A 10 Mbit/s Upstream Cable Modem with Automatic Equalization

Patrick Schaumont

Radim Cmar

Serge Vernalde Marc Engels

IMEC vzw, Kapeldreef 75, B-3001 Leuven Belgium

Abstract

A fully digital QAM16 burst receiver ASIC is presented.
The BO4 receiver demodulates at 10 Mbit/s and uses an
advanced signal processing architecture that performs per-
burst automatic equalization. It is a critical building block
in a broadband access system for HFC networks. The chip
was designed using a C++ based flow and is implemented
as a 80 Kgate 0.7u CMOS standard cell design.

1 Introduction

The widespread use of Internet is opening a pathway to
emerging multimedia consumer networks and applications.
These require a broadband data communications link to be
established in the access network that connects the con-
sumer to a core service network. The hybrid fiber-coax
(HFC) access network that is currently in use for cable TV,
is considered as an attractive candidate [4]. We have devel-
oped a chip that is embedded in an HFC head-end and that
demodulates data transmitted from the consumer set-top.
This chip is a fully digital burst receiver, characterized as
shown in table 1.

The chip design will be described as follows. In section 2,
we present the system level architecture and design choices.
Next, section 3 will elaborate on the design flow and C++
modeling that was applied, including VHDL code generation
and synthesis. Section 4 highlights the verification strategy.
We present the obtained prototypes and measurement re-
sults in section 5, and conclude in section 6.

2 System Level Architecture

2.1 System context

The system level architecture in which our receiver is em-
bedded is shown in figure 1, which illustrates HFC upstream
communications for a concrete application scenario. A user
connects a PC to the access network using a cable modem.
Among other tasks, this device modulates a digital message
from the PC into a QAM16 signal burst. Burst modulation
enables a TDMA multiaccess scheme in which multiple users

Functional Properties

Modulation QAM16/QPSK
Multi-access TDMA

Preamble Length 17 symbols
Min Burst Spacing 4 symbols
Payload Length 1-1024 bytes
Symbol Rate 2.56 Msym/s
Bit Rate 10.24/5.12 Mbyte/s
Input Sample Rate 10.24 MHz
Input Bandwidth 3.3 MHz
AGC range 10 dB
RRC Shaping adaptive

Equalization per-burst,

fully autonomous
Performance at C/N = 22.5 dB

Uncoded BER 575

Coded BER 10710

Standard Compliance
MCNS/DOCSIS
IEEES02.14
DAVIC/DVB
ITU-T J.112

Interfaces

Error Correction Reed Solomon

Programming 1°C
Data Connection UTOPIA

Table 1: Chip Properties

can be connected to the same head-end simultaneously. The
burst is characterized by a preamble that synchronizes the
head-end receiver, a payload that contains the actual data
message, and a carrier frequency.

At the head-end side, the received signal is passed through
an analog front-end AFE. The front-end converts the received
carrier to a low, fixed carrier frequency. Next, the signal is
digitized by an analog-to-digital converter AD, and digitally
demodulated in the receiver chip B04. The demodulated
message is then passed on to a cell transport system CTS
connected to the core network. Both the receiver chip and
the analog front-end are under control of a medium access
control component MAC, that selects the burst transmission
frequency and time slot.

preamble payload
\Y

=) I@
N

D>
network m

headend

Figure 1: System Level Architecture

BO4

AD ADI > HB

AGC]

MFE

>
Vs MAP—l

12C B L RNDf> RSI>UTO ETS

MAC RS Decoder
I I I

Figure 2: Beaufort RX Architecture

2.2 Digital Receiver Architecture

The patented architecture of the BO4 receiver chip is shown
in figure 2. The demodulation of the QAM16 burst signal
is done by a chain of loosely coupled signal processors. The
burst signal enters the chip through an A/D converter inter-
face ADI. HB down-converts this signal to baseband. Next,
AGC normalizes the signal power level, and MFE constructs
a matched filter for QAM16 detection. An adaptive equal-
izer LMS removes remaining intersymbol interference (ISI).
Subsequently, MAP converts the QAM16 symbols into a byte
sequence. This byte sequence passes through an interface
RSI for off-chip channel decoding, and finally enters the
cell transport system through a UTOPIA bus interface UTO.
Chip programming is done with an 1C standard interface
I2C, while various internal signals are observable through a
testbus interface TB.

2.3 Block Architecture

The architecture of the individual blocks was devised accord-
ing to a standard architecture template. Each of the blocks
consists of one or more interconnected FSMD, as shown in
figure 3. Each FSMD is made up of a finite state machine
FSM and a bit-parallel synchronous datapath DP. FSM and DP
exchange instructions and status signals.

The local control FSM exchanges two types of control
signals with the rest of the system: globally generated con-
trol signals, and signals that are send along with the flow of
data,

Global control signals include reset and clock, as well
as rate control signals. The rate control signals are used
to synchronize the distributed block schedules to a common
reference, and therefore implement the static dataflow part
of the chip. The rate control signal for each block varies with
the data introduction interval (DII [3], the number of clock
cycles per data sample). Inside of BO4, the DII gradually

flow of data

data-dependent
control
FSM

global control]

rate control

Figure 3: FSMD model

decreases along the signal processing chain, from feiock/4 at
the ADI interface downto feiock /32 at the UTO interface.

Many of the blocks also process signal samples condition-
ally. For instance, the MFE block will only operate after the
AGC block has detected a burst start. Another example is
the interaction of the I?C interface with blocks in the main
signal processing chain. For this conditional data process-
ing, control signals are send along with the data to indicate
signal sample presence.

Finally, datapath register update at various rates is done
with a synchronous strategy. The update control signals
are evaluated in the local FSM as a combination of local
sequencing, global rate-control, and global data-dependent
control.

3 Design Flow

The design flow of the BO4 chip is shown in figure 4. The
flow contains three major parts: a system level design part,
a hardware synthesis part and a hardware verification part.
This section is concerned with the system level design and
hardware synthesis issues, while section 4 focuses on verifi-
cation.

3.1 System Design

The goal of the system design phase is to construct a func-
tional RT-level model of the BO4 chip. For verification and
test purposes, an end-to-end model is however required.
This end-to-end model includes, besides the BO4 receiver
model, a transmitter model to generate test bursts and a
channel model to distort the test bursts according to the ex-
pected transmission impairments. The impairments include
those of coax, distribution amplifiers and analog front-ends.

We use C++ as our primary system design environment,
since it allows to mix the high level environment model with
the detailed architecture model of the target receiver. We
use a design environment [5] that supports simulation of high
level dataflow as well as cycle true architecture models. In
addition, it has an elaborate code generation backend that
allows a smooth transition to circuit synthesis and verifica-
tion.

Initially, a floating point data flow model of the com-
plete system is constructed (transmitter, channel model, re-
ceiver). Next, the BO4 receiver is refined to a cycle true ar-
chitecture model. This is done by scheduling the operations
of high level descriptions to clock cycles. Since the cycle
budgets of the most complex blocks (MFE and LMS equal-
izers) have only 8 cycles, scheduling can be done by hand
without much trouble. In addition, bringing dataflow to
hardware also requires the mapping of the dataflow compu-
tational model (firing rules) to an implementation. For this
purpose, we make use of rate-control and data-dependent
control signals (as explained in figure 3).

GNU g++

C++
Dataflow FLP

C++ C++
Architecture FLP Testvectors]
‘ C++

ﬂ ure FXP
| systom Desin | —

System Design

Block Block DSFG » vHDL
oc o
RT-VHDL| 3 3 Testvectors]
Cathedral 3 : System VADL
Testbench

System
Netlist
Block VHDL |
Block VHDL ||
Testbench
Synopsys DC
Synopsys VSS
Optimized
Block VHDL
Synopsys DC
SDF ; |
| Backanno Verilog | ; Cadence XL

(Avant!l

Figure 4: Design Flow

After the architecture has been obtained, the chip signal
wordlengths are decided in order to yield a cycle true, bit-
true architecture model. Fixed point refinement is done by
means of simulation. A reception quality metric, constella-
tion purity, is first determined using only quantization at the
A/D side (10 bit). Next, the other wordlengths are decided
such as to prevent overflow and to maintain the reception
quality metric.

After these steps, the C++ model is a bit-true. clock-
cycle true representation of the architecture. Now, a code
generator creates the input for subsequent hardware synthe-
sis and verification.

e For each block (FSMD) of the receiver, an synthesiz-
able RT-VHDL file is created. During the BO4 design,
it is primarily used for verification.

e For the overal BO4 chip, a system netlist is generated
to connect the various FSMD blocks.

e For each FSMD, code is generated for the Cathedral
3 [1] synthesis tools, which contain advanced word-
level operation-sharing algorithms and allow to gener-
ate technology-mapped FSMD descriptions.

e Finally, the C++ testvectors are also translated into
FSMD-level and system-level testbench vectors and
drivers. These allow to perform verification of sub-
sequent synthesis results.

Specification
C++ Dataflow 922 lines
C++ Architecture 4426 lines
C++ System Testbench ~ 11014 lines
RT VHDL 21798 lines

Gate Level VHDL 154952 lines
Architecture: Single-clock Synchronous

FSMD 26

Clock Frequency 20.48 MHz

Gate Count 83130

Standard Cell Count 38768

IO Pins 95

Test Coverage 99.27 %

Scan (Full-scan) 6 chains

Test Vectors 472
Layout and Technology

Technology 0.7 n

VDD 5 V

Core 80.7 mm’

Chip 113.9 mm?

Active Area 37.4 mm?

Metal Layers 3

Routing Factor 2.15

Table 2: Chip Metrics

3.2 Synthesis

Circuit synthesis is a fully automated process. Using elabo-
rate scripting, a verified gate-level system netlist is obtained
out of the generated code within 36 hours. The synthesis
tools are run on a HP-9000 series workstation with 2 giga-
byte of internal memory.

The synthesis is a multi-stage process taking the follow-

ing steps.

e Each FSMD is processed by Cathedral-3 to yield an
operator-level technology-mapped netlist.

e Next, it is processed by Synopsys DC to perform logic
optimization, and to insert scan chains for production
test. We use worst-case commercial operating condi-
tions. For timing verification, we use a standard wire-
load model for the first iteration, and subsequently a
capacitance load file produced by the layout backend.

e A new run of Synopsys DC is done to convert the re-
sulting blocks to Verilog, and to produce test vectors
by ATPG.

e The resulting Verilog netlist is processed by the Avant!
layout backend, producing a capacitance load file (SDF).
This load file is used to verify the logic optimization
of Synopsys DC.

Some chip metrics that are obtained out of the synthesis
process are collected in table 2.

4 \Verification Strategy

During synthesis, simulation-based verification is used ex-
tensively to track the correctness of the synthesis results.
All VHDL-level simulations are done using the generated
testbenches with the Synopsys VSS simulator at block-level
and system level. The final Verilog netlist is checked using
generated production test vectors with the Cadence Verilog-
XL simulator.

Reed Solomon
Decoder

Figure 5: Receiver Board with BO4

Verification is done by C++ simulation during the sys-
tem design phase and by HDL simulation during the synthe-
sis phase. There are 7 verification levels that correspond to
the 7 description levels of the design. Three of them are in
C++ (dataflow floating-point, cycle-true floating-point and
cycle-true fixed point). The remainder four are at VHDL
(RT-VHDL, Cathedral 3 and Synopsys-DC VHDL outputs)
and Verilog (final netlist) level.

The design of testbenches is done in C++, since corre-
sponding HDL testbenches are obtained by code generation.
The test simulations can be categorized in three areas: Per-
formance tests, functional tests, and equivalence tests.

The performance tests are used to check the initial per-
formance of BO4 in terms of bit-error rate and constella-
tion purity. Test scenarios include varying levels of chan-
nel noise, phase distortion, carrier frequency deviation, am-
plitude slope distortion, gain variation and burst spacing.
These tests ensure that the initial algorithmic model has
the desired performance.

The functional tests check the correct operation of BO4
within one verification level. Typical tests include for in-
stance the reception of a known data sequence. The goal of
these tests is to perform a simulation with maximal coverage
of the design description. For this purpose, our C++ design
environment allows to obtain simulation coverage measures.
After a C++-level architecture simulation, the FSMD de-
scriptions are interrogated to return the number of times an
arbitrary FSM transition has triggered. In addition, statis-
tics are collected on the signals of the datapath description
regarding the number of reads, writes, and signal ranges.
This way, a test suite is constructed that exercises a maxi-
mal part of the description.

Equivalence tests compare the operation of one level to
the next. They are applied at either floating-point level
or else fixed-point level. Equivalence tests do a one-to-one
comparison of values on the system interconnect at corre-
sponding time-points.

5 Prototyping

Figure 5 shows a prototype PCB that uses the BO4 chip.
This board contains also an reed solomon decoder device,
and a real-time byte/frame error counting FPGA used for
verification purposes. A real-time setup [2] based on this
board allows to characterize the chip in detail.

An example performance measurement done at a test
site, consisting of 2 sections of taps with return amplifiers

Byte

Error
Rate
[Uncoded QAM16
1e-03
1e-04 J\\E
\E]
1e-05
19 20 21 22 23 24 25 26

C/N (dB)

Figure 6: Measured Receiver System Performance

and 7 trunk amplifiers, is shown in figure 6. The mea-
surement shows the byte error performance as a function of
channel noise for the overall system including a commercial
transmitter, analog front-ends, and the BO4 receiver.

6 Conclusions

The BO4 chip, which is an upstream HFC receiver chip, was
presented. This chip uses state-of-the-art signal processing
to achieve QAM16 communication with good performance.
A critical enabler for this is the C++-based design flow that
integrates system design and circuit design. This resulted
in a short design time and first-time-right silicon.

7 Acknowledgements

This work was carried under the Flemish Impulse Program
for Information Technology (IT-BAN). The results reported
in this paper is would not have been possible without the
continuous effort of many other persons in this collabora-
tion. Specifically, we acknowledge the contributions of Willy
Trog and Karl De Meyer from Siemens Atea, Herentals, Bel-
gium, during system design. Throughout the project, there
was also close and continuing cooperation with SISTA, Leu-
ven University, Belgium (Algorithms), ACCA, Leuven Uni-
versity, Belgium (DSP Rapid Prototyping), and INTEC,
Ghent, Belgium (Hardware Prototyping).

References

[1] W. Geurts, F. Catthoor, S. Vernalde, and H. Deman. Accel-
erator Data-Path Synthesis for High-Throughput Signal Pro-
cessing Applications. Kluwer Publishing, 1997.

[2] Siemens Atea R&D Technology
Homepage. http://www.siemens.be/atea/products_services/
rd_technology/rd_frames.htm.

[3] H. S. Jun and S. Y. Hwang. Design of a pipelined datapath
synthesis system for digital signal processing. IEEE Trans.
VLSI Syst., 2(3):292-303, September 1994.

[4] W. Pugh and G. Boyer. Broadband access: Comparing al-
ternatives. IEEE Communications Magazine, pages 34 — 46,
August 1995.

[5] P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, and
I. Bolsens. A programming environment for the design of
complex high speed asics. In Proceedings 35th Design Au-
tomation Conference, pages 315 — 320, San Francisco, CA,
1998.

