
Functional Verification of an Embedded Network Component by Co-Simulation
with a Real Network

R. PaSko, R. Cmar, P. Schaumont and S. Vernalde
IMEC, Kapeldreef 75, B3001 Leuven, Belgium

pasko@ imec .be

Abstract

In this paper, we propose a technique for verification of
the functionality of a hardware networking component by
including an existing real-world network into the simulation
loop. As a consequence, there is no need for a high-level
network model to create the system simulation. Instead,
third party hardwarelsoftware can be used for the cross-
checking of the design’s functionality. The technique is most
suitable for CICi + based design methodologies which can
directly access the operating system (OS) network integace
fi4nctions. Because of that, the integration of a real net-
work into the simulation loop can be straightforward. We
will demonstrate the method on verification of a Hypertext
Transfer Protocol (HlTP) hardware implementation used
in a design of an embedded web-camera with direct Inter-
net connectivity.

1 Introduction

The explosive growth of Internet creates a huge demand
for various network appliances in diverse areas ranging
from packet routing to data processing. Computer based
software (SW) solutions, though common and easy realised,
do not necessarily offer the best performance/power con-
sumption figures. Often, some particular tasks can be more
efficiently handled by hardware (HW) or HW/SW embed-
ded components serving either as accelerators (e.g. for fast
encryption/decryption) or even as stand-alone applications
(the above mentioned web-camera). Another impulse for
using embedded HW/SW solutions comes from the world
of reconfigurable devices. Current FPGA’s or PLD’s can
provide re-programmable HW elements with almost ASIC
performance, while delivering enough capacity for even
complex applications. This significantly improves the de-
vice flexibility which is one of the important requirements,
for a networking appliance, today. At the same time, it
makes questionable one of the most frequent arguments for
the SW implementation which is the flexibility issue.

A design of such embedded network appliance in HW
(HW/SW) requires a careful verification strategy, since
the real network behaviour is very complex and non-
deterministic. This makes the common H W verification
strategy, based on use of high level models describing the
non-implemented parts of the system, somewhat question-
able. Since the network protocols are mostly written in SW,
an interesting possibility would be the use of existing SW
models. For example, a verification of the functionality of a
HW Intemet Protocol (IP) implementation by co-simulation
with its SW model is definitely something to look about.
There exists a gradual convergence between the SW and
HW design techniques in the last years. However, porting
of such complex SW models into a HW simulation would
still require a significant additional effort.

We faced these problems during the design of a stand-
alone embedded camera directly accessible from Intemet.
The network protocol layers, apart from the Ethernet layer,
as well as the image processing, were implemented as HW
elements in FPGA, as shown in Fig. 1. To verify the de-
signed network elements functionality, we have used a het-
erogeneous simulation setup plugging the simulated entities
into a real-network environment. This approach has two
significant advantages. First, we avoided the necessity of
writing good high-level models of network protocols, and
second, the porting of complex SW models into the HW
simulation was not needed as well.

There are similar techniques used for HW verification
and rapid prototyping [11. However, these are usually con-
strained to generation of real-data test-benches, or evalua-
tion of some non-deterministic elements like transmission
channels. The proposed technique is a one step beyond of
such approaches. The simulation actually creates an inde-
pendent SW element in the real system, from which it is
taking stimuli, and in response effecting the system as well.
We can consider it as a SW equivalent of a HW emula-
tion with all the apparent advantages, like shorter design
time, more flexible system environment or cheaper realisa-
tion. The approach is most suitable for C/C++ based de-
sign methodologies, thanks to the flexibility and speed of-

64
0-7695-0786-7/00 $10.00 0 2000 IEEE

!! HTP + GIF engine 11

GIF User
image request * +

11 Netscape [I
I 1

Figure 1. Stand-alone Internet camera with
embedded networking

fered by a high-level programming language. It can be an
interesting addition in testing strategies using C++ based
methodologies, like the TestBuilder library [2] . We have
used a novel version of the OCAPI design environment [3]
called OCAPZ-XL, however, all C++ based design method-
ologies, e.g. SystemC [4], provide the features necessary to
implement such scheme.

2 Heterogeneous Simulation with Real
HWlSW Elements

The verification of a designed hardware element from
the "system" point of view is usually performed as shown
in Fig. 2. The designed entity is gradually refined to a low-
level clock-accurate model, while the rest of the system re-
mains described at the high-level. This approach is feasible
for typical hardware designs, where all the elements have
well-defined behaviour and interfaces (though the function-
ality might be very complex) and the high-level models are

pxgJ I) I application Simulated I I) pj-j
Figure 2. Simulation loop in HW design

Observed
action 0 result

+ high-level interfaces +

Y U

application

Figure 3. Introduction of a HW simulation into
a real system

often needed during the initial stages of the design for pro-
filing or performance modeling.

A typical network environment, however, is too complex
and non-deterministic to rely on simulation results featuring
some simplified high-level model. The use of some existing
complex network simulator would solve the issue of simu-
lation reliability, but on the other hand, an additional effort
for incorporating of such element into the HW simulation
would have to be spent. The proposed "hybrid" solution
provides a reasonable compromise between the above men-
tioned approaches. At one hand, it provides much more re-
liable results compared to the self-made simplified model,
on the other hand, there is almost no additional effort nec-
essary. The basic idea is shown in Fig. 3. The simulation
runs as an independent SW entity, when the inputs and out-
puts are connected to the rest of the system via high-level
interfaces. It can be initiated by normal system activity,
e.g. a HTTP request made by a standard WWW browser,
while the results can be directly observed in similar way.
The method was used for verification of the functionality
of Internet Protocol (IP) and Hypertext Transfer Protocol
(HTTP) layers (see [5])used in the web-camera design, as
shown in Fig. 1.

3 Verification of HTTP and IP Layers De-
scribed in OCAPZ-XL

OCAPI-XL is a C++ library containing classes for a
timed multi-thread system description with automated code
generation. It supports high-level behavioural objects like
processes (threads), semaphores, conditions, messages, etc.
The HDL code generator translates these high-level con-
structs into appropriate low-level elements, like processes
into FSMD's or messages in FIFO's.

The complete simulation setup is shown in Fig. 4.
The elements, which will be synthesised, must be refined
down to a clock-accurate, fixed point description (HTTP or

65

B image
low-level refined

process
clock-true refined HTTP process

m c o o

Initial user
request

L Netscape

I ' TCPllP I I TCP/IP layer I

I I I

n l o w - l e v e l model =high-level model

=real HW/SW elements described in OCAPI-XL

Figure 4. Simulation setup for the HTTP de-
sign verification

CMOS sensor interface), while others, like the Transmis-
sion Control Protocol (TCP) interface, provide just access
to the OS services, thus can remain at higher abstraction
level. The complete simulation can run in the background
as an independent SW process, equivalent to a normal Unix
demon, and various scenarios can be tested by generating
an appropriate HTTP request. It is also worth mentioning,
that the methodology provides natural way of mixing low
and high level processes in single simulation, which can be
very beneficiary from the speed point of view.

In order to be able to run this sort of heterogeneous sim-
ulation, the design methodology must provide some way
of accessing and executing foreign code. OCAPI provided
this feature in form of a data-flow block, while OCAPI-XL
offers a so called Foreign Language Znterjiace, (FLI) call.
Other C++ based design methodologies also provide some
equivalent sort of service, so this strategy is not OCAPI-
XL specific. It might be even possible to use it in VHDL
or Verilog, thanks to the CLI and PLI interfaces, however,
the much higher simulation speed of C/C++ based design
methodologies makes it much more suitable for this kind of
applications.

During the initialisation phase, root socket connections
are created at selected network port, as with normal TCP
server [6]. The simulation is initiated by a HTTP request
made by an ordinary web browser. It is forwarded to the
socket interface, where it is caught by an appropriate FLI
call (e.g. acceptsc and readsc) , and translated via the TCP

I I I
high-level hiah-level TCP interface process
process

FLI calls
manipulating

sockets

OS services
OCAPI-XL ._... ~ _..

socket() bind() listen() write()

accept() read() close0

Figure 5. Communication between OS and
OCAPI-XL

interface to regular OCAPI-XL stimuli, which triggers the
further simulation. The detailed interface between OCAPI-
XL simulation and OS services is given in Fig. 5. The raw
image data for the GIF engine is generated in the same way,
i.e. the high-level camera model access the data stored in
a file via another FLI call. The resulting output, whether
GIF image or an error message, is translated back to the
socket interface in the same way and forwarded through the
network to the HTTP client, which initiated the connection.

The technique was later used in a similar way to verify an
implementation of a IP layer. The only difference was that
the IP block was connected to a high-level interface provid-
ing a gateway to an Ethemet layer via raw socket interface
(see W1).

4 Heterogeneous Simulation Example in
OCA PI-XL

An example of the simulation flow is shown in Fig. 6.
Let us consider a situation, when the process implement-
ing the HTTP server has a byte ready to send to the TCP
layer. It is pushed to a message queue to the TCP inter-
face (Fig. 6(a)). TCP interface process must identify the re-
quested service (i.e. cmd-WRITE) to invoke the proper FLI
call (Fig. 6(b)). Since the OCAPI-XL data types are nor
regular C++ types, conversion to standard int must be per-
formed at the beginning of the FLI call. During the FLI
call execution, a regular OS service write(), which writes
to a file (since socket connections are also handled as files
in UNIX OS) is executed and an integer, indicating suc-

66

I I ...

Figure 6. Interaction between OS kernel and OCAPI-XL simulation

cess or failure of the operation, is retumed back, as shown
in Fig. 6(c,d)). This value must be translated back to the
OCAPZ-XL native data type Meta and returned to the HTTP
process via a message queue (Fig. 6(e)). Based on its value,
the HTTP process can take further action, e.g. sent the next

byte. References

which results in very realistic simulation results. The tech-
nique is very suitable for C/C++ based design methodolo-
gies thanks to the simple interfacing of the real-network
components into the simulation due to the OS support.

5 Practical Example

As an example of the usefulness of the presented tech-
nique, we can give the following example. It relates to a
problem discovered by the co-simulation. The TCP con-
nection initiated by a HTTP client is normally closed by the
HTTP server to indicate the end of the data stream. How-
ever, the connection might be closed due to reasons not re-
lated to the HTTP protocol layer, e.g. TCP time-out. This
possibility was not taken into account in the first version
of the HTTP code and resulted in a server dead-lock (since
it waited for an acknowledge from an already closed TCP
connection). It was also not discovered during the first sim-
ulations, since these were used only to test the interface
between HTTP/TCP and did not consider the time-out be-
haviour of TCP.

6 Conclusions

We have presented a technique for a system level vali-
dation of embedded HW/SW networking applications. The
idea is to use an existing real network as a part of the simula-
tion loop instead of writing a high-level system model. This
way, the functionality of designed element can be cross-
verified by the interaction with real network environment,

[13 P. Schaumont, G. Vanmeerbeeck, E. Watzeels, S. Ver-
nalde, M. Engels and I. Bolsens, A technique for com-
bined virtual prototyping and hardware design, proc.
of Rapid System Prototyping Workshop, pp. 156-161,
Leuven, Belgium, June 1998.

[2] TestBuilder, An Open Source Standard for C++ Devel-
opment of HDL Test Benches, http:llTestBuilder.netl

[3] P. Schaumont, S. VemGde, L. Rijnders, M. Engels and
I. Bolsens, A Programming Environment for the De-
sign of Complex High Speed ASICs, proc. of Design
Automation Conference (DAC 1998), pp. 3 15-320, San
Francisco, USA, June 1998.

[4] The Open SystemC Initiative, http:llwww.systemc.org.

[5] R. Stevens, TCPIIP Illustrated, Volume I and 3,
Addison-Wesley, Reading, MA 01867,1994 and 1996.

[6] R. Stevens, Unix Network Programming, Volume 1 ,
Prentice Hall, Upper Saddle River, NJ 07458, 1998.

67

http:llTestBuilder.netl
http:llwww.systemc.org

