
58 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

A New Algorithm for Elimination
of Common Subexpressions

R. Pǎsko, P. Schaumont, V. Derudder, S. Vernalde,Member, IEEE, and D.Ďurǎcková

Abstract—The problem of an efficient hardware implementa-
tion of multiplications with one or more constants is encountered
in many different digital signal-processing areas, such as image
processing or digital filter optimization. In a more general form,
this is a problem of common subexpression elimination, and as
such it also occurs in compiler optimization and many high-
level synthesis tasks. An efficient solution of this problem can
yield significant improvements in important design parameters
like implementation area or power consumption. In this paper,
a new solution of the multiple constant multiplication problem
based on the common subexpression elimination technique is
presented. The performance of our method is demonstrated
primarily on a finite-duration impulse response filter design. The
idea is to implement a set of constant multiplications as a set
of add-shift operations and to optimize these with respect to the
common subexpressions afterwards. We show that the number
of add/subtract operations can be reduced significantly this way.
The applicability of the presented algorithm to the different high-
level synthesis tasks is also indicated. Benchmarks demonstrating
the algorithm’s efficiency are included as well.

Index Terms—Common subexpression elimination, DSP syn-
thesis, optimization, resource sharing.

I. INTRODUCTION

T HE advent of consumer applications demanding very
high data throughputs like digital television requires

high-speed components such as digital filters. Because of
the speed, programmable solutions such as digital signal-
processing (DSP) cores cannot be considered a satisfying
solution in dealing with these problems. Rather, an application-
specific approach in hardware is necessary, thus efficient very-
large-scale integration (VLSI) synthesis methods are needed.

The core of many VLSI design tasks is the multiplication
of a variable by a set of constants (digital filtering, image
processing, linear transforms, etc.). The optimization of these
multiplications can lead to important improvements in various
design parameters like area or power consumption. In this
paper, an algorithm for efficient solution of the multiple
constant multiplication problem (MCM, as defined in [3])
is presented. Common subexpression elimination (CSE) as a
way to tackle the MCM problem was already proposed by
various authors [3]–[5], primarily as a possible method for the
optimization of finite-duration impulse response (FIR) filter
area through the reduction of the multiplier block logic. In

Manuscript received March 31, 1998; revised August 31, 1998. This work
was supported by COPERNICUS under Project SISPAS CP94-0223. This
paper was recommended by Associate Editor G. Borriello.

R. Paško and D.Ďuračková are with the Faculty of Electrical Engineering
and Information Technology, Slovak University of Technology, Bratislava,
Slovakia.

P. Schaumont, V. Derudder, and S. Vernalde are with the Interuniversity
Microelectronics Center (IMEC), Leuven 3001 Belgium.

Publisher Item Identifier S 0278-0070(99)00812-X.

Fig. 1. CSE in FIR filter design.

[3] also, a number of other applications in which the MCM
transformation can be successfully applied were proposed. In
this work, we will introduce an algorithm able to solve the
CSE problem in an efficient way.

The idea of CSE can be demonstrated on a FIR filter design
example shown in Fig. 1. The optimization procedure targets
the minimization of the multiplier block area [Fig. 1(a)]. After
expressing the coefficients in a canonical signed digit (CSD)
format [1], [2], in order to reduce the total number of nonzero
bits (thus also the additions/subtractions necessary), an add-
shift expansion is performed, as shown in Fig. 1(b). The goal
of CSE is to identify the bit patterns that are present in
the coefficient set more than once. Since it is sufficient to
implement the calculation of the multiple identical expressions
only once, the resources necessary for these operations can
be shared. The pattern in the example in Fig. 1 is
present twice, so an optimized structure shown in Fig. 1(c)
can be implemented instead of the original one. The second
occurrence of the pattern is removed, and only the result is
used for the further calculation. In general, the goal of CSE
can be defined as follows.

1) Identify multiple patterns in the coefficient set.

2) Remove these patterns and calculate them only once.

The problem to solve is how to identify the “proper” patterns
for elimination so the optimization impact can be maximal.
Our algorithm is based on a combination of an exhaustive
search technique with a steepest descent (or greedy) approach
in order to select the “proper” patterns for elimination. Thanks
to an efficient implementation of the algorithm combined with

0278–0070/99$10.00 1999 IEEE

PAŠKO et al.: ELIMINATION OF COMMON SUBEXPRESSIONS 59

some simplification techniques to speed up the processing
of large tasks, very satisfactory runtimes are also achieved.
The rest of this paper is structured as follows. In Section II,
we discuss the related work. In the next section, we give
a formal description of the problem and indicate our goal.
Also, some considerations concerning the problem complexity
are included. In Section IV, an in-depth discussion of our
algorithm is given. In Section V, we indicate an implementa-
tion strategy of the algorithm for different design tasks (we
concentrate on transposed- and direct-form FIR filters and
matrix multiplication), followed by experimental results in
Section VI. Section VII presents a comparison with the related
work, and Section VIII states the conclusion.

II. RELATED WORK

The idea of the consta+nt multiplications optimization (gen-
erally) or FIR filter area minimization (specifically) by com-
mon subexpressions sharing was already considered by several
authors [3]–[7]. In this section, we will briefly introduce
their approaches with an appropriate reference. In [3], a
bipartite matching algorithm was used to identify the common
subexpressions for elimination, and there were shown also
numerous examples different from FIR filter optimization on
which it can be successfully applied. In [4], an algorithm
for the identification and elimination of only two-nonzero-
bit subexpressions was proposed, but the mechanics was
extended to direct-form FIR filters as well (the remaining
papers consider only transposed-form FIR filters). In [5], an
elimination of 2-bit subexpression was also proposed, but
as an additional criterion in the subexpression identification
process, an estimation of a latch-count improvement was
used as well, which introduces the issues related with timing.
Both [4] and [5] were specifically targeting the optimization
of the FIR filters area. These three papers ([3]–[5]) used
generally the same idea (common subexpression elimination)
as a basic optimization strategy. References [7] and [6] applied
a different approach. In these works, the whole multiplier block
is synthesized using similar graph synthesis algorithms ([6] can
be considered an extension of [7]). Despite this difference, the
results obtained by these works are of course of interest for this
paper in order to compare the effectiveness of both approaches.

III. PROBLEM ANALYSIS

In this section, we will define the goal of the CSE tech-
nique formally as a matrix transformation. Afterwards, a short
discussion on behalf of the problem complexity will be given,
and a simple heuristic to tackle the complexity issue will be
proposed.

A. Problem Definition

The problem we are targeting can be formally described
as a multiplication-free linear transform. In general, a
multiplication-free linear transform is defined by the equation

, where and are -dimensionalvectors and
is an matrix containing only 1, 1, and 0. In this

form, represents the variable input while the matrix
indicates the set of constants. As will be shown later, this
formalism can be extended to a number of different problems.

Consider the example of a multiplication-free linear transform
described in (1)

(1)

The product has to be calculated three times during
the evaluation of . However, the splitting of into two
matrices and , as shown in (2) and (3), groups the
partial products in question into one matrix , which can be
decomposed as shown in (2)

(2)

(3)

The formulation (3) requires the evaluation of the partial
product only once. This idea of a matrix splitting for
multiple identified patterns can be expressed as follows:

(4)

Concerning the matrices , any row in every matrix must
be either an all-zero vector or must be equal to any nonall-
zero vector in the matrix as in (2). is the remainder in
which no more multiple subexpressions could be found. The
final product can be computed as shown in (5)

(5)

A subset of the previously defined problem deserving at-
tention occurs in the case when the relative position of the
pattern within the matrix is of no importance in the pattern
identification process. This is a valid assumption in the case of
the vector’s being defined as in (6) with or .
Then the matrix splitting as shown in (7) can be performed

(6)

(7)

In order to be able to perform a decomposition of the matrix
in the same way as shown in (2), additional scaling of

the elements as shown in (8) must be performed. This

60 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

results in the scaled vector as shown in (9)

(8)

(9)

Since or , the scaling of the vector elements
is equivalent to the bit shifts, so it can usually be performed
very efficiently in either software or hardware.

To demonstrate the matrix-splitting technique, we use the
FIR filter subblock optimization example shown in Fig. 1(b)
and (c). This can be described in terms of the matrix splitting
as follows. The original structure is represented by (10)

(10)

The elimination of the pattern as shown in Fig. 1(c) is
described in (11)

tmp

tmp

tmp (11

Equation (10) can be reformulated as a multiplication-free
linear transform in the following way:

...

...

...

...

...
(12)

Then the pattern elimination performed in (11) corresponds
to the matrix splitting shown in (13). Of course, the partial
product must be rescaled according to (14)

...

...

...

...

...

...

(13)

...

...

(14)

Finally, there are some terms that need to be defined.
Definition 1 (Computational Effort):The computational ef-

fort is equal to the number of additions/subtractions neces-
sary to produce the final product .

To estimate the computational effort, we consider only
the necessary number adders and subtractors. Shifts can be
implemented in the applications we are targeting (HW) almost
for free (as hardwired with only some additional wiring effort).
If this is not the case, the cost of shifts should be included in
the computational effort estimation as well. Concerning the use
of other criteria in the computational effort estimation process
(like the timing related latch-count parameter used in [5]), we
prefer to keep the method as general as possible. But as will be
shown later, the modification of the computational effort cost
function can be done easily without significant modification
of the algorithm itself. Consequently, the goal of CSE defines
the following.

Definition 2 (CSE Goal):The goal of the CSE technique is
to find a splitting of the matrix according to (2) and (4)
such that the total computational effort to produce the product

is minimal.
To measure the success of the CSE optimization, we use

the following.
Definition 3 (Optimization Ratio):An optimization ratio

where and are thecomputational efforts
before and after CSE, respectively.

The optimization ratio can be used in an alternate definition
of the CSE goal equivalent to Definition 1.

Definition 4 (CSE Goal):The goal of the CSE technique
is to find a splitting of the matrix that maximizes the
optimization ratio .

Last, the termfrequencyor pattern frequencywill often be
used in the text.

Definition 5 (Pattern Frequency): Pattern frequency(or
just frequency) represents the number of occurrences of a
pattern in a matrix.

For example, the frequency of the pattern 1001 in (1) is
equal to three [or four if the relative position of a pattern is
of no importance, as shown in (6)–(8)].

In this work, we propose an algorithm to solve both outlined
problems efficiently. In order to be able to clearly distinguish
between these two problems later, we will define the problem
described in (1) asProblem Aand the problem shown in (6)
as Problem B.

Of course, multiplication-free linear transform is not the
only application for the CSE technique. Similar problems
occur in many different areas (e.g., in compiler design).
The proposed algorithm might be capable of performing the
common subexpression identification and elimination also for
tasks that are quite different from multiplication-free linear
transforms, but this is outside the scope of this paper.

B. Problem Complexity

In this section, a short discussion about the practical fea-
sibility of the CSE goal is given. The problem in question
is as follows: by each pattern elimination, we are likely to
lose also other patterns due to the sharing of nonzero bits.

PAŠKO et al.: ELIMINATION OF COMMON SUBEXPRESSIONS 61

Fig. 2. Pattern statistic creation.

For example, during an elimination of the pattern1001 from
the row 10010100, also the pattern 101 is lost, so every
pattern elimination can change the frequencies of other ones
significantly. The graph synthesis problem is claimed to be NP-
complete [7], but we are not aware of the existence of such
a proof for CSE. As a consequence, since there is no known
efficient algorithm to solve the problem exactly, we propose a
simple heuristics for the CSE problem in this paper. It is based
on a steepest descent approach, i.e., we choose in every matrix-
splitting iteration a splitting such that the computational effort,
minimization is maximal (for that iteration). This of course
does not guarantee finding the optimal solution in a global
sense, but the results have proven the viability of this approach.
Another issue is the complexity of an algorithm creating the
statistics of the available patterns for elimination, which is
necessary in order to realize the proposed heuristics (see
Fig. 2). The number of patterns withones in a single row is

, so the total effort to create the statistics containing
rows is equal to .

It is obvious that the values and are the crucial factors
in the complexity issue, since the combinatorial number can
often rise significantly over the value. Fortunately, for a
number of problems, these values (and) are relatively
small compared to (e.g., in FIR filters, the number of
bits in the coefficients and the number of nonzero bits),
so it is possible to create the complete pattern statistics. An
additional strategy to tackle this issue will be proposed in the
next section for the cases when this does not apply.

IV. CSE ALGORITHM

In this section, we will give a detailed description of
an algorithm able to solve Problem B (i.e., the elimination
of patterns with arbitrary shifts within the input matrix).
Afterwards, we will discuss the modifications necessary for the
algorithm to be able to solve Problem A as well. As indicated
in the previous section, the algorithm must accomplish the
following tasks.

1) Identify the presence of multiple patterns in the input
matrix.

2) Select one pattern for elimination.

3) Eliminate all occurrences of the selected pattern.

This should be iteratively repeated until there are no more
multiple patterns present. The complete algorithm flowgraph is
given in Fig. 3. The input parameter represents the number
of nonzero bits in the examined patterns. In the first step, an
exhaustive search for all possible multiple-bit patterns is

Fig. 3. CSE algorithm flowgraph.

performed and complete statistics of the pattern frequencies
are created. Since many different patterns will occur more
than once, some criterion must be used to select the one for
elimination. We use thesteepest descent approach, i.e., select
always the pattern with the highest frequency. In the second
step, all occurrences of the selected pattern are removed (i.e.,
the nonzero bits are replaced by zeros), and the pattern is
added as a new line at the bottom of the matrix so it can
be searched for the multiple patterns with smallerlater.
Last, since the removal of a pattern must influence the total
frequency statistics of the remaining ones, the global frequency
statistic holding the complete information has to be adjusted
to properly reflect the changes. After all multiple patterns with

nonzero bits are processed, the whole cycle is repeated for
nonzero bit patterns. A detailed discussion

will be further concentrated on the following problems:

A) pattern identification;

B) pattern selection;

C) frequency statistics management;

D) adaptation of the algorithm for Problem A;

E) viability of the algorithm for large tasks;

F) applicability for similar CSE tasks.

A. Pattern Identification

Since an exhaustive search is performed, all possible com-
binations of -bit patterns must be examined. The algorithm
must also be able to detect a “collision” between two equal
patterns, when these share at least one nonzero bit. Since
such a pattern can be eliminated only once, it must be taken
into account also during the frequency statistics creation phase
(Fig. 4). For example, the pattern 1 010 101 in Fig. 4 has two
valid 2-bit patterns, as shown in Table I, because only two
patterns can be identified without conflicts [Fig. 4(a)]. The
interleaving of two patterns without common nonzero bits,
on the contrary, does not influence the statistics, as shown in
Fig. 4(b).

62 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

Fig. 4. Conflicts between patterns.

TABLE I
LEGAL 2-BIT PATTERNS IN “1010101”

B. Pattern Selection

In case some patterns with the same frequency are present in
the frequency statistics, a decision criterion must be provided
to choose only one. The one we have chosen originated from
the assumption that the optimized structure will be integrated
on silicon. If two (or more) patterns with the same frequency
occur, the shortest one is selected. Implementation of an addi-
tion/subtraction on silicon will result in an adder/subtractor
with word length depending on the length of the pattern.
Thus, the selection of the shorter one will result in a smaller
adder/subtractor structure. In the case of 2-bit patterns, one
additional criterion was introduced: the preference of adders
over subtractors, i.e., the pattern 101 will be preferred over
101. This can be justified by the same reasoning as before,
since a subtractor structure is more expensive than an adder
(in terms of the area). In a case where the algorithm would
be used for tasks aiming at a different goal, another criterion
might be preferred.

C. Frequency Statistics Management

Since an exhaustive search is performed, attention must be
paid to its implementation strategy. For the-bit statistics, a
binary tree with the patterns as the keys is a perfectly suited
structure. The complete statistics can be created simply by
processing the input matrix row after row. One problem is
caused by the fact that the same pattern can be present in a row
multiple times, so the large binary tree must be searched for
the same pattern multiple times. To avoid this, an alternative
approach in the global statistics generation process was used
as shown in Fig. 5. First, a local tree holding the frequency
statistics of a single row is created [Fig. 5(b)], and this local
tree is used to update the global statistics. This way, searching
in the global statistics tree is minimized.

After pattern elimination, the frequencies of the other pat-
terns can also change, and therefore the global frequency
statistics must be reevaluated. Since the creation of a new
global statistics after each pattern elimination is not a feasible
solution, an alternative method of the global statistics adjust-
ment must be found (Fig. 6). After each pattern elimination, a
local statistics tree is created holding the information about the
frequency changes of the remaining patterns in the processed

Fig. 5. Creation of 2-bit frequency statistics: (a) processed row, (b) local
tree with the single-row frequency statistics, and (c) global statistics update.

Fig. 6. Frequency statistics reevaluation: (a) original row, (b) row after
elimination of pattern 101, (c) difference statistics, and (d) global statistics
update.

matrix row [Fig. 6(c)]. These difference statistics can be used
to update the global statistics tree, which results in a much
smaller number of operations on the large global frequency
statistics since it has to be accessed only for the patterns that
frequency actually changed. This way, the global tree has to
be created only once at the beginning of each iteration (see
Fig. 3).

PAŠKO et al.: ELIMINATION OF COMMON SUBEXPRESSIONS 63

Fig. 7. Algorithm modification for Problem A.

D. Algorithm Modification for Problem A

It is also possible to use the previously described algorithm
to perform a CSE optimization for the case when the position
of a pattern within the matrix row is of importance (i.e.,
Problem A), but some changes must be made to take this
into account. First, together with the pattern, also its position
within the row must be used as a key during the construction
of a binary tree. Second, since in this case all the patterns
in a row are unique (at least their positions within a row
must be different), it is not necessary to use the local statistics
during the creation and maintaining of the global statistics (see
Fig. 7). Apart from this, both algorithms can be identical. To
distinguish between the two algorithms, we will mark them as
Algorithm I (to solve Problem A) andAlgorithm II (to solve
Problem B).

E. Algorithm Modification for Large Tasks

To modify the algorithms to be able also to solve large
tasks efficiently, first the bottlenecks must be identified. Let
us assume that the processed matrix has the dimension

. If the number of rows would be doubled to , then
approximately a double amount of keys would have to be
inserted into the binary tree during the-bit statistics creation.
On the contrary, if the number of columns would be doubled,
then the number of patterns processed for each row would rise
from to , which differs by a factor of approximately

. Thus the total computing time in the second case can
rise even in orders of magnitude. This limits the number
of columns that can be processed by the algorithm. This
analysis, however, also shows the possible recipe for tackling
the problem of large inputs

...
...

...
...

(15)

If we would split the matrix as shown in (15) and both parts
would be processed separately, we would gain an execution
time at the cost of the detection of the patterns that cross
the split boundary and the adders necessary to add both

Fig. 8. Transposed-form FIR filter.

split parts together again. On the other hand, this process of
matrix splitting can be applied iteratively again and again until
acceptable runtimes can be achieved, so matrices of orders
1000 1000 or even higher can be optimized this way.

F. Applicability for Arbitrary CSE Tasks

Both of the previously defined algorithms can be applied
(with some modification of the pattern generation function)
to a matrix containing arbitrary elements as long as these
are lexically ordered, since it is necessary to evaluate the
relations and during the binary-tree construction. No
other restrictions are put on the matrix elements, so these can
be numbers, algebraic elements, etc., which opens a whole
new field of possible applications.

V. APPLICATION OF CSE ALGORITHM

In this section, we will indicate several possible applications
of the CSE algorithm for the optimization of some commonly
faced design tasks. We will discuss the optimization of FIR fil-
ters (in both transposed and direct form) and linear transforms
in general, as well as matrix multiplication. All those tasks are
quite common in areas such as telecommunications and DSP
(filters), image processing (matrix multiplication), etc.

A. FIR Filters—Transposed Form

Fig. 8 shows a transposed-form FIR filter. Let us express
the coefficients in their binary (or CSD) form as
shown in (16)

(16)

The multiplier block can be written in the form of a
multiplication-free linear transform (17), since the elements
of consist of 1, 0 in the case of a binary representation or
1, 0, 1 in the case of CSD form

...
...

...
...

(17)

In this case, (6) is satisfied with the constant ; thus
Algorithm II can be used to optimize the multiplier block, and
the scaling of the results can be implemented as hardwired
shifts for free. An example of a transposed-form FIR filter
optimization is given in Fig. 1 and (10)–(14).

64 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

Fig. 9. Direct-form FIR filter.

B. FIR Filters—Direct Form

A block scheme of a direct-form FIR filter is shown in
Fig. 9. After binary (CSD) expansion of coefficients (as in the
previous section), the outputs can be calculated according
to (18) and the final result according to (19)

...
...

...

(18)

(19)

Equation (18) unfortunately cannot be represented as a
multiplication-free linear transform, but it is possible to reorder
it in such a way. Let us calculate the sums of columns instead
of rows in (18). We obtain the set of equations in (20) and (21)

...
...

(20)

(21)

This set of equations can be expressed as a multiplication-free
linear transform as shown in (22) and (23)

...
...

...
...

(22)

(23)

After this transform, it is possible to apply Algorithm I
for the optimization. Unfortunately, the straightforward ap-
plication of Algorithm I on (22) suffers from an important
disadvantage. Since the orderin the resulting matrix
will be much larger than , the matrix-splitting technique
would be necessary. Therefore, we use an improved version
of the described method. The idea is to perform the CSE on
the original bit matrix (so the number of rows will be higher
than the number of columns). Let us rewrite the filter output

Fig. 10. Direct-form FIR filter optimization example.

a last time as (24) and (25)

...
...

...
...

(24)

(25)

In the next step, a matrix split satisfying (2) and (4) will be
performed. Then the final sum can be rewritten as in (26)

(26)

By reordering the sums, we can obtain (27) for the output of
a direct-form FIR filter

(27)

Furthermore, the intermediate results are again scalable by
powers of two, so Algorithm II can be used for optimiza-
tion. We will give a small example of direct-form FIR filter
optimization as shown in Fig. 10

The pattern 11 is present twice, so the following opti-
mization requiring one adder less for implementation can be
performed:

tmp

tmp tmp

This can be considered an improvement compared to the
optimization proposed in [4], since in [4] a method equivalent
to Algorithm I for only two-nonzero bit patterns was proposed.

C. Linear Transforms and Matrix Multiplication

Many operations in DSP, communications, or image pro-
cessing can be expressed in the form of a multiplication
of a matrix with either a vector or a matrix. A number of
applications can be directly considered as a multiplication-
free linear transform, where the application of Algorithm I is

PAŠKO et al.: ELIMINATION OF COMMON SUBEXPRESSIONS 65

straightforward. These include some signal transforms (Walsh,
Hadamard) or some error-correcting codes (Reed, BCH). In
the case that the transform in question cannot be described as
multiplication free [e.g., discrete Fourier transform (DFT)], an
algorithm based on the multiple use of MCM was introduced
in [3]. This enables one to transform any linear transform
into a multiplication-free linear transform. The general linear
transform can be described as in (28)

(28)

The conversion algorithm can be described by the following
pseudocode.

1) Minimize the number of additions necessary to compute
all products .

2) Rebuild the input matrix using instances computed in
the previous step (this will create a multiplication-free
linear transform).

3) Apply Algorithm I to compute the CSE optimized struc-
ture.

If the optimized transform contains different elements
and we denote where , then the
final transform is shown in (29). Note that values

(since the given element is either not present
in a certain row or is positive/negative). So (29) represents
a multiplication-free linear transform and as such can be
optimized using Algorithm I

...
...

...
...

(29)

To demonstrate the previously described technique, we will
use an 8-point DFT. Since a DFT has a complex transform
kernel , it must be split into its real and imaginary parts first
[according to (30)]

(30)

The resulting real and imaginary kernelsand are shown
in (31)

(31)

The transformation into a multiplication-free linear transform
will be demonstrated only on the real-part kernel, since its
application on the imaginary part is equivalent. The resulting
multiplication-free linear transform kernel is shown in (32)

(32)

where and are defined as in (29). The matrix is a
multiplication-free linear transform and as such can be subject
to the CSE optimization by Algorithm I.

VI. EXPERIMENTAL RESULTS

Both algorithms were developed in C and run on an HP-
RISC workstation. First, the performance was tested on ran-
domly generated data. In test I, Algorithm I was run on a set of
matrices containing only zero and one with dimensions ranging
from 16 8 up to 256 32. To evaluate the performance,
we give the values of computational efforts before and after
CSE (and , respectively) the optimization ratio as
well. Time values give the algorithm runtimes. The results are
shown in Table II. The same type of tests was performed also
for Algorithm II, with the results shown in Table III. For these
tests, also the number of shifts before and after optimization
are given (and), and the improvement ratio
was calculated as well. The results indicate that the methods
work better when more potential subexpressions are present
(rise with the values and). The sudden increase of
in the cases of 128 8 and 256 8 can be explained by
the fact that after raising the value high enough ,
the whole rows start to repeat frequently, which leads to this
abrupt increase of the optimization ratio. These tests also prove
the statement that the increase of the valueis critical with
respect to the algorithm runtimes.

To test the splitting technique for large matrices, we have
run both algorithms again on random matrices with dimensions

66 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

TABLE II
ALGORITHM I PERFORMANCE TESTS

TABLE III
ALGORITHM II PERFORMANCE TESTS

256 256, 512 512, and 1024 1024. TheCol variable
gives the number of columns the processed matrix was split
into, and gives the number of nonoptimizable adders due to
the splitting. These are the adders used to add the submatrices
together afterwards. The results are shown in Table IV and
prove the viability of such an approach. It is also obvious that
in the case of splitting into matrices with smaller(such that

), the effect described previously (the repeating of
the rows) occurs again. This causes very high optimization
ratios of the processed submatrices, so the adders that are
unoptimizable due to splitting become a dominant part of the
total number of adders after optimization .

Last, the results of the optimization of the Hadamard matrix
of order 1024 1024 with different numbers of split columns

TABLE IV
PERFORMANCE WITH MATRIX SPLITTING

TABLE V
1024� 1024 HADAMARD MATRIX OPTIMIZATION

are given in Table V. The reason for the very high optimization
ratios is the regular structure of the Hadamard matrix.

The second set of experiments consisted of the optimization
of some real-life structures. First the transposed-form FIR
filters were optimized by CSE and synthesized by means
of the SYNOPSYS design compiler. In order to make the
comparison of our results easier in the future, we have chosen
the three filters published in [2] (examples 1 and 2—and

) and [8] (example 1—). The filters in [2] were subject to
nonzero-bits minimization. We have optimized the coefficients
of the filter in the same way as in prior CSE processing,
and the optimized coefficients are given in Table VI. This
optimization results in a relatively small amount of adders
in the multiplication block already before CSE (an average of
0.85 adders per tap coefficient in , 1.9 in , and 2.4 in).
The optimization results are in Table VII. The structure was
compiled into a MIETEC 0.5- CMOS library and optimized
for area only. The area figures are divided in combinatorial
area , part of which is subject to CSE, sequential area

, and total area . The figures are given in equivalents
of invertor gates. An interesting observation is that for a
smaller filter, the area of the multiplication block becomes
insignificant compared to the remaining registers and adders
in the accumulator block (see Fig. 8), so the effect of the CSE
optimization is not significant, especially if the optimized CSD
coefficients are used (a similar conclusion is stated also in
[6]). The experiments performed on a direct-form FIR filter
showed a reduction of the multiplication block equivalent to
the transposed-form FIR filter.

The third experiment was the optimization of a DFT to
test the linear-transform optimization technique. We performed
CSE optimization on real and imaginary kernelsand , as
defined in (30)–(32). The results are shown in Table VIII for
DFT8, DFT16, and DFT32 (for DFT32, also matrix splitting
into two columns was used).

PAŠKO et al.: ELIMINATION OF COMMON SUBEXPRESSIONS 67

TABLE VI
CSD OPTIMIZED COEFFICIENTS INL1 FILTER

h(n) = h(120 � n) FOR 61 � n � 120

TABLE VII
REAL FIR FILTER OPTIMIZATION

TABLE VIII
DFT OPTIMIZATION RESULTS

VII. RELATED WORK COMPARISON

The optimization of the transposed-form FIR filters by
means of CSE was already discussed by several authors.
However, the exact comparison is not easy to make since all
authors did make the experimental testing on different inputs.
We tried to test our method on the same (or at least equivalent)
data to obtain some estimate of the algorithm performance
comparison.

TABLE IX
COMPARISON WITH [6]

Fig. 11. Redundancy unidentifiable by CSE.

TABLE X
ALGORITHM II RESULTS WITH RESPECT TO THEN PARAMETER

In [7] and [6], similar graph synthesis algorithms were used.
Since [6] is an improvement over [7], we have made the
comparison to [6], where experimental tests were performed on
two FIR filters taken from [8] (examples 2 and 3). The results
are shown in Table IX. The results are practically identical
(there is one adder difference in the first filter). A possible
explanation is that the presented graph synthesis algorithm
is capable of finding redundancies unidentifiable to the com-
mon subexpression elimination technique (for example, see
Fig. 11).

In [4], a method similar to ours based on the identification
of 2-bit common subexpressions was proposed. Actually, this
work can be considered an extension of [4]. However, starting
an elimination of patterns with a higher number of nonzero bits
than just two should give better results, as shown in Table X,
where optimization results of the input set from Table II are
used with respect to the input parameter. For the FIR filters
optimization, however, this is not a very important parameter,
since the filter coefficients usually have only a small number of
nonzero bits, which significantly reduces the chance that many

-nonzero bits expressions with would be identified.
The work [5] was tested on 23 random coefficients quantized

into 32 bits with an average improvement of the adder count
by a factor of two. This seems to be a similar result to the
one obtained in [4] or here in the case of , and the
additional criterion based on the timing is of interest in the
case where hardware (HW) implementation is targeted.

Last, in [3], the adder count improvement on the set of real-
life filters of orders and ranged from
1.36 to 1.46. The values obtained for real filters by CSE were
significantly higher (from 1.78 to 2.5). On the other hand, the
number of shifts obtained by the bipartite matching algorithm
used in [3] was much lower compared to the values from CSE
optimization.

68 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

VIII. C ONCLUSION

In this paper, a novel algorithm to solve the multiple
constant multiplication problem, i.e., the optimization of the
multiplication of a variable by a set of constants, was proposed.
It is based on the common subexpression elimination tech-
nique and combines the exhaustive search for multiple pattern
identification with a steepest descent approach for pattern
selection. The results show a significant reduction in either
arithmetic operations or hardware necessary to implement
those operations combined with satisfactory runtimes. It can
be considered an extension of the 2-bit pattern optimization
technique presented in [4] since in the proposed method, no
such restrictions on the patterns are given.

Comparison with related work based on the available data
shows that our method yields comparable or better results
in FIR filter optimization. Its major advantage is a general
concept that does not restrict the use of the presented technique
to the tasks proposed in this paper (FIR filter design and
linear-transform optimization).

REFERENCES

[1] K. Hwang, Computer Arithmetic. New York: Wiley, 1979.
[2] H. Samueli, “An improved search algorithm for the design of multipli-

erless FIR filters with powers-of-two coefficients,”IEEE Trans. Circuits
Syst., vol. 36, pp. 1044–1057, July 1989.

[3] M. Potkonjak, M. B. Shrivasta, and P. A. Chandrakasan, “Multiple
constant multiplication: Efficient and versatile framework and algo-
rithms for exploring common subexpression elimination,”IEEE Trans.
Computer-Aided Design, vol. 15, pp. 151–161, Feb. 1996.

[4] M. Mehendale, S. D. Sherlekar, and G. Vekantesh, “Synthesis of multi-
plierless FIR filters with minimum number of additions,” inProceedings
of the 1995 IEEE/ACM International Conference on Computer-Aided
Design. Los Alamitos, CA: IEEE Computer Society Press, 1995, pp.
668–671.

[5] R. I. Hartley, “Subexpression sharing in filters using canonic signed
digit multipliers,” IEEE Trans. Circuits Syst. II, vol. 43, pp. 677–688,
Oct. 1996.

[6] A. G. Dempster and M. D. Mcleod, “Use of minimum-adder multiplier
blocks in FIR digital filters,”IEEE Trans. Circuits Syst. II, vol. 42, pp.
569–577, Sept. 1995.

[7] D. R. Bull and D. H. Horrocks, “Primitive operator digital filters,”Proc.
Inst. Elect. Eng., vol. 138, pt. G, no. 3, pp. 401–411, June 1991.

[8] Y. C. Lim and S. R. Parker, “Discrete coefficient fir digital filter design
based upon an LMS criteria,”IEEE Trans. Circuits Syst., vol. CAS-30,
pp. 723–739, Oct. 1983.

R. Paško received the M.S. degree in electronics
from the Faculty of Electrical Engineering and
Information Technology, Slovak University of
Technology, Bratislava, Slovakia, in 1994, where he
is currently pursuing the Ph.D. degree in electronics.

His main research interests are in the areas
of VLSI design for digital signal processing and
telecommunications.

P. Schaumontreceived the electronics and telecom-
munications engineering degree from the Industriele
Hogeschool van het Rijk, Gent, Belgium, in 1988.
He received the M.S. degree in informatics from the
Rijksuniversiteit Gent, Belgium, in 1990.

Since 1992, he has been with the VLSI Systems
Design Group, IMEC, Leuven, Belgium. His pre-
vious research activities included the development
of code generators for the Cathedral 2/3 Silicon
Compiler for medium- and high-throughput digital
signal processing and the design of the Dolphin

Silicon Compiler for accelerator processors. Currently, he is a Senior Research
Engineer working on the development of and design automation for broadband
access network modems. His research interests include the design of digital
communication systems and their implementation as a system-on-chip.

V. Derudder received the degree in electrical engi-
neering from the Katholieke Industriele Hogeschool
West-Vlaanderen, Belgium, in 1990.

She is currently a Project Engineer in the VSDM
Division of IMEC, Leuven, Belgium. Her profes-
sional interests are in design synthesis and design
for testability.

S. Vernalde (S’88–M’90) received the electrical
engineering degree from the Katholieke Universiteit
Leuven, Belgium, in 1990.

He joined the IMEC Laboratory, Leuven,
Belgium, in 1990, where he developed the
Cathedral-2/3 datapath compiler for behavioral
synthesis of high-speed DSP algorithms on
multifunctional hardware accelerator processors. He
is the author of the interprocess communication pro-
tocol for the communication between synchronous
processors through encapsulation. He is a coauthor

of Accelerator Data-Path Synthesis for High-Throughput Signal Processing
Applications (Norwell, MA: Kluwer, 1997). Currently, he is heading the
digital broadband transceivers group at IMEC and manages in this context
several projects in the domain of VLSI implementation of complex digital
telecommunication systems.

D. Ďuracǩová received the M.S. and Ph.D. degrees
from the Faculty of Electrical Engineering, Slovak
University of Technology, Bratislava, Slovakia, in
1974 and 1981, respectively.

Since 1991, she has been an Associate Professor
in the Department of Microelectronics, Faculty of
Electrical Engineering and Information Technology,
Slovak University of Technology. The main areas of
her research and teaching activities are the design
of analog and digital circuits and neural networks.

