
Synthesis of Multi-rate and Variable Rate Circuits for High Speed

Telecommunications Applications

Patrick Schaumont Serge Vernalde Luc Rijnders Marc Engels� Ivo Bolsens

Abstract

A design methodology for the synthesis of digital cir-
cuits used in high throughput digital modems is pre-

sented. The methodology spans digital modem design
from the link level to the gate level. The methodology
uses a C++-based untimed data
ow system descrip-

tion, which is gradually re�ned to an optimized, bit-true
and clock cycle true C++-description. Through this re-
�nement, a bridge from link level design semantics to

architectural VHDL semantics is made within one and
the same environment.

1 Introduction

Currently there is a high interest in digital communi-
cation equipment for public access networks. Exam-
ples are modems for ADSL, VDSL, and up- and down-
stream HFC communication. Besides having high com-
plexity and throughput requirements, these systems
also need short development cycles. This calls for a
design methodology that starts at high level and that
provides for design automation as much as possible.

Our contribution to existing design systems for
telecommunications is a gradual re�nement within one

and the same C++ environment. The lowest level is
semantically equivalent to a RT-level VHDL descrip-
tion. This way, combined semantic and syntactic trans-
lations in the design
ow are avoided. Otherwise,
these translations make design veri�cation a cumber-
some task.

The paper is organized as follows. First, the overall
design
ow we use for the development of a telecommu-
nications system is indicated. Then, the architecture
synthesis phase of the design
ow will be elaborated,
and related work in this area is indicated. At the end,
the conclusions are drawn.

�Mark Engels is a senior research assistant of the Belgium
National Fund for Scienti�c Research.

2 OCAPI Design Flow

In the design of a telecommunication system (�g. 1), we
distinguish four phases: link design, algorithm design,
architecture design and circuit design. These phases
are used to de�ne and model the three key components
of a communication system: a transmitter, a channel
model, and a receiver.
1. The link design is the requirement capture phase.

Based on telecommunication properties such as
transmission bandwidth, power, and data through-
put, the system design space is explored using small
subsystem simulations. The design space includes
all algorithms which can be used by a transmit-
ter/receiver pair to meet the link requirements. Out
of receiver and transmitter algorithms contending
for an identical functionality, those with minimal
complexity are preferred. Besides this exploration,
any expected transmission impairment must also be
modeled into a software channel model.

2. The algorithm design phase selects and intercon-
nects the algorithms identi�ed in the link design
phase. The output is a software algorithmic descrip-
tion in C++ of digital transmitter and receiver parts
in terms of
oating point operations. To express par-
allelism in the transmitter and receiver algorithms,
a data-
ow data model is used. Also, the transmis-
sion imperfections introduced by analog parts such
as the RF front-ends are annotated to the channel
model.

3. The architecture design re�nes the data model of
the transmitter or receiver. The target architectural
style is optimized for high speed execution, uses dis-
tributed control semantics and pipeline mechanisms.
The resulting description is a �xed point, cycle true
C++ description of the algorithms in terms of ex-
ecution on bit-parallel operators. The architecture
design is �nished with a translation of this descrip-
tion to synthesizable VHDL.

4. Finally, circuit design re�nes the bit-parallel im-
plementation to circuit level, including technology
binding, the introduction of test hardware, and de-
sign rule checks.
In the following, we focus on the architecture design

phase of this methodology.

1

Link
Design

Algorithm
Design

Architecture
Design

Circuit
Design

subsystem model
descriptions

Communication Link
Requirements

MAP

DF

DF

Tx Chan Rx

Bit Error Rate
Performance Estimation

Aqcuisition Performance
Tracking Stability

Spectral Properties
Multiaccess

Active Area
Throughput

Estimated Power
Estimated Timing
Bittrue behavior

Power
Routing Capacitance

Netlist Errors

Figure 1: Overall Development Methodology

3 Architecture Design

The architecture design phase starts with a C++
oat-
ing point, and untimed data-
ow description, and re-
�nes this to a �xed point cycle true model. We will
explain this re�nement in three steps.
� A description of the target architecture.
� A description of the input data model used for ar-

chitecture design.
� A description of the steps used convert the data-
ow

input model to the target architecture.

3.1 Target Architecture

The target architecture, shown in �gure 2, consists of a
network of interconnected application speci�c proces-
sors. Each processor is made up of bit-parallel data-
paths. When hardware sharing is applied, also a local
control component is needed to perform instruction se-
quencing. The processors are obtained by behavioral
synthesis tools [9] or RT level synthesis tools. In either
case, circuits with a low amount of hardware sharing
are targeted.

The network is steered by one or multiple clocks.
Each clock signal de�nes a clock region. Inside a clock
region the phase relations between all register clocks
are manifest. Clock division circuits are used to derive

clock regionbitparallel
processor

φ1

buffer

clock
divider

fifo bpbp

div div div

itf

req

ack

clock region
interface

databus +
strobe

Figure 2: Target Architecture

the appropriate clock for each processor.
In between each processor, a hardware queue is

present to transport data signals. They increase par-
allelism inside a clock region and maintain consistency
between di�erent streams of data arriving at one pro-
cessor.

Across clock region boundaries, synchronization in-
terfaces are used, such as [5]. These interfaces detect
the presence of data at the clock region boundary and
gate clock signals for the clock region that they feed.
This way, non-manifest and variable data rates in be-
tween clock regions are supported.

The ensemble of clock dividers and handshake cir-
cuits forms a parallel scheduler in hardware, synchro-
nizing the processes running on the bit-parallel proces-
sor.

3.2 Input Data Model

The input data model is the speci�cation through
which the target architecture can be reached. We use
an extension to the synchronous data
ow (SDF) se-
mantics presented in [11].

SDF is a token
ow model that allows to express
algorithmic parallelism at high level easily. It describes
the system in terms of a graph, with nodes representing
the system actors and the edges the streams of data in
between them. Annotated to each edge is the number
of tokens produced/consumed per �ring or iteration of
the actor. The �ring itself is solely dependent on the
presence of tokens, thereby introducing the parallelism.

Since the SDF semantics do not allow to specify
runtime dependent production and consumption in the
data streams, a production or consumption is allowed
to be of the V type, as shown in �gure 3. A V is
either 0 or 1, the actual value being decided by the
actor responsible for this production or consumption.
This extension makes our data model of the dynamic

V 1

A B

0 1

A B

1 1

A B

A fires, B waits

A fires, B fires

Figure 3: Data Model

data
ow (DDF) type.
The SDF data model allows derivation of a compile-

time schedule. For the OCAPI architecture design, a
parallel actor schedule is required. The synchronous
property also allows thorough compile-time analysis.
For example, minimum edge bu�ering solutions are pre-
sented in [1] and [6] for deadlock-free and rate-optimal
schedules respectively.

For a runtime dependent V production or consump-
tion, a compile time schedule and minimal edge bu�er-
ing solution cannot be found. In that case, edge bu�er-
ing is reduced to zero, and the communicating actor
schedules are synchronized instead.

For implementation, we require the data
owgraphs
to be live. In addition, hardware realization is possible
only if the graph has �nite storage requirements and
processes an input within �nite time [4]. For a syn-
chronous data-
ow graph, this corresponds to the con-
sistency property [11]. For dynamic data-
ow graphs
however, no complete analysis method exists. As a con-
sequence, the user has to verify this condition by means
of simulation.

The task now is to re�ne this data model to the
target architecture presented above.

3.3 Re�nement Steps

During re�nement of the data model to a bit-true
and clock cycle true level, several algorithms such as
scheduling and pipelining, need to be applied. In this
paper, no new algorithms or optimizations will be pre-
sented. Rather, we wish to extract the requirements for
such algorithms in our approach, and indicate which of
the existing ones can be readily applied.

The example in �gure 4 shows these transformations
for the case of an pulse shaping �lter. The top of the
�gure shows the data-
ow model. The circuit condi-
tionally reads the input, performs the shaping by means
of an up-sampling �nite impulse response (FIR) �lter,
and synchronously writes samples to the output.

In the re�nement, three levels are distinguished be-
tween the initial data-
ow model and the �nal bit-true,
clock cycle true description: the untimed
oating point
description, the untimed �xed point description, and

in FIR out

4-phase
handshake

req req

ack

φ 2

φ 1

register

Actors Mapping

V 4 11
in FIR out

in
1

Floating Point -> Fixed Point Modelling

Connected Synchronous Subgraphs

Pipelining

in
1

1 4 1
FIR out

1

FIR out

1 4 1
FIR out

in

1

in
1 1,0,0,0 1

FIR out
1,1,1,1

Cyclostatic Modeling

1,1,1,11,0,0,0

Untimed Floating Point

Untimed Fixed Point

Timed Fixed Point

r in = 1 r FIR= 1 rout = 4Actor Rates:

n FIR = 4 n out = 1n in= 1Cycle Budgets:

Clock Periods: T φ ,in= T φ ,1
T φ,FIR = Tφ,out= T φ ,2

clock region 2clock region 1

Figure 4: Re�nement
ow

the timed �xed point description.

3.3.1 Untimed Floating Point Simulation

The initial description describes the circuit at the high-
est abstraction level. Each actor is simulated in a sep-
arate C++ class, while the edges are implemented by
means of a generic queue class. Actor execution is de-
cided by means of a �ring rule, that detects presence
of tokens in the input queues.

Instead of repeated testing of all �ring rules in the
simulation, a more e�cient solution is obtained by �rst
grouping all actors that can be statically scheduled. To
do this, all connected synchronous subgraphs in the
input data model are identi�ed. For each subgraph, a

static schedule can be found by means of a topology
matrix [11]. This yields the relative execution rate ri

of each actor in the synchronous schedule.
Each subgraph de�nes one clock region. In the C++

simulation, a scheduler class is de�ned for each clock
region, which �res the actors according to the rates of
the static schedule. The execution of a scheduler ob-
ject itself can depend on the values of V tokens, which
are decided internally in the actors. Therefore, when
a scheduler object is allowed to �re, it �rst queries
the actor V inputs and outputs on which it depends.
The system schedule �nally iteratively tries to �re each
scheduler object.

3.3.2 Untimed Fixed Point Description

The second level of re�nement converts each actor from
a
oating point to a �xed point description. Because
of the bit-parallel target architecture, the substitution
of
oating point operations by �xed point operations is
su�cient to model the target architecture. The trans-
formation requires de�nition of all word-lengths and
operation over
ow behavior.

In C++, this is simulated by using of a hybrid token
type that emulates
oating point as well as �xed point
representation, and use operator overloading in the ac-
tor description for both types of simulation. Fixed
point modeling in C++ has been reported in literature
before [8] and will not be elaborated further here.

3.3.3 Timed Fixed Point Description

In the third level of re�nement, conversion from un-
timed to cycle true behavior is performed.

Inside each synchronous subgraph, the clock dividers
of the target architecture implement a maximal parallel
schedule for all actors attached to the same clock. To
�nd this maximal parallel schedule, the following two
steps are taken.
1. Choose the cycle budget ni for each actor. The cy-

cle budget corresponds to the number of execution
phases of each actor. This is modeled in the multi-
rate graph by converting it to a cyclo-static single-
rate description [2], with each execution phase cor-
responding to one clock cycle.

2. Increase the parallelism in the cyclo-static descrip-
tion by applying pipelining until a maximal parallel
schedule is achieved.
Given the actor cycle budget ni , and the relative ex-

ecution rate ri within the clock region, the actor clock
period T�i can be found. This follows from the obser-
vation that each actor should take the same execution
time Ti during one iteration of the synchronous sched-
ule.

Ti = ni:T�i:ri (1)

Given this relation for all actors in a synchronous sub-
graph, we can equate them to �nd the relation between
T�i and other T�j . The smallest common multiple fre-

quency de�nes the common clock frequency T�1� for the
clock region.

To increase the parallelism in the graph, pipelining
is used. Pipelining is visible in the input data model
by the introduction of initial tokens. Pipelining for a
maximal parallel schedule is not always possible. Feed-
back loops in graphs for example are typical cases in
which parallelism is restricted. To overcome this prob-
lem, one must either recur to algorithmic transforma-
tions such as loop unrolling and lookahead techniques
[12], or else modify the algorithm implementation to
include a communication synchronization primitive in
each actor.

In C++, the simulation is modi�ed in the following
ways.
� The cyclo-static form of an actor is modeled by re-

�ning a single-phase actor behavioral description to
sequence of phases, each corresponding to one clock
cycle. The actor phases are described in terms of
operations on a signal type sig, which is an encap-
sulation of the �xed/
oating point token type. In
addition to the bit-parallel operations, a sig also
de�nes the lifetime of the token to be single-phase,
needed for intermediate values, or multiple-phase,
needed for algorithmic delay.

� The scheduler objects itself does call individual ac-
tor phases instead of single actor executions. The
schedulers objects are simulated at the highest clock
rate.

� The graph pipelining is visible as initial tokens which
are inserted in the C++ edge queues.
It is seen that this re�nement is independent of the

�xed point re�nement. Thus, the system timing can be
explored without bothering about �nite word-length ef-
fects. Also, system timing can be introduced gradually
because of the simulation queues: An eventual mis-
match can be signalled by queue under
ow or threshold
over
ow.

3.3.4 Actor Mapping

Finally, the clock-cycle true and bit-true description
of the system is obtained. The bottom of �gure 4
shows how this description relates to hardware. The
synchronous subgraphs are each mapped to one clock
region. The initial tokens on the edge queues translate
to registers. The V edges are implemented storageless
with a synchronization interface that gates the clock of
the dependent clock region.

The multiphase actor description must now be con-
verted into synthesizable VHDL format to map it into
gates. An solution in C++ is to encapsulate the token

types into a custom signal type sig, for which all de-
sired bit-parallel operators are overloaded to do one of
the following.
� When executing the C++ simulation, the execution

of the sig expressions build up a data structure
that corresponds to a signal
owgraph (SFG) syn-
tax tree of the actor. This allows to perform seman-
tical checks such as dead code and dangling input
detection.

� The actor can now be simulated by running through
the SFG, replacing signal names with actual values
read from input queues, and evaluating expressions
with the token operators.

� On the other hand, by processing the signal names,
behavioral VHDL code generation is possible.
We thus bene�t from the C++ parser to do the bulk

of the work in code generation. Also, the same data
structure for clock-cycle true simulation and code gen-
eration is used. Translation errors will also show up in
the C++ simulation.

3.4 Related Work

Data-
ow is commonly used as data model for DSP
system simulations, and many tools are based on it.
Only few support the transformation of a high level
data-
ow model to a hardware architecture. Grape-II
[10] performs mapping to an architecture of concurrent
DSP processors and FPGA's and is used for prototyp-
ing applications. The Aden/Combox [7] environment
performs mapping to an application speci�c architec-
ture.

Runtime dependent execution is supported in dif-
ferent ways by these tools. Grape-II uses the CSDF
model [2] in which the run-time dependency is cyclic in
time. Aden/Combox uses the BDF [3] model, in which
tokens of dual nature are distinguished: control tokens
and data tokens. The V annotation to an edge in our
model is however of the more general DDF level, which
makes the user responsible for the consistency of the
input speci�cation.

4 Conclusions

In this paper, we presented a software approach to-
wards architecture synthesis for telecommunications
applications. By choosing a target architecture, a high
level data
ow model can be gradually re�ned to a bit-
true, cycle true model of the architecture. The data

ow model allows easy expression of both multi-rate
and variable rate networks. The gradual re�nement
avoids combined semantic and syntactic transitions in
the design
ow. The designer thus is allowed to catch
on one problem at a time, instead of having them all

to solve at once. The design environment has mini-
mal requirements: a C++ compiler and appropriate
class libraries are su�cient. The OCAPI methodology
is currently being applied in the design of an upstream
cable modem and a radio link base station receiver.

References

[1] M. Ade. Data Memory Minimization for Synchronous
Data Flow Graphs emulated on DSP-FPGA targets.
PhD thesis, ESAT, Katholieke Universiteit Leuven,
October 1996.

[2] G. Bilsen, M. Engels, R. Lauwereins, and J. Perper-
straete. Cyclo-static data
ow. IEEE Transactions on
Signal Processing, 44(2):397 { 408, February 1996.

[3] J. T. Buck. A dynamic data
ow model suitable for ef-
�cient mixed hardware and software implementations
of dsp applications. In Proceedings of the Third Inter-
national Workshop on Hardware/Software Codesign.
Grenable, France, September 1994.

[4] J. T. Buck and E. A. Lee. The token
ow model.
In Proceedings of the Data Flow Workshop. Hamilton
Island, Australia, May 1992.

[5] B. F. Furber and P. Day. Four-phase micropipeline
latch control circuits. IEEE Transactions on Comput-
ers, C-36(1):24 {35, January 1996.

[6] R. Govindarajan, G. Gao, and P. Desai. Minimizing
memory requirements for rate-optimal schedules. In
Proceedings of the Intl. Conf. on Application Specif.
Array Processors, pages 75 {86, 1994.

[7] T. Grotker, P. Zepter, and H. Meyr. Aden: An en-
vironment for digital receiver asic design. In Proc.
ICASSP'95. Detroit, MI, 1995.

[8] S. Kim, K. Kum, and W. Sung. Fixed point optimiza-
tion utility for c and c++ based digital signal process-
ing programs. In T. Nishitani and K. K. Parhi, editors,
VLSI Signal Processing, VIII, pages 197 { 206. IEEE
Press, New York, NY, October 1995.

[9] D. Knapp, T. Ly, D. MacMillen, and R. Miller. Behav-
ioral synthesis methodology for hdl-based speci�cation
and validation. In Proc. DAC '95, 1995.

[10] R. Lauwereins, M. Engels, M. Ade, and J.A. Perper-
straete. Grape-ii: A tool for the rapid prototyping of
multi-rate asynchronous dsp applications on heteroge-
neous multiprocessors. IEEE Comput., 28(2):35 { 43,
February 1995.

[11] E. A. Lee and D. G. Messerschmidt. Static scheduling
of synchronous data
ow programs for digital signal
processing. Transactions on Computers, C-36(1):24 {
35, January 1987.

[12] K. K. Parhi and D. G. Messerschmitt. Pipeline inter-
leaving and parallelism in recursive digital �lters { part
i: Pipelining using scattered look-ahead and decompo-
sition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 37(7):1099 { 1116, July 1989.

