
Prototyping Quadrature Amplitude Modulation for Two-way

Communication on CATV Networks

R. Lauwereins, M. Adé P. Vandaele, M. Moonen P. Schaumont
KULeuven-ESAT/ACCA KULeuven-ESAT/SISTA Imec-VSDM/DISTA

Kard. Mercierlaan 94 Kard. Mercierlaan 94 Kapeldreef 75
B-3001 Heverlee, Belgium B-3001 Heverlee, Belgium B-3001 Heverlee, Belgium

Email: Rudy.Lauwereins@esat.kuleuven.ac.be

1. Abstract

The recently discovered potential of two-way
communication on CATV networks for
advanced telecommunications applications li ke
video-on-demand, spawned research and
development in modem design for up-stream
communication. This paper reports on the
prototyping of such a 16QAM modem and
compares the achievable sample rates on 4 DSP
processors to simulation speeds obtained on a
powerful workstation.

2. Introduction

Recently, coaxial cable networks have
received much attention in the context of
interactive application [1,2]. In countries with a
high penetration of CATV (e.g. Belgium
>90%), the cable network forms a viable
alternative to classical telephone networks.
Envisaged applications are telephony,
interactive television, home-shopping, video-on-
demand, high-speed Web browsing, etc. The
interactive nature of these services requires
however two-way communication on a network
that initiall y was only intended for a one-way
broadcasting of television signals. What is
aimed at now, is a low bit-rate upstream link
(from the subscriber to the head-end station)
and a high bit-rate downstream link (from the
head-end station to the local subscribers).
Particularly the first problem is challenging
because very littl e is known about the upstream
channel, and communication standards are still
under development [3]. The projected frequency

band for upstream communication is in the 5-25
MHz range, see also Figure 1.

upstream

5 25 40 300

analogue TV
7 MHz spaced

digital TV and interactive
services, 8 MHz spaced

downstream

f (MHz)860

Figure 1. Frequency allocation

The basic configuration of the network is
hybrid fibre-coax. This means that the upstream
signal will first travel through coax before
entering a fibre node and going through the fibre
trunk to the head-end station. The coaxial part
will bring along some serious channel
impairments [4] which must be compensated for
at the receiver. Without going into too much
detail we only mention the most important
impairments. The group delay distortion (i.e.
signals at different frequencies propagate with a
different velocity through the network) causes
severe inter-symbol interference at the receiver.
Micro-reflections are caused by discontinuities
in the transmission medium and cause part of
the signal energy to be reflected. Ingress noise
models the interference caused by the antenna
like properties of the cable. Burst noise typically
originates from household appliances such as
electrical motors. Besides this there are common
path distortion products, thermal noise, impulse
noise, non-linearities, phase-noise frequency
offset etc. If we add to this the variations in the
networks stemming from the variabilit y of the
number of trunk, bridge and distribution
ampli fiers it becomes quite clear that it is very
hard to build a channel model which

ED : Error Detection

ED + EC ED + EC ED + EC

timing

slicerequalizer AGC phase

IP

IP

FFE

FBE

EC : Error Correction

Figure 2. Receiver architecture

incorporates all these statistical and non-
statistical phenomena observed in real networks.
Studies [2] have shown that because of this ugly
environment, in many systems, less than half of
the spectrum will be available at any given time
instant. The absence of a good channel model
necessitates the real-time prototyping of the
complete set-up, including the cable, after off -
line simulation and before a commitment to
sili con is made. Real-time prototyping has
several benefits compared to off-line simulation:
• It enables algorithm verification on the real

channel;
• It allows for more extensive testing under

more varying conditions: 24 hours a day
measurements are possible as well as tests
with transmitters placed on different
locations;

• It gives faster feedback when modifying
algorithmic settings: the prototype indeed
allows to modify algorithmic parameters on
the fly, without re-compilation and to view
its effects in real-time on the next received
data packet.
We aim at developing a 16QAM modem for

this upstream communication channel. The
projected bit rate is 10 Mbit per second and this
at a bit-error rate of 10-10. The transmission
payload consists of ATM cells and the multiple
access protocol is TDMA. This type of multi -
access protocol naturally fits the cell -based
payload.

The next section explains the receiver
architecture. Section 4 describes the rapid
prototyping environment GRAPE and indicates
how GRAPE was used to obtain first estimates
of the achievable sample rate when the 16QAM
receiver is implemented on 4 Digital Signal
Processors (the TMS320C40).

3. The receiver architecture

The receiver structure ought to be the best
compromise between low bit-error rate, short
run-in sequences (this is particularly important
because a burst mode system becomes very
ineff icient for long run-in sequences),
possibilit y for digital integration and
implementation cost. The solution has to be
robust against the various channel impairments
and should be able to cope with high dynamic
ranges (30 dB). The general structure of the
receiver is depicted in Figure 2.

Matched filtering is done by means of a fixed
root raised cosine filter. Then the Automatic
Gain Control brings the signal back to the right
level in order to avoid under- or overflow in
subsequent sections of the demodulator. A phase
loop compensates phase mismatches (which
result in a rotation of the constellation diagram)
as well as mismatches between the carrier
frequency of transmitter and receiver. Timing
recovery is done by means of interpolation.
After the timing recovery the signal is down-
sampled to symbol rate and finally the channel
distortion is countered using an equaliser. Since
the compensation of the group delay distortion
is the only task of the equaliser, it converges
quite rapidly, even with a slowly converging
least mean squares (LMS) algorithm.
Performance was improved using a decision
feedback equaliser (DFE), where the decisions
of the slicer are fed into the feedback part of the
equaliser. If the decisions of the slicer are
correct, the input of the feedback part is error
free and hence improves performance. Since the
output of the slicer is only a few bits wide, a
very cost effective implementation is possible.
The equaliser is de-coupled from the rest of the
receiver structure by means of the first sli cer,
this in order to avoid loop instabilit y caused by

interference. The error correcting mechanisms
work with different time constants during
training and tracking phase. During training a
fast acquisition is desirable while in tracking
only slow variations of the channel
characteristics have to be compensated.

4. Prototyping with GRAPE

This section first describes the design flow of
the prototyping environment GRAPE, developed
at the K.U.Leuven. In the next section, it
explains how GRAPE is used to prototype the
16QAM receiver and what sample rates may be
expected on a target consisting of four
TMS320C40 DSP processors.

4.1. GRAPE’s design flow

GRAPE (Graphical RApid Prototyping
Environment) is an environment, developed at
our laboratory, which facilit ates the real-time
emulation and implementation of synchronous
DSP applications on heterogeneous target
platforms consisting of DSPs and FPGAs [5].
Many aspects of GRAPE resemble the
environments Ptolemy of UC Berkeley [6] and
COSSAP of RWTH Aachen [7], currently
further developed by Synopsys; the main
distinction is that GRAPE is targeted at real-
time execution whereas the other environments
mainly target simulation.

GRAPE’s design flow consists of four
phases. In the specification phase, the
application is described using an extended data
flow model, called cyclo-static data flow
(CSDF) [8], which is an extension of Lee’s
Synchronous Data Flow [9]. In short, the
application is represented as a directed graph
G=(N,E), where the nodes N represent
computation tasks, and the edges E the
communication of the results (called tokens)
from a producing to a consuming task. The
functionality of the nodes is specified in a
conventional high level language li ke C and
VHDL. The number of tokens a task produces
respectively consumes during an execution
phase of a task is known at compile time,
allowing for a compile time analysis of the
graph in the next phases of GRAPE’s design
flow and leading to highly eff icient run-time
code. Still i n GRAPE’s specification phase, the

target architecture is specified as a connectivity
graph, with an indication of the amount and type
of resources each processing device possesses
[10]. In the second phase, the amount of
resources required by each of the tasks when
executed on each of the processing devices, is
estimated. Next, the application is mapped onto
the target hardware. In this phase, each task is
assigned to a specific processing device, a
communication path is established for each edge
in the application’s graph and a compile time
schedule order is determined per device that
minimises the total makespan. In GRAPE’s
fourth and last design phase, code in C or
VHDL is generated for each of the processing
devices, consisting of a main program and
communication primitives. Note that a single
design flow is used for software targets (DSPs)
as well as for hardware targets (FPGAs) [11].

4.2. Prototype of the 16QAM receiver

The target platform available for
implementing the prototype of the receiver,
consists of 4 fully interconnected TMS320C40
processors, running at 40 MHz. It consists of
two PC long ISA-bus cards. Both cards
communicate with the host PC via dual ported
RAM for program downloading and
modification of algorithmic parameters.

First, the 16QAM receiver application is
specified using GRAPE’s graphical editor. By
carefully inspecting Figure 2, we can increase
the granularity of the application wherever
several sub-tasks are clearly sequential and
cannot be pipelined. This reduces the amount of
inter-task communication overhead. We end up
with Figure 3, which is a screen-dump of the
specification tool of GRAPE. The (dark grey)
triangles represent algorithmic parameters that
may be modified at run-time. We clearly see the
matched filters (FIR), the automatic gain control
(AGC), the phase loop (PHI), the symbol
alignment (MU) and the equaliser (LMS).

The tasks of the 16QAM receiver as specified
in Figure 3, have been automatically assigned to
the 4-processor target hardware, as shown by the
shade of grey of the task borders in the
application window of Figure 4.

Figure 3. High level specification of the QAM receiver.

Figure 4. Schedule of the high level tasks.

Then, GRAPE ordered the tasks on each
device in time, such that processor idle time is
minimised. The bottom of Figure 4 shows this
schedule. White tasks are application tasks; grey
shaded tasks are inter-device communication
primitives, that were automatically generated by
GRAPE. The obtained sample rate of 63 kHz
corresponds to a symbol rate of 15.770 symbols
per second. Table 1 compares the data

throughput with simulation and ASIC
implementation.

Symbols/s Relative to
real-time

ASIC 2.500.000 1
Prototyping 15.770 159

Simulation (HP700) 500 5.000

Table 1 Estimated data rates.

As can be seen, real-time prototyping cannot
be achieved. However, when the QAM protocol
is implemented in burst mode and when more
than 159 transmitters are in a time-multiplexed
way present on the same CATV cable, real-time
processing for one user can be obtained by
buffering a complete burst and processing it
when the burst of the other users are on the
cable.

It is expected that a substantial speed
improvement can be obtained compared to the
figure indicated above. These will be
investigated in the remainder of the project. A
limited list of possibilities follows:
1. A very cheap improvement is to switch to 50

MHz processors.
2. The current implementation requires the

copying of the results of one block into a
software buffer before communication
primitives copy them onto the hardware
links. Careful scheduling can avoid these
copying steps and the associated
communication primitives. This would
remove all shaded tasks in Figure 4.

3. The current C implementation is not
optimized for the TMS320C40 DSP
processor. The speed gain is unpredictable.
Previous experience showed speed gains
between 20% and 300%.

4. Timing criti cal tasks, especially those
containing bit manipulations or extensive
conditional processing, may be migrated to
FPGAs. Speed gain is unpredictable. This
migration reduces the flexibilit y and
observabilit y of the application, and requires
a substantial amount of effort, since the C
specification of the migrated sub-task needs
to be re-written in register transfer level
VHDL. This migration will hence only be
done during the later stages of prototyping.
Previous experience has shown speed gains
up to 800%.

5. Conclusion

Although not achieving real-time sampling
rates, prototyping is shown to be valuable to
evaluate the interaction of new modem designs
with the real channel, by offering a speed-up of
one to two orders of magnitude compared to
workstation simulation. The use of advanced

prototyping environments li ke GRAPE in
combination with programmable target
hardware makes prototyping hardly more
expensive in development time and equipment
than simulation.

6. Acknowledgements

R. Lauwereins and M. Moonen are Senior
Research Associates with the NFWO. P. Vandaele is
a Research Assistant of the IWT. Research supported
by Siemens Atea and the Flemish Government via the
Flemish Institute for the Advancement of Scientific-
Technological Research in Industry (IWT). This
project has partly been made possible by NFWO,
ESA, Esprit (Retides, Dipsap-II) and Texas
Instruments. K.U.Leuven-ESAT and Imec are
members of the DSP Valley network.

7. References

1 Comerford R. and Tekla S., “Wired for
Interactivity”, IEEE Spectrum, April 1996, pp 21-28.
2 Goldberg L., “Cable Modems: The Journey From
Hype To Hardware”, Electronic Design, Apr. 1996,
pp 65-80.
3 Eng W., “ IEEE Project 802.14: Standards for
Digital Convergence”, IEEE Communications
Magazine, May 1995, pp 20-23.
4 Currivan B., “CATV Upstream Channel Model,
Rev 1.0”, IEEE P 802.14 Working Group, June 1996.
7 R. Lauwereins, M. Engels, M. Adé, J.A.
Peperstraete, “Grape-II : A System-Level Prototyping
Environment for DSP Applications” , IEEE
Computer, Feb. 1995, pp 35-43.
8 J. Buck, S. Ha, E.A. Lee, D.G. Messerschmitt,
“Ptolemy: a Framework for Simulating and
Prototyping Heterogeneous Systems” , Int. Journal of
Computer Simulation, Vol. 4, Apr. 1994, pp 155-182.
9 Synopsys Inc., 700 E. Middlefield Rd., Mountain
View, CA 94043, USA, COSSAP User’s Manual.
10 G. Bilsen, M. Engels, R. Lauwereins, J.A.
Peperstraete, “Cyclo-Static Dataflow” , IEEE Trans.
on Signal Processing, Feb. 1996.
11 E.A. Lee, D.G. Messerschmitt, “Static Scheduling
of Synchronous Data Flow Programs for Digital
Signal Processing” , IEEE Trans. on Computers, Vol.
C-36, No. 1, Jan. 1987, pp 24-35.
12 G. Bilsen, M. Engels, R. Lauwereins, J.A.
Peperstraete, “Compile-time Makespan-optimal
Multi -resource Mapping for Hardware/Software Co-
design”, KULeuven Tech. Report ESAT-ACCA 95-02.
13 M. Adé, R. Lauwereins, J.A. Peperstraete,
“Hardware-Software Co-design with GRAPE”, Proc.
6th Int. Workshop on Rapid System Prototyping,
Chapel Hill, NC, USA, June 1995, pp 40-47.

