 and whenever
a register is updated to a new value	 the time of update
is annotated at the register� Because the register is a
separate class in our design description	 this is easily done
inside the class member functions�
The rules that are checked are as follows �
�� A read access to a register that belongs to the active

clock region is always OK�
�� A read access of a register with a di�erent clock re�

quires a setup�time check	 which compares the current
time with the update time of the register�
�� A register that has a write access	 is always driven by

the active clock� For proper operation the hold�time that
was imposed under a di�erent clock	 must be checked�
It is clear from this discussion that the minimum width	

setup�hold times are not speci�ed or checked at the gate
level	 but at the clock region level�



V� Results

Besides the simulation and veri�cation possibilities	 the
C�� design environment also o�ers HDL code genera�
tion� This then completes the design cycle in C�� and
establishes the link towards the gate�level implementa�
tion� The test�benches and simulation outputs are trans�
lated in such a way that they can be used at the gate�level
to assure that the behavior is identical before and after
logic synthesis�

edit

compile

simulate

analyze

synthesis

analyze

simulate

High-
Level

Design
Loop

Gate-
Level

Design
Loop

Fig� 	� A High Level Design loop �in C

� is much faster than at
the gate level� yielding thus a reduced design time�

Using the analysis possibilities	 we are able to have early
feedback in the design cycle under the form of a high level
design loop � editing source code	 compiling it into an in�
termediate format	 simulating the design	 checking the
results for errors or analyzing the performance� The loop
is traversed many times until the results are satisfactory�
A second loop is then entered in which the circuits are fur�
ther synthesized and new results must be analyzed� The
main di�erence between these loops from the designer�s
point of view is that the �nd loop takes orders of magni�
tude more time to traverse than the �st one�
Our design approach is therefore twofold � make the

�rst loop fast so that iterations are cheap	 and reduce
the number of iterations in the second loop by analysis
or estimation of the results of this loop at higher levels of
abstraction	 i�e� inside the �st loop�

VI� Conclusions

The selection of a C�� design environment with a class
library for digital circuits	 allows to describe an applica�
tion in a 
exible way and to re�ne it to the architectural
RT level� With the newly introduced concepts for the
clocks and the clock regions	 a combined simulation of
event�driven clock signals	 data 
ow blocks and cycle�true
FSMDs is made possible�

During the simulation runs	 timing checks of clock re�
gions at the RT�level are performed� The main advantage
of the presented techniques is thus the ability to raise
the abstraction level of gate�level related timing checks to
higher levels�
The driving application of the presented techniques was

speci�ed using this clock regions approach� The descrip�
tion style	 the simulation	 the veri�cation and the code
generation are generic methods	 which makes that they
are also available for other applications�
We have used abstraction in C�� to solve a problem

which is traditionally attributed to gate level design� This
abstraction avoided the use of brute force methods but
rather introduced a data model that allows a terse and
adequate formulation of solutions to clock region timing
problems�

References

��� K�D�Wagner� �Clock System Design�� IEEE Design � Test of
Computers� pp� ����� Oct� �����

��� Edward A� Lee� �Overview of the Ptolemy Project�� ERL
Technical Report UCB�ERL No� M����� UC Berkeley� �����

��� D� Ziegenbein� K� Richter� R� Ernst� J� Teich� L� Thiele� �Rep�
resentation of Process Mode Correlation for Scheduling� Proc�
of the ICCAD� pp� ���	�� �����

��� E�A�Lee and A�Sangiovanni�Vincentelli� �Comparing models
of computation�� Proc� of the Int� Conference on Computer�
Aided Design� pp� �������� ���	�

��� R�K�Gupta� S�Y�Liao� �Using a Programming Language for
Digital System Design�� IEEE Design � Test of Computers�
pp� ������ Jun� �����

�	� T�Gr�otker� R�Schoenen� H�Meyr� �PCC� A Modeling Tech�
nique for Mixed Control�Data Flow Systems�� Proc� of the
DAC� pp� ������	� �����

��� Joon�Seo Yim� et al�� �A C�Based RTL Design Veri
cation
Methodology for Complex Microprocessor� Proc� of the DAC�
pp� ������ �����

��� P�Schaumont� S�Vernalde� L�Rijnders� M�Engels� I�Bolsens� �A
Programming Environment for the Design of Complex High
Speed ASICs�� Proc� of the DAC� pp� �������� �����

��� P�Schaumont� S�Vernalde� M�Engels� I�Bolsens� �Low Power
Digital Frequency Conversion Architectures�� Journal of VLSI
Signal Processing� ��� �������� �����


