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Abstract

In this contribution, a design space explo-
ration of the various possible schemes for all-
digital symbol timing adjustment of QAM sig-
nals is made. The exploration is guided by
both performance degradation and implemen-
tation cost considerations. The BER perfor-
mance degradation is obtained using a quasi-
analytic simulation approach, while the imple-
mentation cost is estimated by high level dig-
ital circuit synthesis. The results show that a
good performance/implementation tradeoff is
obtained by using baseband interpolation with
an oversampling factor of three and adequate
compensation. This timing adjustment circuit
is now being applied in the design of a digital
downstream CATV QAM receiver.

1 Introduction

Currently, digital modems for broadband
communication over coaxial or twisted pair
access networks are of major interest. The
high speed requirements together with a need
for integration call for an all-digital solution,
where all synchronization loops are imple-
mented digitally on-chip. In an all-digital re-
ceiver, a fixed clock determines the samples
that are taken. Since this clock is not syn-
chronized to the transmitter clock, the origi-
nal samples need to be recovered by means of
interpolation on the received unsynchronized
samples. Because perfect interpolation can-
not be realised, a non-ideal polynomial inter-
polation of lower order is performed. This
introduces a performance degradation which
has been calculated by theoretical analysis in
literature [1][2]. We wish to determine the
performance degradation through simulation
based on a quasi-analytic analysis. This ap-
proach provides a fast estimation of the bit er-
ror rate and therefore is well suited for the ex-

ploration of the system configuration. Special
attention is paid to the relation between per-
formance and implementation cost. Area and
timing estimates are presented for an ASIC
realisation of the different alternatives. The
design space exploration is performed with re-
lation to three design parameters of a QAM-
16 modem. First, the position of the interpo-
lator inside the digital QAM receiver architec-
ture is considered at passband and baseband
positions. Next, the effect of the symbol over-
sampling factor is considered. Third, the in-
terpolator polynomial degree is varied. We
also take the compensation filter mentioned
in [3] into account, as this is required for any
practical implementation.

2 All-Digital Symbol Timing Ad-
justment

In a digital receiver, the goal is to strobe the
sampled signal at the top of the symbol, corre-
sponding to maximum eye opening. However,
the sampled signal values in a digital receiver
show a time shift with relation to the samples
of the transmitter. This can be constant or
there can be a difference in sample rate due to
a mismatch between the transmitter and the
receiver sampling clock. The original samples
can be recovered by adjusting the local clock
phase of the receiver or by digital interpola-
tion on the signal.

The first solution is the conventional syn-
chronous sampling approach (figure 1(a)).
The A/D sampling clock is adjusted so that
the outcoming samples correspond to the
transmitter samples. This hybrid solution re-
quires a Voltage Controlled Crystal Oscillator
(VCXO) which is a large and expensive com-
ponent.

The second solution uses a fixed sampling
clock and performs interpolation on the re-
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Figure 1: Symbol timing recovery

ceived signal samples to calculate the inter-
mediate values. Since in this case the receiver
sampling grid is not aligned to the transmitter
sampling grid, nonsynchronous sampling re-
sults (figure 1(b)). The fundamentals of this
digital symbol timing adjustment technique
have been covered in [4]. The control value for
the interpolation consists of an integer part
m(the basepoint index) and a fractional part
tt. The basepoint index determines for each
symbol which sample passes to the output of
the variable decimator. The fractional delay
parameter is used in the interpolation filter.
It determines the point between two samples
at which the interpolated value must be calcu-
lated. The basepoint index is adapted by the
control loop such that g always corresponds
to a point in the central interval of the in-
terpolator filter. This guarantees the lowest
interpolation error. There are several advan-
tages to the digital symbol timing adjustment
approach:

o A higher degree of integration is ob-
tained. All timing adjustment circuitry
is implemented on-chip, hereby reducing
the component count.

e In a fully digital implementation, the

design description of the complete loop
can be done in the same language. No
analog-digital interdomain modeling or
simulation has to be performed. For in-
stance, the modeling of the VCXO for
the hybrid approach and the cosimula-
tion with the digital part of the system
are no trivial tasks. The single-domain
description also makes the transfer to the
implementation level much easier.

o A fixed crystal oscillator can be used in-
stead of the expensive VCXO.

e The delay in the control loop is reduced
compared to the hybrid approach. This
improves the loop stability and enables
a faster updating of the control parame-
ters.

e The approach provides a higher flexibil-
ity. Different symbol rates can be sup-
ported by the same circuit, e.g. by using
a digital clock synthesizer which is con-
trollable within a broad frequency range.
It can also be used to perform a resam-
pling operation when the control loop
is designed to track large differences in
sample rates.
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Figure 2: The receiver architecture with digital timing adjustment

3 Design Exploration Parameters

In this section, the design space will be laid
out. Since perfect interpolation with a sinc
function would require an infinite impulse re-
sponse, practical implementations use an ap-
proximative interpolator function. As a con-
sequence, an error is introduced on the in-
terpolated value, resulting in a performance
(BER) degradation. It is the goal of our de-
sign exploration to investigate the influence of
the different parameters on this performance
degradation. In this section, the parameters
that will be explored are explained while the
corresponding performance degradation and
the implementation cost will be presented in
section 5. The method used to calculate the
performance degradation is discussed in sec-
tion 4.

3.1 The receiver architecture

For the position of the digital interpolator in
the receiver architecture, two alternatives are
investigated. Figure 2 shows the receiver ar-
chitecture. The digital input is a bandpass
signal at a low IF. This signal is downcon-
verted to complex baseband by a quadrature
oscillator, matched filtered, decimated and
sliced. For the data filtering, a root raised co-
sine profile is taken. The question that arises
is where to perform the interpolation, at com-
plex baseband (figure 2(a)) or at bandpass

(figure 2(b)). At first sight, the bandpass in-
terpolation seems an attractive solution from
the implementation point of view, since only
one interpolation filter is required. However,
since the bandpass signal contains higher fre-
quency components than the complex base-
band signal, the interpolation will probably
have to performed at a higher rate in order
to obtain the same performance. The perfor-
mance analysis will show this relation.

3.2 The symbol oversampling ratio
The oversampling ratio K = Fs/Fsym is
an important design parameter, since it has
a considerable effect on the hardware com-
plexity. Therefore, this parameter will also
be varied in order to observe the performance
degradation due to the interpolation error.
3.3 The interpolator polynomial de-

gree

For the interpolator filter, a polynomial inter-
polation is considered based on the Lagrange
polynomials [5]. This type of interpolation
functions has an efficient underlying FIR im-
plementation. The analysis is performed for
linear, quadratic and cubic interpolation. The
effect on the BER degradation and on the im-
plementation cost will be investigated.

3.4 The compensation filter

In figure 2, a compensation filter as mentioned
in [3] is depicted after the interpolator filter.



This filter reduces the interpolation error by
means of a fixed compensation. Since the in-
terpolator filter impulse response varies with
1, the interpolation error is also dependent on
. We took the following approach in deter-
mining the compensation filter coefficients:

1. A discrete set (N) of u values is selected
in the range [0..1]. For each of these N
values, a compensation filter is designed
such that the overall response of the in-
terpolation filter plus the compensation
filter exhibits an all-pass behaviour for
that particular value of u. For this y, no
interpolation error occurs.

2. For each of the N compensation filters,
the performance degradation is calcu-
lated in terms of p and the worst case
value retained. We thus obtain a worst
case degradation for each of the N com-
pensation filters.

3. The compensation filter corresponding to
the minimum worst case degradation is
selected. The accompanying p value for
which the all-pass behaviour is obtained,
has the value 0.18 for the linear and cubic
interpolation and the value 0.25 for the
quadratic interpolation.

From the implementation point of view, the
compensation filter impulse response can be
incorporated in the data filter. This means
that the hardware overhead of this compen-
sation filter becomes negligible.

4 Performance Calculation through
Quasi-Analytic Analysis

Several methods [6] exist to calculate or esti-
mate the performance degradation in terms
of the BER or the FEj/Ng ratio which in
our case results from the interpolation er-
ror. They range from a fully analytic anal-
ysis [1][2] of the communication link to the
Monte Carlo based simulation. In between,
there are numerous approaches that make cer-
tain assumptions about the system in order
to shorten the large execution times of the
Monte Carlo simulation.

For our performance calculation, the quasi-
analytic analysis (QA) approach was selected
which is also described in [6]. The QA method

determines the ISI distribution caused by

the nonideal interpolation through simula-
tion. This is combined with a Gaussian dis-
tribution by means of calculation to take into
account the additive white Gaussian noise.
Since only the ISI distribution has to be
obtained through simulation, a fast estima-
tion of the BER can be performed, making
the method suitable for system design explo-
ration. The demands placed on the system
architecture in order for the QA method to
be applicable, are satisfied:

e The interpolation filter has a short mem-
ory (low order), so the simulation time
required to produce a representative ISI
distribution is small.

e The system is linear.
e The supposed channel model is Gaussian.

This makes the QA approach the ideal
method for our performance evaluation. For
a rectangular constellation like QAM-16, we
assume that the I- and Q-channels are uncor-
related. This allows to determine the error
probability for each dimension separately us-
ing the QA approach and then combine them.
For each simulation, a complete BER versus
Ey/ Ny curve is obtained.

5 Design Exploration Results

In this section, the performance degradation
due to the nonideal interpolation process is
presented as well as the implementation com-
plexity of the interpolator hardware. Differ-
ent alternatives are explored by varying the
parameters described in section 3.

5.1 F3/Ny degradation

For the performance loss, the QA approach
of section 4 is applied, using a set of 5000
pseudo-random symbols of a QAM-16 con-
stellation. The IF carrier frequency is located
at 0.75x F'sym and the raised cosine rolloff fac-
tor is 0.2 which corresponds to the C-profile
of the DAVIC specification [7].
that p is always set to the correct value, so
that the samples are interpolated at the opti-
mal position. The results are shown in figure
3 for a BER of 107¢. The figures represent
the Fy/Ny degradation, i.e. the increase in
Ey/ Ny required to maintain the BER at the
same value as for ideal interpolation. For each

We assume



entry point in the table, the Ey/Ngy degrada-
tion is calculated for 10 values of p € [0,1]
and the maximum degradation listed.

A first observation from the tables is that the
compensation filter has a large impact on the
degradation. Second, the baseband interpo-
lation gives much better performance results
than the bandpass interpolation when using
the same parameters, as was expected. High
oversampling ratios in combination with high
order interpolator polynomials are required
to obtain an acceptable F3/Ng degradation.
Since the implementation cost then becomes
too high, it was decided for our application to
perform the interpolation at baseband. The
baseband interpolation results show highly
acceptable degradations already with K = 3
and a linear or quadratic interpolator polyno-
mial.

Interp.

Linear Quadratic Cubic
order
K=Fs/Fsym Unc. | Comp. | Unc. | Comp. | Unc. | Comp.
3 15 0.3 0.15 0.05 0.05 0.02
4 0.5 0.1 0.03 0.02 0.01 0.01
(a) Baseband interpolation
Interp. Linear Quadratic Cubic
order
K=Fs/Fsym Unc. | Comp. | Unc. | Comp. | Unc. | Comp.
4 *) 6.8 8.6 2.9 3.8 1.3
5 9.0 2.0 1.7 0.7 0.7 0.3

*):Pe= 10"6 cannot be reached using these parameters

(b) Bandpass interpolation

Figure 3: E}/Ng degradation (dB) at P. =
1076 for worst case

5.2 Implementation

For the implementation cost of the timing ad-
justment circuitry, we focus on the cost of the
interpolator filter since it is the largest com-
ponent and since the compensation filter can
be realised together with the data filter. An
efficient structure for the implementation of
the interpolator filter is offered by the Far-
row structure [8]. In figure 4, this structure is
depicted for the three interpolator polynomi-
als. The implementation cost is estimated at
different levels in the synthesis process.

At the highest level, an operation count is
given for each type of operation (figure 5(a)).
For a multiplication by a constant, the con-
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Figure 4: Farrow structure for interpolator

filter

stant is transformed to a CSD (Canonical
Signed Digit) [9] representation.
tiplication is then expanded into a sequence
of shift operations and additions or subtrac-
tions. The shift operations are not mentioned
since they do not contribute to the hardware
cost, while the additions or subtractions are

The mul-

listed in the column CSD-ops.

The next level of cost estimates is obtained
by performing behavioural and RT level syn-
thesis with the CATHEDRAL-2/3 silicon com-
piler [10]. A gate count is obtained in terms
of equivalent 2-input NAND gates. For the
internal filter wordlengths, 10 bits is taken
(figure 5(b)).

The last step is the mapping of the abstract
gates to a Standard Cell library in order to ob-
tain area and critical path delay figures. The
results are shown for the Mietec 0.7um 3.3V
Standard Cell library.

The figures show that the area of the filter
is doubled each time the interpolator polyno-
mial degree is increased. It is thus important
to keep the interpolator order as low as pos-
sible.

The critical path delay enables to calculate
the maximum symbol rate. For instance,
the quadratic interpolator filter works at a



maximal clock frequency of 34.5 Mhz. If an
oversampling ratio of 3 is taken, an upper-
bound of 11.5 Mbaud is placed on the symbol
rate. Faster implementations can be obtained
through the addition of pipeline sections in
the filter structure.

?y%% delays |CSD-ops |add/subtr. mult.
order
linear 1 0 1 1
quadratic 2 0 5 2
cubic 3 5 15 3
(a) operation complexity

ordon NgA:tleDSZ SC area crgég?/th

linear 785 0.35mm? | 20.5ns

quadratic 1652 0.73 mm2 29.0ns

cubic 3415 | 1.50mm? | 43.2ns

SC area : Standard Cell area (no intercell routing included)
in 0.7 um 3.3V Mietec CMOS technology

(b) gate count and area/delay figures

Figure 5: Interpolator filter implementation
results

6 Conclusion

A design exploration was performed to ana-
lyze the performance degradation and the im-
plementation complexity of all-digital symbol
timing adjustment schemes. The parameters
that were varied are the symbol oversampling
ratio, the interpolator polynomial degree and
the position of the interpolator in the re-
ceiver architecture (baseband/bandpass). It
was shown that the quasi-analytic analysis
approach was applicable for the estimation of
the performance degradation. Since this is a
fast method, it is well suited for the design ex-
ploration. The results showed that bandpass
interpolation results in a considerable per-
formance degradation. It is only applicable
when high order interpolation is performed
in combination with high oversampling ratios,
which has a drastic impact on the hardware
complexity. For the design of the downstream
CATV QAM receiver, we will therefore use
baseband interpolation. With an oversam-
pling ratio of 3 and quadratic interpolation,
the Fy/Ny degradation is only 0.05 dB at a
BER of 107%. The implementation cost for

the interpolator filter was estimated at dif-
ferent steps in the design process. The re-
sults show that the hardware cost doubles
each time the interpolator polynomial degree
is increased.
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