
Optimization Method for Broadband Modem FIR Filter Design
using Common Subexpression Elimination

Robert Pasko *, Patrick Schaumont **, Veerle Derudder **, Daniela Durackova *
* Faculty of Electrical Engineering & Information Technology

Dept. of Microelectronics
Bratislava, Slovakia

** IMEC Leuven
Belgium

Abstract - An approach for broadband modem FIR
filter design optimization is presented. It addresses
the minimization of the number of adder-
subtractors used in the hardware implementation of
a FIR filter (Multiple Constant Multiplication
problem). The method is based on identification
and elimination of n-bit pattern common
subexpressions in a set of filter coefficients by
means of an exhaustive search. We give an
algorithm description of our solution and
demonstrate the performance on selected examples.
A comparison of the results obtained by other
authors is made and finally optimization and
synthesis results on a realistic example, a 64-tap
root-raised-cosine filter with 10 bit CSD coefficients
is given.

I. Introduction

The advent of broadband modems in
consumer applications such as access network
communications has attracted a lot of research towards
the design of high speed FIR filters. The design
requirements for these filters are such that they must
process wideband signals with considerable accuracy.
Because of the speed requirements, programmable
solutions such as DSP cores are of no use in dealing
with these problems. Rather, an application specific
approach in hardware is needed. Since the existing
standardization efforts [1,2] specify only the shape of
the filter responses, and make no statement regarding
their implementation, efficient VLSI synthesis
methods are needed.

In this paper, an algorithm for optimization of
a transpose form FIR filter with constant coefficients
by an exhaustive search is presented. Today,
exhaustive search (or brute force) algorithms are
often combined, or even completely replaced, by
sophisticated heuristic methods to gain the
performance required in complex tasks, e.g. chess
game algorithms. On the other hand, assumed
appropriate algorithms are used, exhaustive search can
be used to solve some less complex problems with very
satisfactory results. We have used an exhaustive search
method to find multiple common bit patterns in a FIR

filter coefficient array. By removing multiple
occurrences of the same pattern, and calculating these
only once, hardware is saved. For larger filters, this
leads to important area reductions, as will be
demonstrated. During the optimization process,
several techniques are used to obtain a cheaper
implementation. First, all multiplications in a FIR
filter are splitted into sequences of add-shift operations
using a radix-2 signed digit representation of the
coefficients. A Canonic Signed Digit (CSD)
representation [4] is used. It is a representation with a
minimum number of non-zero bits, and therefore a
minimimum number of adder-subtractors are
nexessary for the expansion.
In the next step, the set of coefficients to implement is
subject to Common Subexpression Elimination (CSE).
This involves finding multiple bit-patterns in the set of
coefficients and coding these repetitions as common
subexpressions into the filter structure. Hardware then
is saved by the reduction of the number of adders
necessary. An example of CSE optimization is
demonstrated in Figure 1.
.

*
y

x

0.11100111

>>3
+

>>5

>>8
+

+
-

-

>>3
+

- >>5
+

x

x
y

y

(a) multiplication with coeff. 0.11100111

(b) CSD add-shift expansion (1.00101001)
(c) add-shift after 1001 pattern elimination

(a)

(b)

(c)

Figure 1. CSE optimization example

Common subexpression elimination has been already
examined in various papers [5-8]. We briefly indicate
the approaches that are followed. In [5], iterative
elimination of only 2-bit common subexpressions is
proposed, in [6] an iterative matching algorithm is
used, in [7] a matrix-based approach for subexpression
sharing is presented and in [8] a reduced adder graph
algorithm is described. Some of these algorithms use
heuristics to derive a cheaper implementation. In our
method, we use an exhaustive search to find the
common subexpressions in filter coefficients. Thanks
to an efficient coding of the search algorithm, a better
optimization is obtained in combination with efficient
runtimes.

II. Method Overview

The basic steps of our method are shown in Figure 2.
As input, a set of filter coefficients in floating point
representation is used. During the first step, each of
these coefficients is converted into the closest CSD
representation according to user-selected parameters.
This step is examined in section III.
Next, the CSD coefficients set is sent to CSE. During
this step, multiple bit-patterns are eliminated from the
set. Based on the reduced specification, VHDL
behavioral code of the FIR filter is generated. CSE is
discussed in detail in section IV. The performance of
our algorithm is demonstrated with two examples in
section V.1. In the first one, different coefficient sets
are optimized and ratios between the number of
adders-subtractors in initial and optimized sets are
calculated. In the second example, a Root-Raised-
Cosine 64-tap FIR filter with 10bit CSD coefficients is
synthesized. Section V.2 then compares the obtained
results to that of other authors. Lastly, conclusions are
drawn in section VI.

 III. Quantization and CSD Coding

The initial specification for the transposed-
form FIR filter is given as a set of floating point
coefficients, each representing one tap coefficient. The
first task towards implementation is to quantize these
into finite wordlength CSD representation. The
number of bits required depends on the application at
hand. For the case of modem design, some design
rules can be found in [4]. A canonic signed digit
representation is defined as a representation with a
minimal number of non-zero digits for which no two
non-zero digits are adjacent. The efficiency of CSD
representation for constant multiplication is
demonstrated in Figure 1(b)., where only 3 adders
instead of 5 are necessary. A Floating point coefficient
is converted during quantization to its closest CSD
representation according to three criterions : the

coefficient wordlength, the maximum number of non-
zero bits, and the allowed quantization error. No other
optimization is performed during this step, though
several optimization methods are discussed in [4].

Floating point
coefficients set

CSD coefficients set

VHDL

CSD
Conversion

CSD coefficients
set - optimized

Translation
 in HDL

CSE
Optimization

m

Synthesis
Tool

Figure 2. Method flow-graph

Gate Netlist

IV. Common Subexpression Elimination in
FIR Filters

During CSE optimization, redundant
hardware is minimized by finding repeating structures
and implementing them only once. A demonstration
example of CSE is shown in Figure 3. A 3-tap
transpose-form FIR filter is depicted in Figure 3.a,
with coefficients in Table 1.

Figure 3(b) shows the implementation after CSD add
shift expansion. In this implementation, the patterns
1001 and 101 both occur twice, and this is detected by
our algorithm. The optimized structure is shown in
Figure 3(c). We indicate that the relative position of a
bit pattern is not of importance since all shifts are
considered hardwired.

h0 0.10010101B

h1 1.00100100B

h2 1.01010000B

Table 1. Filter Coefficients in filter 1.

>>3

>>2
>>4

>>3

>>3

>>2

>>1

>>6

>>2

>>3

+

+

+

+
+

+

+

+

h0h1h2

z-1z-1

y0y1y2
y

x

x

x

y0

y2

y2

(a)

(c)

(b)

multiplier block

>>5
+

y1

-

-

-
-

+
y2

-

-

(a) Transpose FIR filter structure (b) Multiplier Block after add-shift expansion
(c) Hardware reduction after CSE optimization

>>2
+

>>1

>>6
+

y0

Figure 3. CSE example

During CSE, an exhaustive search for common n-bit
patterns is performed. We therefore need to examine all
possible common subexpressions in the pattern set.
To do this, the frequency of each subexpression pattern is
determined, and next the most common pattern is chosen
and eliminated. This process is repeated until there does
exist no longer a coefficient with frequency higher than
1. The complete block-diagram of our algorithm is
presented in Figure 4. An parameter n is required, which
must be in the range <2, (N+1)/2>. The upper bound is
equal the to maximum number of non-zero bits in a N-bit
CSD number.
During statistics creation, all possible n-bit patterns of
each coefficient are identified and included into the
frequency statistics. Next, the set of frequency statistics is
searched for the most common pattern and, assumed a
frequency is higher than one, all occurrences of the
selected pattern are eliminated. Afterwards, the selected
pattern is added as a new coefficient at the end of the
coefficient set. Also, because elimination of one pattern
must influence the frequency statistics of the others, the
statistics must be re-evaluated. This procedure is repeated
for n, n-1, n-2 ... 2 bit patterns.
We will now discuss the important steps of the
optimization procedure in more detail. These include :
1. Pattern identification
2. Pattern selection
3. Searching algorithm

IV.1 Pattern Identification

In an exhaustive search, all possible
combinations of n-non-zero bit patterns in a coefficient
must be examined. Since a pattern can only be eliminated
once, we must also detect the occurrence of the same
patterns within each other. For example, the valid 2-non-
zero bit patterns of coefficient 01010101 are in the Table
2. The frequency of coefficient 101 is one, because the
second instance contains a second bit from the first one.
Assuming that, for example pattern 10001 will be
identified as the most frequent for example, then the
original coefficient will be replaced with 01000100 and
pattern 10001 will be added to the coefficient set as a
new coefficient.

Bit pattern Frequency
101 1
10001 1
1000001 1
101 1
10001 1
Table 2. 2 non-zero-bit patterns of coefficient 01010101

Setting of initial
value n

Eliminate sele-
cted pattern

 Select pattern
with the highest

frequency f

n > 11
 f > 1

1

0

END

0

Figure 4. Optimization algorithm block-diagram

Create frequency
statistics of n-bit

patterns

Adjust statistics

n = n -1

IV.2 Pattern Selection

In the case of patterns with the same frequency,
some decision criterion is necessary to make a selection.
We have chosen a very simple one. Patterns with more
bits must be implemented in adder/subtractor structures
with a bigger wordlength, and thus result in a larger
area. If two patterns have the same frequency, the
smallest pattern is chosen for further processing. For
example, pattern 101 is preferred over pattern 1001. In a
case of two bit patterns of equal length, one additional
criterion is added: the preference of adders over
subtractors. This is because an adder structure is smaller

than a subtractor of the same wordlength. For example,
pattern 101 will be selected rather than 101.

IV.3 Searching Algorithm

Because an exhaustive search is performed, the
selection of an appropriate algorithm has crucial
importance. We have decided to use a binary tree
structure to hold the frequency statistics of patterns. As
keys in the tree structure bit-patterns are used.
Initially, the pattern statistics are constructed as shown in
figure 5. For each coefficient, a local tree is constructed.
After all patterns for that coefficients are evaluated, the
global statistics tree holding information on the complete
coefficient set, is updated.
After elimination of a pattern, the frequency of other
patterns can also change, and therefore the frequency
statistics must be re-evaluated after each elimination.
Since the creation of a new global tree after each pattern
elimination is unacceptable, an alternative method of
adjusting the statistics is used (Figure 6). The idea is to
use a difference frequency statistics for every changed
coefficient that is processed. This local tree holds the
information about changes in frequencies for the different
subexpressions, after pattern elimination. The global tree
can then be updated with this difference information after
common subexpression removal. For example, in Figure
6, the frequency of pattern 101 frequency has changed
from 2 to 1, due to elimination of the subexpression
1000001 out of the coefficient 0.10101010, so the
difference frequency of pattern 101 is -1 (one less) thus
the global frequency of this pattern must be also
decremented. By backannotating the global tree only
after common subexpression removal, the global statistics
have to be created only once at the beginning.

p - previous frequency value

0.10101010

101 1000001

10001

2 1

2
10001 p1+2

⇒

Original coefficient
set

Local tree with frequency
statistics of one coefficient

Part of global tree after
frequency statistics update

pattern - KEY

frequency of pattern in
examined coefficient

Figure 5. Creation of a new frequency statictics

0.101001000

0.101000010
⇒

⇒
0.101001000

0.101000010
⇒0.00101000

1000001101

10001

-1-1

-2
101 p2-1

Coefficient after elimination
of 1000001 pattern

Local tree with difference frequency
statistics after change of coefficient

Part of global tree after
update with difference tree

Figure 6. Frequency statistics re-evaluation after 1000001 patern elimination

Change in frequency of
pattern compared to the
value before elimination

8 bit CSD coeff. 12 bit CSD coeff. 16 bit CSD coeff.

of taps init opt R init opt R init opt R
16 23 12 1.9 41 18 2.3 58 22 2.6

32 40 19 2.1 77 30 2.6 105 34 3.1

64 64 24 2.7 131 46 2.8 181 48 3.8

128 81 26 3.1 178 52 3.4 250 56 4.5

256 107 35 3.1 239 68 3.5 331 68 4.9
Table 3. Experimental results

V. Design Examples
In this section, we present the results that are obtained
using the proposed algorithm. First, the performance
of the approach is discussed, and next, a comparison
with the work of other authors is made.

V.1 Performance
The CSD conversion as well as the CSE

algorithm have been developed in C. In the first
example, three sets of FIR filters with CSD
coefficients of 8,12 and 16 bits chosen at random were
processed. The number of taps was 16, 32, 64, 128 and
256 for each set. The results are given in Table 3 in
terms of the number of adders-subtractors necessary to
implement the structure of the multiplier block (See
Figure 3.a). We give the number of add/sub before
(init) and after optimization (opt) as well as the
optimization ratio R=init/opt. The results demonstrate,
that number of adders/subtractors for this random set
of coefficients can be reduced by an average factor of
3.1 and the whole optimization works the better, the
more coefficients are processed. Execution times of
CSE algorithm for all examples were less than 1
second on a HP700 workstation.

In the second example, a Root Raised Cosine
64-tap FIR filter with impulse and frequency responses
shown in Figures 7 and 8 respectively,10 bit CSD
coefficients, 10 bit input and 16 bit output bus was
optimized. After optimization, behavioral VHDL code
was generated and synthesized using SYNOPSYS.
Synthesis result are in Table 4. The area value is given
as a sum of combinatorial and sequential area. Area

and critical path (tcrit) values are evaluated for Alcatel-
Mietec 0.7um 5V standard cell technology.

0 10 20 30 40 50 60 70
-0.2

0

0.2

0.4

0.6

0.8

1

Figure 7. Filter impulse response

0 0.1 0.2 0.3 0.4 0.5
-200

-150

-100

-50

0

50

Figure 8. Filter frequency response

dB

f/fs

Unoptimized Optimized
Area-com.[mm2] 5.181 4.4804
Area-seq [mm2] 3.9415 3.9415
Area-tot. [mm2] 9.1224 8.4219
tcrit[ns] 41.1 41.46

Table 4. Synthesis results

V.2 Related Work Comparison

Optimization of FIR filters by means of
removal of redundant hardware was already reported
by several authors [5 - 8]. A comparison was made
based on results presented for random coefficients.
We compare the average optimization ratios R.
 . Table 5 shows that the average optimization ratio of
3.1 that we obtain is clearly better than that what was
presented before.

Author R
Potkonjak [6] 1.4
Hartley [7] 2.1
Mehendale [5] 2.2
Demptser [8] 2.7
This work 3.1
Table 5. Related work results comparison

VI. Conclusion

In this paper, we presented an approach to the
Multiple Constant Multiplication problem defined in
[6] by exhaustive search. The results on our
experimental filter set showed a significant reduction
of hardware necessary in the multiplier block of a
transposed form FIR filter with better performance
than previously published papers. By including
behavioral code generation as a postprocessing step of
the optimization program, a tedious design subtask of
broadband modem development has been automated
and simplified.

Bibliography

[1] Digital Broadcasting Systems for Television, ETS
300 429, ETSI, 1994.

[2] Digital Audio Visual Council, “Lower Layer
Protocols And Physical Interfaces”, DAVIC 1.0
Specification, Part 08, 1996.

[3] K. Hwang, “Computer Arithmetic”, Jhon Wiley,
New York, 1979.

[4] H. Samueli, “The Design of Multiplierless Digital
Data Transmission Filters with Powers-of-two
Coefficients“, Proc. SBT/IEEE Int.
Telecomm.Symp. September 1992, pp. 425 - 429

[5] Mehendale M., Sherlekar S.D., Venkatesh G.,
„Synthesis of Multiplier-less FIR Filters with
Minimum Number of Additions“, IEEE
Transactions on computer aided design 1995.

[6] Potkonjak M., Srivastava M.B., Chandrakasan
P.A., „Multiple Constant Multiplications: Efficient
and Versatile Framework and Algorithms for
Exploring Common Subexpression Elimination“,
IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems, Vol 15. No. 2.
Feb. 1996

[7] Hartley R.I., „ Subexpression Sharing in Filters
Using Canonic Signed Digit Multipliers“, IEEE
Transactions on Circuits and Systems-II: Analog
and Digital Signal Processing, Vol. 43. No 10. Oct.
1996

[8] A.G. Demptser, M.D. Macleod, “Use of Minimum-
Adder Multiplier Blocks in FIR Digital Filters“,
IEEE Transactions on Circuits and Systems-
II:Analog and Digital Signal Processing, Vol. 42,
No 9, Sept. 1995.

