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A New Algorithm for Elimination
of Common Subexpressions

R. P&ko, P. Schaumont, V. Derudder, S. Vernalstember, IEEE and D.Duratkova

Abstract—The problem of an efficient hardware implementa-
tion of multiplications with one or more constants is encountered
in many different digital signal-processing areas, such as image
processing or digital filter optimization. In a more general form,
this is a problem of common subexpression elimination, and as
such it also occurs in compiler optimization and many high-
level synthesis tasks. An efficient solution of this problem can
yield significant improvements in important design parameters h
like implementation area or power consumption. In this paper, h
a new solution of the multiple constant multiplication problem 1

=0.0101 N .
0.100101

based on the common subexpression elimination technique is %
presented. The performance of our method is demonstrated >>2 >>3
primarily on a finite-duration impulse response filter design. The | ’
idea is to implement a set of constant multiplications as a set 555
of add-shift operations and to optimize these with respect to the $
common subexpressions afterwards. We show that the number >>2 @
of add/subtract operations can be reduced significantly this way. >>1
The applicability of the presented algorithm to the different high- Vi lyk
level synthesis tasks is also indicated. Benchmarks demonstrating

(b)
Fig. 1. CSE in FIR filter design.

the algorithm'’s efficiency are included as well.

Index Terms—Common subexpression elimination, DSP syn-

thesis, optimization, resource sharing. L . i
P g [3] also, a number of other applications in which the MCM

|. INTRODUCTION transformation can be successfully applied were proposed. In

HE advent of consumer applications demanding vegis work, we yvill intro_dl_Jce an algorithm able to solve the
high data throughputs like digital television require SE p_roblem in an efficient way. ) .
high-speed components such as digital filters. Because ofl N€ idea of CSE can be demonstrated on a FIR filter design
the speed, programmable solutions such as digital signgkamPple shown in Fig. 1. The optimization procedure targets
processing (DSP) cores cannot be considered a satisfyl§ Minimization of the multiplier block area [Fig. 1(a)]. After
solution in dealing with these problems. Rather, an applicatiopXP"eSsing the coefficients in a canonical signed digit (CSD)
specific approach in hardware is necessary, thus efficient velyfmat [11, [2], in order to reduce the total number of nonzero
large-scale integration (VLSI) synthesis methods are neededtS (thus also the additions/subtractions necessary), an add-
The core of many VLSI design tasks is the multiplicatioshift €xpansion is performed, as shown in Fig. 1(b). The goal
of a variable by a set of constants (digital filtering, imag8f CSE Is to identify the bit patterns that are present in
processing, linear transforms, etc.). The optimization of the#¢ Coefficient set more than once. Since it is sufficient to
multiplications can lead to important improvements in vario§'Plement the calculation of the multiple identical expressions
design parameters like area or power consumption. In ti8ly once, the resources necessary for these operations can
paper, an algorithm for efficient solution of the multipl®® Shared. The patteri01 in the example in Fig. 1 is
constant multiplication problem (MCM, as defined in [3]Présent twice, so an _optlmlzed structure shown in Fig. 1(c)
is presented. Common subexpression elimination (CSE) a§3 Pe implemented instead of the original one. The second
way to tackle the MCM problem was already proposed Hjecurrence of the pattern is removed, and only the result is
various authors [3]-[5], primarily as a possible method for trésed for the further calculation. In general, the goal of CSE
optimization of finite-duration impulse response (FIR) filtefan be defined as follows.
area through the reduction of the multiplier block logic. In 1) Identify multiple patterns in the coefficient set.
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some simplification techniques to speed up the processi@gnsider the example of a multiplication-free linear transform
of large tasks, very satisfactory runtimes are also achievetscribed in (1)

The rest of this paper is structured as follows. In Section II,

we discuss the related work. In the next section, we give 10010100

a formal description of the problem and indicate our goal. Y = MX = 10010000 X. 1)
Also, some considerations concerning the problem complexity 01110010

are included. In Section IV, an in-depth discussion of our 10010001

a}lgorithm is given. In Sec.tion Vi we indicate an implementa|=he productX, + X3 has to be calculated three times during
tion strategy of the algorithm for different design tasks (Wﬁ] evaluation oft’. However, the splitting of\ into two

contc_entratﬁ_ (I)'n E[_ransp;)s”ed- 3”‘; dwect-fprm tFIIR f”tel:S a tricesM; and Mg, as shown in (2) and (3), groups the
matrix multiplication), followed by experimental resuilts in rtial products in question into one matfif;, which can be

Section VI. Sec_t|on VIl presents a comparison with the reIat(gczcomposed as shown in (2)
work, and Section VIII states the conclusion.

Il. RELATED WORK 1

The idea of the consta+nt multiplications optimization (gen- M, = 0 (1001000) = My M. (2)
erally) or FIR filter area minimization (specifically) by com- 1
mon subexpressions sharing was already considered by several 00000100
authors [3]-[7]. In this section, we will briefly introduce 00000000
their approaches with an appropriate reference. In [3], a Y =MiyMwuX+ | 01170010 | X
bipartite matching algorithm was used to identify the common 00000001
subexpressions for elimination, and there were shown also —
numerous examples different from FIR filter optimization on . . Mz
which it can be successfully applied. In [4], an algorithm = My (Xo + X3) + MrX. (3)

for the identification and elimination of only two-nonzero- ¢ lati 3 . th luati f th Hal
bit subexpressions was proposed, but the mechanics JQ? ormulation (3) requires the evajuation ot the partia
roduct X, + X3 only once. This idea of a matrix splitting for

extended to direct-form FIR filters as well (the remainin itile identified patt b 4 as foll _
papers consider only transposed-form FIR filters). In [5], ulliple identiied patterns can be expressed as Tollows:

elimination of 2-bit subexpression was also proposed, but K
as an additional criterion in the subexpression identification M = ZMi + Mg. (4)
process, an estimation of a latch-count improvement was =1

used as well, which introduces the issues related with timing.
Both [4] and [5] were specifically targeting the optimizatior-oncerning the matricesl;, any row in every matrivl; must
of the FIR filters area. These three papers ([3]-[5]) usd® either an all-zero vector or must be equal to any nonall-
generally the same idea (common subexpression eliminati@gy© vector in the matrix as in (2Mpg is the remainder in
as a basic optimization strategy. References [7] and [6] appli#@lich no more multiple subexpressions could be found. The
a different approach. In these works, the whole multiplier blodial productY” can be computed as shown in (5)
is synthesized using similar graph synthesis algorithms ([6] can X X
be considered an extension of [7]). Despite this difference, the Y — - M. +Mn | X = - Y. 4Y 5
results obtained by these works are of course of interest for this B ; it Me )&= ; it YR ®)
paper in order to compare the effectiveness of both approaches. = -
A subset of the previously defined problem deserving at-
tention occurs in the case when the relative position of the
In this section, we will define the goal of the CSE techpattern within the matrix is of no importance in the pattern
nigue formally as a matrix transformation. Afterwards, a shoidentification process. This is a valid assumption in the case of
discussion on behalf of the problem complexity will be giverthe X vector's being defined as in (6) with=2 orc = 271,
and a simple heuristic to tackle the complexity issue will b&hen the matrix splitting as shown in (7) can be performed
proposed.

I1l. PROBLEM ANALYSIS

X = (" *wo, ct ¥ 0, -+, " xx0) T (6)
A. Problem Definition 10010000 00000100
The problem we are targeting can be formally described M = 10010000 " 00000000 7)
as a multiplication-free linear transform. In general, a 00010010 01100000 | °
multiplication-free linear transform is defined by the equation 10010000 00000001
Y = MX, whereY and X are n-dimensionalvectors and h— —

M is ann x n matrix containing only 1—1, and 0. In this

form, X represents the variable input while the matdX In order to be able to perform a decomposition of the matrix
indicates the set of constants. As will be shown later, thig/; in the same way as shown in (2), additional scaling of
formalism can be extended to a number of different problenthe A, elements as shown in (8) must be performed. This
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results in the scaled@; vector as shown in (9) Finally, there are some terms that need to be defined.
oy Definition 1 (Computational Effort):The computational ef-
P fort R is equal to the number of additions/subtractions neces-
M, = | 5 |(1001000) = MMy, (8) sary to produce the final produd.
Qo To estimate the computational effort, we consider only
S0 the necessary number adders and subtractors. Shifts can be

——— implemented in the applications we are targeting (HW) almost

Yy = Miys (Xo + Xs) for free (as hardwired with only some additional wiring effort).
= (50,50, ¢*So, S0)" . (9) If this is not the case, the cost of shifts should be included in
Sincec = 21 or ¢ = 2, the scaling of the; vector elements the compu_tati_on_al effort estimati_on as well. Co_ncer_ning the use
is equivalent to the bit shifts, so it can usually be performe other C.”t?”a in the computational effort estlmatpn Process
very efficiently in either software or hardware. (like the timing related latch-count parameter used in [5]), we

To demonstrate the matrix-splitting technique, we use tﬁ)%efert? 't(eefzrfhe m(cajt.podt_as gefrr:lral as po?s;ple. IIBu;fastwnl l;)e
FIR filter subblock optimization example shown in Fig. 1(tl)j own fater, the modilication o the computational etlort cos

and (c). This can be described in terms of the matrix splitti grltr:]tionl car;hbe _:jor;fe gasily With(t)lm tshignificalmtf rgg(gfg:aft_ion
as follows. The original structure is represented by (10) € algorithm itselt. Lonsequently, the goal 0 efines

the following.
yr—1 = 0.010100¢sp x z Definition 2 (CSE Goal): The goal of the CSE technique is
= —r>2+x>4 to find a splitting of the matriXM according to (2) and (4)

—(—x4xX>2)> 2 suc_h thz_;\t_the total computational effort to produce the product
Y is minimal.
yr = 0.100101csp x x To measure the success of the CSE optimization, we use
=z>»l-z>44+x>6 the following.
=(@+(—=x+x>2)>3)> 1 (10) Definition 3 (Optimization Ratio):An optimization ratio
o o . O = R;/R, where R, and R, are thecomputational efforts
The elimination of the pattern01 as shown in Fig. 1(C) iS yefore and after CSE respectively.
described in (11) The optimization ratio can be used in an alternate definition
tmp= —z 42> 2 of the CSE goal equivalent to Definition 1.
bt = tMp> 2 Definition 4 (CSE Goal):The goal of the CSE technique
- is to find a splitting of the matrixXM that maximizes the

yr = (@ +tmp>3) > L (11) optimization ratioO.
Equation (10) can be reformulated as a multiplication-free Last, the ternfrequencyor pattern frequencyvill often be
linear transform in the following way: used in the text.
Definition 5 (Pattern Frequency): Pattern frequencfor
: : x>0 just frequency represents the number of occurrences of a
Yr—1 _ | 0010100 x >> 1 ' (12) Pattern in a matrix.
Uk 0100101 For example, the frequency of the pattern 1001 in (1) is

> 6 equal to three [or four if the relative position of a pattern is
8% no importance, as shown in (6)—(8)].

Then the pattern elimination performed in (11) correspon . . .
P P (1) P In this work, we propose an algorithm to solve both outlined

to the matrix splitting shown in (13). Of course, the partial

: roblems efficiently. In order to be able to clearly distinguish
producty must be rescaled according to (14) Eetween these twgproblems later, we will defineythe pr?)blem
: : : described in (1) a®roblem Aand the problem shown in (6)
0010100 | | 0010100 0000000 as Problem B
0100101 | ~ | 0000101 0100000 (13) Of course, multiplication-free linear transform is not the

only application for the CSE technique. Similar problems
g g ~ occur in many different areas (e.g., in compiler design).
M M; M The proposed algorithm might be capable of performing the
common subexpression identification and elimination also for
tasks that are quite different from multiplication-free linear
transforms, but this is outside the scope of this paper.

2;2
Y, = | 5s (1010 000)

s B. Problem Complexity
o0

Y m In this section, a short discussion about the practical fea-
= s , . - sibility of the CSE goal is given. The problem in question
=(,8 %277, 80%27%,- ) is as follows: by each pattern elimination, we are likely to

=(-,8 >2,8 >4, (14) lose also other patterns due to the sharing of nonzero bits.
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* A n - total number of non-zcro bits
| . k - number of non-zero bits in a pattern
|| 1001001 | .--vT C N
| = 2711001
R ||0100101 1101 !
! ~..1100001;
. 1 0010010 S .
' \ n ) H Fax - frequency of the M
Y A4 (k) = P - the number of patterns ' most common pattern '
I Fo———— ves
Fig. 2. Pattern statistic creation. : [ Elimination if the :
: pattcrn with the ' :
. L : | max. frequency statistics .
For example, during an elimination of the pattd®01from ‘. ..  y——=——=—=% '

the row 10010100, also the pattern 101 is lost, so every
pattern elimination can change the frequencies of other ones
significantly. The graph synthesis problem is claimed to be NH-

Elimination of the Addition of the I
. selected pattern in eliminated pattern .@ I
all coefficients as a new coefficient i

/

efﬂment algprllthm to solve the problem exa_lctly, we prppose%’_ 3. CSE algorithm flowgraph.
simple heuristics for the CSE problem in this paper. It is base
on a steepest descent approach, i.e., we choose in every matrix-

splitting iteration a splitting such that the computational eﬁorberformed and complete statistics of the pattern frequencies
minimization is maximal (for that iteration). This of courseyre created. Since many different patterns will occur more
does not guarantee finding the optimal solution in a glob@dan once, some criterion must be used to select the one for
sense, but the results have proven the viability of this approagfimination. We use theteepest descent approadfe., select
Another issue is the complexity of an algorithm creating th@\ways the pattern with the highest frequency. In the second
statistics of the available patterns for elimination, which i§tep, all occurrences of the selected pattern are removed (i.e.,
necessary in order to realize the proposed heuristics (388 nonzero bits are replaced by zeros), and the pattern is
Fig. 2). The number of patterns withones in a single row is aqded as a new line at the bottom of the matrix so it can
P < (}), so the total effort to create the statistics containinge searched for the multiple patterns with smaliérlater.

R rows is equal toO(Zf’:l(Zj) = Y1 P~ RxPy). Last, since the removal of a pattern must influence the total
It is obvious that the values and k are the crucial factors frequency statistics of the remaining ones, the global frequency
in the complexity issue, since the combinatorial number cafatistic holding the complete information has to be adjusted
often rise significantly over the valu&. Fortunately, for a to properly reflect the changes. After all multiple patterns with
number of problems, these values énd k) are relatively N nonzero bits are processed, the whole cycle is repeated for
small compared tdk (e.g., in FIR filters,n ~ the number of N —1, N —2...2 nonzero bit patterns. A detailed discussion
bits in the coefficients ané ~ the number of nonzero bits), will be further concentrated on the following problems:

so it is possible to create the complete pattern statistics. Ana) pattern identification;

additional strategy to tackle this issue will be proposed in the

next section for the cases when this does not apply. B) pattern selection;

C) frequency statistics management;
IV. CSE ALGORITHM D) adaptation of the algorithm for Problem A;

In this section, we will give a detailed description of E) viability of the algorithm for large tasks;
an algorithm able to solve Problem B (i.e., the elimination F) applicability for similar CSE tasks.
of patterns with arbitrary shifts within the input matrix).
Afterwards, we will discuss the modifications necessary for the Pattern Identification
algorithm to be able to solve Problem A as well. As indicated’

in the previous section, the algorithm must accomplish the Since an exhaustive search is performed, all possible com-
following tasks. binations of V-bit patterns must be examined. The algorithm

1) Identify the presence of multiple patterns in the inpljpust also be able to detect a “collision” between twq eqqal
matrix. patterns, when these share at least one nonzero hit. Since
o such a pattern can be eliminated only once, it must be taken
2) Select one pattern for elimination. into account also during the frequency statistics creation phase
3) Eliminate all occurrences of the selected pattern. (Fig. 4). For example, the pattern 1010101 in Fig. 4 has two
This should be iteratively repeated until there are no movalid 2-bit patterns, as shown in Table |, because only two
multiple patterns present. The complete algorithm flowgraphpgatterns can be identified without conflicts [Fig. 4(a)]. The
given in Fig. 3. The input paramet@f represents the numberinterleaving of two patterns without common nonzero bits,
of nonzero bits in the examined patterns. In the first step, an the contrary, does not influence the statistics, as shown in
exhaustive search for all possible multiphé-bit patterns is Fig. 4(b).
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conflicts 101001
/‘( (@) O
1 0 E 1 ]0 10 1 110111011071 key frequency
- - N

101 |1
I

(@) (b)
Fig. 4. Conflicts between patterns. / \

® 1 4001 |1| | 100001

TABLE | | l
LEGAL 2-BiT PATTERNS IN “1010101”

—_

101 2
10001 2
1000001 1 RN

Bit pattern | Frequency Q .g e,

-
B. Pattern Selection _
*

In case some patterns with the same frequency are present in AETTE L e
the frequency statistics, a decision criterion must be provided
to choose only one. The one we have chosen originated from Seinagns®
the e_lgsumpnon that the optimized Strl_JCture will be mtegrat'e_%_ 5. Creation of 2-bit frequency statistics: (a) processed row, (b) local
on silicon. If two (or more) patterns with the same frequenayte with the single-row frequency statistics, and (c) global statistics update.
occur, the shortest one is selected. Implementation of an addi-
tion/subtraction on silicon will result in an adder/subtractor

.‘

with word length depending on the length of the pattern. @ 01

Thus, the selection of the shorter one will result in a smaller Q
adder/subtractor structure. In the case of 2-bit patterns, one

additional criterion was introduced: the preference of adders ®) 000001

over subtractors, i.e., the pattern 101 will be preferred over O difference
101 This can be justified by the same reasoning as before, key frequency
since a subtractor structure is more expensive than an adder 101 |1

(in terms of the area). In a case where the algorithm would T

be used for tasks aiming at a different goal, another criterion ©

might be preferred. / \

1001 |1 100001 |-1
C. Frequency Statistics Management [ [

Since an exhaustive search is performed, attention must be
paid to its implementation strategy. For thebit statistics, a
binary tree with the patterns as the keys is a perfectly suited
structure. The complete statistics can be created simply by () o
processing the input matrix row after row. One problem is
caused by the fact that the same pattern can be present in a row
multiple times, so the large binary tree must be searched for
the same pattern multiple times. To avoid this, an alternative Ceannee?
approach in the global statistics generation process was used
as shown in Fig. 5. First, a local tree holding the frequency tananns?t
statistics of a single row is created [Fig. 5(b)], and this IOC%‘g. 6. Frequency statistics reevaluation: (a) original row, (b) row after
tree is used to update the global statistics. This way, searchéfngination of pattern 101(c) difference statistics, and (d) global statistics
in the global statistics tree is minimized. update.

After pattern elimination, the frequencies of the other pat-
terns can also change, and therefore the global frequemsgtrix row [Fig. 6(c)]. These difference statistics can be used
statistics must be reevaluated. Since the creation of a newupdate the global statistics tree, which results in a much
global statistics after each pattern elimination is not a feasildenaller number of operations on the large global frequency
solution, an alternative method of the global statistics adjustatistics since it has to be accessed only for the patterns that
ment must be found (Fig. 6). After each pattern elimination,feequency actually changed. This way, the global tree has to
local statistics tree is created holding the information about the created only once at the beginning of each iteration (see
frequency changes of the remaining patterns in the procességl 3).
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101001

(@) Q

attern __ shift

100001 |0

p attern total

U

101 |0
Fig. 8. Transposed-form FIR filter.
1001 |2
split parts together again. On the other hand, this process of
® (© matrix splitting can be applied iteratively again and again until
Fig. 7. Algorithm modification for Problem A. acceptable runtimes can be achieved, so matrices of orders

1000 x 1000 or even higher can be optimized this way.

D. Algorithm Modification for Problem A
F. Applicability for Arbitrary CSE Tasks

It is also possible to use the previously described algorithm

to perform a CSE optimization for the case when the position Both of the previously defined algorithms can be applied
of a pattern within the matrix row is of importance (i.e. (with some modification of the pattern generation function)

Problem A), but some changes must be made to take tm a matrix containing arbitrary elements as long as these
into account. First, together with the pattern, also its posnmﬂ{e lexically ordered, since it is necessary to evaluate the

within the row must be used as a key during the constructiéfations(, ) and = during the binary-tree construction. No

of a binary tree. Second, since in this case all the patter‘ﬁ er restrictions are put on the matrix elements, so these can
in a row are unique (at least their positions within a ro € nu_mbers, alge_bra|c elgme_nts, etc., which opens a whole
must be different), it is not necessary to use the local statistfi8W field of possible applications.

during the creation and maintaining of the global statistics (see

Fig. 7). Apart from this, both algorithms can be identical. To V. APPLICATION OF CSE ALGORITHM

distinguish between the two algorithms, we will mark them as
Algorithm | (to solve Problem A) and\lgorithm Il (to solve
Problem B).

In this section, we will indicate several possible applications
of the CSE algorithm for the optimization of some commonly
faced design tasks. We will discuss the optimization of FIR fil-
) o ters (in both transposed and direct form) and linear transforms
E. Algorithm Modification for Large Tasks in general, as well as matrix multiplication. All those tasks are

To modify the algorithms to be able also to solve largguite common in areas such as telecommunications and DSP
tasks efficiently, first the bottlenecks must be identified. Léfilters), image processing (matrix multiplication), etc.
us assume that the processed matrix has the dimemsian
n. If the number of rows would be doubled @m, then A FIR Filters—Transposed Form
approximately a double amount of keys would have to be
gzetrr:zdcgg?r:;e plnary tree during thebit statistics creation. Jue coefficientsh --- hy in their binary (or CSD) form as

y, if the number of columns would be double
shown in (16)

then the number of patterns processed for each row would rise
from () to (QX") which differs by a factor of approximately
2k, Thus the total computing time in the second case can hy = thi x 27 (16)
rise even in orders of magnitude. This limits the number ;
of columns that can be processed by the algorithm. Thi
analysis, however, also shows the possible recipe for tackli nEJ
the problem of large inputs

Fig. 8 shows a transposed-form FIR filter. Let us express

multiplier block can be written in the form of a
Itiplication-free linear transform (17), since the elements
of M consist of 1, 0 in the case of a binary representation or

hoo == - hon 1, 0, —1 in the case of CSD form
h : :h Yo hoo -+ hom z>0
m0 ce o mn h . h 1
- ~. (15) S I LEE L an
hoo -+ homy2) hotne41y  *++ hon : : : ;
. . YN hyo -+ hyg x> N
hmo -+ hmny2) ) \mnjze1y - In this case, (6) is satisfied with the constant 2-1; thus

If we would split the matrix as shown in (15) and both partalgorithm Il can be used to optimize the multiplier block, and
would be processed separately, we would gain an executibe scaling of the results can be implemented as hardwired
time at the cost of the detection of the patterns that croskifts for free. An example of a transposed-form FIR filter
the split boundary and the adders necessary to add botitimization is given in Fig. 1 and (10)—(14).
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X ,: Xy
>>2
Y

Fig. 9. Direct-form FIR filter.

S>>l >
. . b
B. FIR Filters—Direct Form
. . . . Fig. 10. Direct-form FIR filter optimization example.
A block scheme of a direct-form FIR filter is shown in
Fig. 9. After binary (CSD) expansion of coefficients (as in the ]
previous section), the outpuis can be calculated according? ast time as (24) and (25)

to (18) and the final resuly according to (19) ! hoo -+ hom 20
vy’ hio -+ hip -1
Yo = hooto + -+ hopzo > B : = : : : (24)
y1 = hiox1+ -+ hipr1 > B ! hno --- hns o—B
P . N
. . . 11
Y= Y X (25)
YN = hyoxy + - +hypoy > B (18) ;
Y= zj\:y (19) In the next step, a matrix split satisfying (2) and (4) will be
—~ ¢ performed. Then the final sum can be rewritten as in (26)
N r
Equgti(_)n .(18) unfortunately cannot .b_e repr_esented as a y= Z <Z Yt +y}§’i> X ;. (26)
multiplication-free linear transform, but it is possible to reorder i=0 \k—0

reordering the sums, we can obtain (27) for the output of

it in such a way. Let us calculate the sums of columns inste&g’
direct-form FIR filter

of rows in (18). We obtain the set of equations in (20) and (2
Yo = (hoozo + -+ hnozn) > 0 r al
/ = luwi Y i |+ ki x (27)
Y = (h01$0+~~~+h]\f1$1\r) >1 o —e
tmp,,

v = (hopwo+ -+ hypoN) > B (20) Furthermore, the intermediate results are again scalable by

B powers of two, so Algorithm Il can be used for optimiza-
Y= Zy{ (21) tion. We will give a small example of direct-form FIR filter
i=0 optimization as shown in Fig. 10
This set of equations can be expressed as a multiplication-free= zo * (0.1011)prx + z1 * (0.1100) 51§
linear transform as shown in (22) and (23) =@+ (@ot+xo>1)>2)>1+(x1+z>1)> 1.
Yo hoo -+ hwo To The pattern 11 is present twice, so the following opti-
Y _ hot -+ ha 1 29 mization requiring one adder less for implementation can be
A N : : (22) performed:
y% hOB h]\fB TN tmp0=$0>>2+a:1
B

=0 This can be considered an improvement compared to the
optimization proposed in [4], since in [4] a method equivalent

After this transform, it is possible to apply Algorithm | Algorithm | f | bi q
for the optimization. Unfortunately, the straightforward apt—O gorithm | for only two-nonzero bit pattems was proposed.

plication of Algorithm | on (22) suffers from an important
disadvantage. Since the ordetin the resultingm x n matrix

will be much larger thanm, the matrix-splitting technique Many operations in DSP, communications, or image pro-
would be necessary. Therefore, we use an improved versm@ssing can be expressed in the form of a multiplication
of the described method. The idea is to perform the CSE oh a matrix with either a vector or a matrix. A number of

the original bit matrix (so the number of rows will be higheapplications can be directly considered as a multiplication-
than the number of columns). Let us rewrite the filter outpditee linear transform, where the application of Algorithm 1| is

C. Linear Transforms and Matrix Multiplication
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straightforward. These include some signal transforms (Walsh,
Hadamard) or some error-correcting codes (Reed, BCH). In
the case that the transform in question cannot be described as
multiplication free [e.g., discrete Fourier transform (DFT)], an
algorithm based on the multiple use of MCM was introduced
in [3]. This enables one to transform any linear transform
into a multiplication-free linear transform. The general linear
transform can be described as in (28)

N-1
Yi; = Zcija:j, (iIO,"',N—l). (28)
j=0
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0 0 0 00 0 0 O

0 A1 A0 A1 A

01 01 0 1 0 1
;o041 A0 414

0 06 0 00 0 0O

0 A1 A0 A1 A

0 1 0 1 0 1 0 1

0 A1 A0 A 1 A
A=V2/%A=-A1=-1
D=R+l (31)

The transformation into a multiplication-free linear transform
will be demonstrated only on the real-part kerdglsince its

The gonvedrsion algorithm can be described by the followingjication on the imaginary part is equivalent. The resulting
pseudocode.

multiplication-free linear transform kernéf is shown in (32)

1) Minimize the number of additions necessary to compute
all productsc;;«;.

2) Rebuild the input matrix using instances computed in
the previous step (this will create a multiplication-free
linear transform).

3) Apply Algorithm | to compute the CSE optimized struc-
ture.

If the optimized transform contain® different ¢;; elements
and we denoteC’y, = c¢;;x; wherek = 1-..-B, then the
final transform is shown in (29). Note that valués; €
1,0,—1 (since the givenC; element is either not present
in a certain row or is positive/negative). So (29) represents
a multiplication-free linear transform and as such can be
optimized using Algorithm |

Yrr = HC

LRO
TR1

110110110110 Az gy
101001101 001 TR2
100100100100 TR3

_ 101001101001 Azprs (32)

110110110110 TR4
101001101001 TRs

100100 100100 Azgs
101 001101 001 T Re
LT R7

A$R7

where H and C are defined as in (29). The matri{ is a

Yo hoo -+ hoB Co
o I UL (29)
YN hyo --- hns Cp

VI.

EXPERIMENTAL RESULTS

multiplication-free linear transform and as such can be subject
to the CSE optimization by Algorithm I.

_ Both algorithms were developed in C and run on an HP-

To demonstrate the previously described technique, we W8lsc workstation. First, the performance was tested on ran-
use an 8-point DFT. Since a DFT has a complex transforggmy generated data. In test I, Algorithm | was run on a set of
kernelD, it must be split into its real and imaginary parts firsatrices containing only zero and one with dimensions ranging

[according to (30)]

The resulting real and imaginary kerndksand [ are shown

in (31)

y=DX

= (B+D)(Xr +3X7)

IRXR—IX[+j(RX[+IXR)

=Yrr — Y+ 3R +Yir).

11 1 1 11 1 1
1 A0 A1 A0 A
1 0101010
R_|l 4041404
111 111 1 1
1 A0 A1 A0 A
1 010101 0
1 A0 A1 A0 A

from 16 x 8 up to 256x 32. To evaluate the performance,
we give the values of computational efforts before and after
CSE (®; and R,,, respectively) the optimization rati® as
well. Time values give the algorithm runtimes. The results are
shown in Table Il. The same type of tests was performed also
for Algorithm II, with the results shown in Table Ill. For these
tests, also the number of shifts before and after optimization
are given §; andS,), and the improvement rat@s = S;/5,
was calculated as well. The results indicate that the methods
work better when more potential subexpressions are present
(rise with the valuesrn andn). The sudden increase Gig
in the cases of 12& 8 and 256x 8 can be explained by
the fact that after raising the value high enough(m ~ 27),
the whole rows start to repeat frequently, which leads to this
abrupt increase of the optimization ratio. These tests also prove
the statement that the increase of the vatués critical with
respect to the algorithm runtimes.

To test the splitting technique for large matrices, we have
run both algorithms again on random matrices with dimensions
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TABLE I TABLE IV

ALGORITHM | PERFORMANCE TESTS PERFORMANCE WITH MATRIX SPLITTING

n=238 Algorithm I performance with splitting
m R; R, 4] t[s] Dim. | Col R; R, R, O | t[s]
16 52 25 | 2.08 | 0:01 256 32 32666 7936 | 13037 | 2.5 | 0:08
32 90 40 [ 2.25 | 0:01 16 3840 | 12885 | 2.54 | 0:16
64 186 62 [ 3.00 | 0:01 512 64 | 130742 | 32256 | 45805 | 2.85 | 0:23
128 | 383 | 107 | 3.58 | 0:01 32 15872 | 47135 | 2.77 | 0:49
256 | 755 | 167 | 4.52 | 0:01 1024 | 128 | 522903 | 130048 | 160590 | 3.26 | 1:01

n =16 64 64512 | 174490 | 2.99 | 3:11
m R; R, O t[s] Algorithm II performance with splitting
16 | 106 | 54 | 1.96 | 0:01 Dim. | C R Ry Ry | O] tls
39 218 | 103 | 2.17 | 001 256 32 32666 7936 | 11089 | 2.95 | 0:09
64 447 180 | 2.48 | 0:01 16 3840 | 10473 | 3.12 | 0:15
128 | 883 | 321 | 2.75 | 001 512 | 64 | 130742 | 32256 | 39635 | 3.3 | 0:23
256 | 1757 | 550 13.19 | 0:01 32 15872 | 40116 | 3.26 | 0:43

p— 1024 | 128 | 522903 | 130048 | 145640 | 3.59 | 1:07
poe R R, 0 o] 64 64512 | 152913 | 3.42 | 2:32
16 324 1 126 | 1.86 | 1:42
32 479 223 | 2.15 6:11
64 947 | 418 | 2.27 | 847 TABLE V
128 | 1885 747 | 2.52 [ 11:27 1024 x 1024 HADAMARD MATRIX OPTIMIZATION
256 | 3792 | 1348 | 2.81 | 21:48 Col. T R, R, 9] t[m]

64 | 1047552 | 65512 | 68608 | 15.27 | 14:30
128 | 1047552 | 130048 | 133120 | 7.87 | 1:04

TABLE Il
ALGORITHM || PERFORMANCE TESTS
are given in Table V. The reason for the very high optimization

n=2_8 . . .
m R SR S, | On] Os] 19 ratios is the regular structure of the Hgdamard matrix.
16 52| 57| 21| 26248219 0:01 The second set of experiments consisted of the optimization
32 90| 103 ] 32| 45]281 (229 0:01 of some real-life structures. First the transposed-form FIR
64 | 186 213 | 50| 77372277 | 0:01 filters were optimized by CSE and synthesized by means

128 | 383 | 442 | 74| 133|518 | 332 0:.01
256 | 756 | 879|103 | 227 | 7.33 | 3.87 | 0:01

n=16

of the SYNOPSYS design compiler. In order to make the
comparison of our results easier in the future, we have chosen

pooy R, ST R | S, ] Oa Os] s the three filters published in [2] (examples 1 and £2+-and

16 | 106 | 111 | 41| 46 | 259 ] 241 0:.01 S52) and [8] (example 1-£1). The filters in [2] were subject to

32 | 218 230 78| 90 259|256 0:01 nonzero-bits minimization. We have optimized the coefficients

Tgs ggg SZ ;3; ;gg gg; 3';1»,2 8jg} of the filter L1 in the same way as in prior CSE processing,

556 | 1757 | 1887 | 412 | 542 | 4.96 | 3.48 | 0:01 and the optimized coefficients are given in Table VI. This
= 32 optimization results in a relatively small amount of adders

m R; S, R, | S, Or| Os | i3] in the multiplication block already before CSE (an average of

16 | 324 | 238 | 83| 87]282|273| 00 0.85 adders per tap coefficient$1, 1.9 in52, and 2.4 inL1).

32 | 479 | 491|150 | 162 | 3.19 | 3.03 | 4:56 The optimization results are in Table VII. The structure was

64 | 947 | 976 [ 285 | 314 | 332 | 3.11 | 7:23 o . o

198 T 1885 1943 1504 | 562 | 3.74 | 3.46 | 813 compiled into a MIETEC 05; CMOS I|prary a_nd optm_uzed _

256 | 3792 | 3905 | 941 | 1054 | 4.03 | 3.70 | 21:48 for area only. The area figures are divided in combinatorial

area(C), part of which is subject to CSE, sequential area
(S), and total aredT’). The figures are given in equivalents

256 % 256. 512 512. and 1024x 1024. TheCol variable of invertor gates. An interesting observation is that for a

gives the number of columns the processed matrix was s&ﬂ‘f““"tr. filter, the area of the mult!p!|cat|on. block becomes
nsignificant compared to the remaining registers and adders

into, andR,, gives the number of nonoptimizable adders due I the accumulator block (see Fig. 8), so the effect of the CSE

the splitting. These are the adders used to add the submatric Smization i L : : -
, opfimization is not significant, especially if the optimized CSD
together afterwards. The results are shown in Table IV a g g P y P

o k ) Wefficients are used (a similar conclusion is stated also in
prove the viability of such an approach. It is also obvious th ]). The experiments performed on a direct-form FIR filter

in the case of splitting into matrices with smallef(such that gpowed a reduction of the multiplication block equivalent to
m > 27"), the effect described previously (the repeating gfe transposed-form FIR filter.
the rows) occurs again. This causes very high optimizationThe third experiment was the optimization of a DFT to
ratios of the processed submatrices, so the adders that takg the linear-transform optimization technique. We performed
unoptimizable due to splitting become a dominant part of tf@SE optimization on real and imaginary kernétsand I, as
total number of adders after optimizatiof,, — R,). defined in (30)—(32). The results are shown in Table VIII for
Last, the results of the optimization of the Hadamard matr@FT8, DFT16, and DFT32 (for DFT32, also matrix splitting
of order 1024x 1024 with different numbers of split columnsinto two columns was used).
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TABLE VI
CSD CpTimizeD COEFFICIENTS INL1 FILTER

h(n) = h(120 — n)

FOR61 < n < 120

h(0) = 0.0000000000001010
h(1) = 0.0000000000010010

h(2) = 0.0000000000101001

h(3) = 0.0000000000100100

h(4) = 0.0000000000101000

h(5) = 0.0000000000001000

h(6) = 0.0000000000010010

h(7) = 0.0000000001010101

h(8) = 0.0000000001000101

h(9) = 0.0000000001001001

h(10) = 0.0000000000101000
h(11) = 0.0000000000101000
h(12) = 0.0000000001000101
h(13) = 0.0000000010101001
h(14) = 0.0000000001000100
h(15) = 0.0000000000001000
h(16) = 0.0000000001000100
h(17) = 0.0000000010000101
h(18) = 0.0000000010000010
h(19) = 0.0000000001001010
h(20) = 0.0000000000100100
h(21) = 0.0000000010010010
h(22) = 0.0000000101000001
h(23) = 0.0000000010101000
h(24) = 0.0000000000101001
h(25) = 0.0000000010010001
h(26) = 0.0000000100010101
h(27) = 0.0000000100010101
h(28) = 0.0000000010010100
h(29) = 0.0000000001010010

h(30) = 0.0000000101010010
h(31) = 0.0000001010101000
h(32) = 0.0000000101000101
h(33) = 0.0000000001000101
h(34) = 0.0000000T00010101
h(35) = 0.0000001000010100
h(36) = 0.0000001000100101
h(37) = 0.0000000100101010
h(38) = 0.0000000010100101
h(39) = 0.0000001010101000
h(40) = 0.0000010100100010
h(41) = 0.0000001010101000
h(42) = 0.0000000001010100
h(43) = 0.0000001001001001
h(44) = 0.0000010001010001
h(45) = 0.0000010001000010
h(46) = 0.0000001000100010
h{47) = 0.0000001010001010
h(48) = 0.0000010100100000
h(49) = 0.0000100101010100
h(50) = 0.0000010101001000
h(51) = 0.0000000010010101
h{52) = 0.0000101000010010
h(53) = 0.0001010100001001
h(54) = 0.0001010001001000
h(55) = 0.0000101000010101
h(56) = 0.0000101010001010
h(57) = 0.0010100100101000
h(58) = 0.0010100000100100
h(59) = 0.0101010101001000
h(60) = 0.0100101010100001

TABLE VII
ReAL FIR FLTER OPTIMIZATION

F N | Ri | R, | Ogr A; A, | O4
C 2724 2425 | 1.12
S1 25 11 6183 S 1861 1861 1
T 4585 4286 | 1.06
C | 11475.4 | 9558.3 1.2
S2 60 571 32178 S 36979 | 3702.1 1
T | 15173.9 | 132604 | 1.14
C | 29373.8 | 21125.5 | 1.39
L1 | 121 | 145 | 58 2518 8456.5 | 8456.5 1
T | 37830.3 29582 | 1.28
TABLE VI
DFT OpTIMIZATION RESULTS
Ri Ro
R 1 R I Ore Oim

DFT8 | 40 | 24

18 |8 22 |30

DFT16 | 192 | 160

62 148 | 3.1 [3.3

DFT32 | 864 | 800

280 | 262 | 3.08 | 3.05

VII. RELATED WORK COMPARISON
The optimization of the transposed-form FIR filters by Last, in [3], the adder count improvement on the set of real-
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TABLE IX
COMPARISON WITH [6]

Dempster | Algorithm IT

Filter | N | R; R, R,

L2 63 | 49 22 23

L3 36 | 16 5 5
h0=7 =01001 No common patterns to eliminate
h1=21=10101 3 adders nccessary

yl  yl=2%0+y0
<<3
X <<

y0

Optimal synthesis - only 2 adders necessary

Fig. 11. Redundancy unidentifiable by CSE.
TABLE X
ALGORITHM Il RESULTS WITH RESPECT TO THEXN PARAMETER
mxn R; R,

O
N=2 | N=3 | N=4 | N=5 | N=6
16 x 8 52 27 22 22 21 21
64 x8 | 186 71 52 50 50 50
128 x 8 | 383 | 139 91 80 74 74

In [7] and [6], similar graph synthesis algorithms were used.
Since [6] is an improvement over [7], we have made the
comparison to [6], where experimental tests were performed on
two FIR filters taken from [8] (examples 2 and 3). The results
are shown in Table IX. The results are practically identical
(there is one adder difference in the first filter). A possible
explanation is that the presented graph synthesis algorithm
is capable of finding redundancies unidentifiable to the com-
mon subexpression elimination technique (for example, see
Fig. 11).

In [4], a method similar to ours based on the identification
of 2-bit common subexpressions was proposed. Actually, this
work can be considered an extension of [4]. However, starting
an elimination of patterns with a higher number of nonzero bits
than just two should give better results, as shown in Table X,
where optimization results of the input set from Table Il are
used with respect to the input paramedérFor the FIR filters
optimization, however, this is not a very important parameter,
since the filter coefficients usually have only a small number of
nonzero bits, which significantly reduces the chance that many
N-nonzero bits expressions with > 2 would be identified.

The work [5] was tested on 23 random coefficients quantized
into 32 bits with an average improvement of the adder count
by a factor of two. This seems to be a similar result to the
one obtained in [4] or here in the case &f = 2, and the
additional criterion based on the timing is of interest in the
case where hardware (HW) implementation is targeted.

means of CSE was already discussed by several authdifs.filters of ordersN = 64,100,123, and 126 ranged from

However, the exact comparison is not easy to make since hIB6 to 1.46. The values obtained for real filters by CSE were
authors did make the experimental testing on different inputsgnificantly higher (from 1.78 to 2.5). On the other hand, the
We tried to test our method on the same (or at least equivalentimber of shifts obtained by the bipartite matching algorithm
data to obtain some estimate of the algorithm performanueed in [3] was much lower compared to the values from CSE
comparison.

optimization.
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VIILI.

In this paper, a novel algorithm to solve the multiplg
constant multiplication problem, i.e., the optimization of th
multiplication of a variable by a set of constants, was proposs
It is based on the common subexpression elimination teg
nigue and combines the exhaustive search for multiple pattg
identification with a steepest descent approach for pattd
selection. The results show a significant reduction in eith

C ONCLUSION
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technique presented in [4] since in the proposed method, no
such restrictions on the patterns are given.

Comparison with related work based on the available data
shows that our method yields comparable or better results
in FIR filter optimization. Its major advantage is a gener{
concept that does not restrict the use of the presented techni
to the tasks proposed in this paper (FIR filter design a
linear-transform optimization).
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