
Synthesis of Pipelined DSP Accelerators with Dynamic Scheduling

Patrick Schaumont Bart Vanthournout Ivo Bolsens Hugo De Many�

IMEC/VSDM, Kapeldreef 75, B-3001 Leuven, Belgium
�Professor at the Katholieke Universiteit Leuven

control

data

Variable
Length
Coder

Variable
Length

Decoder

Motion
Estimator

ReconstructorCompressor

accelerator components

micro
controller

video
RAM I/O

Figure 1: Architecture of a Video Phone

Abstract

To construct complete systems on silicon, applica-

tion speci�c DSP accelerators are needed to speed up

the execution of high throughput DSP algorithms. In

this paper, a methodology is presented to synthesize

high throughput DSP functions into accelerator pro-

cessors containing a datapath of highly pipelined, bit-

parallel hardware units. Emphasis will be put on the

de�nition of a controller architecture that allows e�-

cient run-time schedules of these DSP algorithms on

such highly pipelined data paths. The methodology will

be illustrated by means of an FFT butter
y accelerator

block.

1 Motivation
Complex digital systems such as the videophone ter-

minal of �gure 1 typically consist out of a heteroge-

neous mix of hardware blocks: processor cores, gen-

eral purpose macro blocks, and dedicated accelerator

processors. These accelerator blocks are required to

execute high performant DSP functions such as mo-

tion estimation and DCT/IDCT functions.

In this paper we will concentrate on the generation

of such application speci�c accelerator processors. We

will highlight both the design issues and the architec-

ture characteristics. The requirements of such acceler-

ator processors are:

� High throughput requirements impose the usage

of pipelined data paths.

� Area can be saved through the hardware sharing

of di�erent micro-instructions. The high complexity of

the targeted functions make this sharing important.

� The accelerator processor has to be embedded in

an overall system architecture.

� The accelerator functions can execute both at a

manifest rate and a nonmanifest rate. An example

of the former is the processing of a data stream out

of a A/D converter. An example of the latter is the

processing of data out of a processor core inside the

system.

Automated synthesis systems for pipelined data-

paths have been reported previously: SEHWA [8],

PISYN [2], and SODAS [3]. All of these assume an

in�nite time loop and �x the runtime schedule at com-

pile time. For an accelerator function, the in�nite

timeloop assumption does not hold and more
exibil-

ity is needed.

For this purpose, our work has concentrated on the

following issues. The accelerator algorithm is de�ned

by means of a signal
ow graph (SFG). The accelerator

datapath is de�ned as a set of application speci�c units

(ASU) [7]. An ASU is a bit-parallel hardware operator,

able to execute one or more micro-instructions. The

micro-instructions are de�ned by subsets or clusters

of the SFG. Each cluster corresponds to one micro-

instruction, and the set of all clusters covers the com-

plete SFG. This way, the accelerator algorithm corre-

sponds to a sequence of micro-instructions.

An e�cient interconnect network, consisting of

pipeline registers, will take care of moving data from

one ASU to the other without creating a communica-

tion bottleneck.

A simple and fast controller structure is de�ned

that organizes the run-time sequencing of the micro-

instructions on the ASU's.

Finally, a complete design
ow, from algorithm

speci�cation to implementation is de�ned. For the

synthesis, including pipelining and retiming of ASU

components, we rely on existing data path synthesis

tools and retiming tools [10, 6].

In the next section we will further detail the design

instruction bus

accelerator controller

asu0 asu1

accelerator datapath

LC LC

do doAck done

io1
io0

= pipeline register

Figure 2: Architecture of the Accelerator Processor

steps to realise a data path architecture composed of

ASU's. Section 2.2 elaborates on the architecture of

the run-time schedule controller, and section 2.3 ex-

plains the operation of the controller. Finally, the de-

scribed architecture and method will be demonstrated

by synthesizing an FFT butter
y accelerator.

2 The Accelerator Architecture

Figure 2 shows the overall structure of the pipeline

processor. Two parts can be distinguished: an accel-

erator data path and an accelerator controller.

The accelerator datapath consists of ASUs and in-

terconnection busses with pipeline registers. All con-

nections run point-to-point, and the use of latch reg-

isters that require read-write signals is avoided. This

way, the interconnection strategy avoids that either a

multiplexed bus or an interconnect storage register can

become a pipeline bottleneck.

The accelerator controller is steered by the system

level controller through a processor interface. It also

generates control signals for the accelerator datapath,

as well as strobe signals for the input and output

busses on that datapath.

2.1 Design of the Accelerator Data Path

The di�erent steps taken in the design of the accel-

erator data path are illustrated in �gure 3, along with

a small example.

a. Using the SFG speci�cation of the accelerator

function, the accelerator data path is de�ned by clus-

tering the SFG. A cluster can contain functional oper-

ations (additions, shifts, ...), or else signal
owgraph

inputs and outputs. SDF semantics [5] are assumed.

b. These clusters are assigned to hardware. In case

of functional operations, they are assigned to ASU op-

erators. Input and output node clusters of the SFG are

assigned to input/output strobes, which are generated

inside the acceleration controller. The SFG data prece-

dences that cross the borders of the clusters de�ne in-

terconnection busses of the accelerator data path.

c. The set of clusters assigned to one ASU de�ne

the ASU micro-instruction set and composition. It

consists of a local controller (LC) and a bitparallel data

path. The local controller handles micro-instruction

decoding and local decision making. As a consequence,

there is no global decision making and thus no condi-

tion evaluation circuitry in the accelerator controller.

Using state-of-the-art tools [10, 6], the ASU structure

is obtained, and pipeline registers are inserted in the

ASU data path by retiming software. The I/O timing

behavior on the data and control ports of an ASU is

known as the timing view. It is expressed as a num-

ber of clock cycles, representing latency between ASU

input consumption and output production.

d. To �nd the number of interconnection pipeline

registers we proceed as follows. The cluster latency

is expressed as the number of clock cycles needed to

evaluate that cluster. Using the cluster latencies as

operation lengths, the clustered graph is scheduled.

The cluster latency is equal to the ASU latency incre-

mented by one. The increment of one ensures that at

least one pipeline register will be present on an inter-

connection bus between two ASU clusters. The maxi-

mum combinatorial delay, or critical path length, of the

accelerator datapath will therefore comply the timing

specs that were used for the individual ASU's.

The ASU timing view is also used to model the

micro-instruction sequence of the overall data path in

a table, with one row per ASU and one column per

clock cycle. Such a structure is called a reservation

table, which is the basic data structure in the design

of the accelerator controller.

2.2 The Accelerator Controller

The accelerator controller must perform ASU

micro-instruction sequencing according to the cluster

schedule, as represented in the reservation table.

In �gure 4, the operation of the controller is illus-

trated by a an example. The reservation table that

was derived in the previous example is on top. Below,

the processing of three SFG frames is shown in terms

of the processor interface pins. Time runs from left to

right, one clock cycle at a time.

The processor interface makes use of three signals

do, doAck and done. The do pin is used to initiate the

processing of one SFG frame, represented in the ac-

celerator controller by one reservation table instance.

When a do command is accepted, it means that hard-

ware will be available to execute the schedule in reser-

vation table during the next few cycles.

In the example the do pin is held high during 5 con-

secutive clock cycles. Acceptance of the do commands

clustering

SFG

Clustered SFG

cluster
assignment

ASU
definition

Clusters
per ASU

ASU
StructureTiming View

 per ASU

cluster
scheduling

Cluster
Schedule

Reservation Table
Construction

interconnect
extraction

Reservation
Table

Interconnect

Controller
Generation

Accelerator
Controller

a = in1 + in2;
out1 = a << 3;
out2 = a + 2;

ip ip

+

+

23

<<

op op

io 0, m0

asu 0, m1

asu 0, m3

asu 1, m2

io 1, m4

asu 0

3

LC

m1/ m3

2

<<

asu 1

in2/_in1/a

a/out2

asu 0

asu 1

io 0

io 0, m0

asu 0, m1

asu 0, m3

asu 1, m2

io 1, m4

SFG

Assigned Clusters

ASU Structure

Cluster Schedule

1

2

3

4

5

1

2 3 4 5

io 1

m0

m1

m2

m3

m4

Reservation Table

a

b

c

d

Figure 3: Design
ow for the Accelerator Processor

is acknowledged through the doAck output. At the sec-

ond clock cycle, a new reservation table instance can

be interleaved with the �rst one. For the third and

fourth cycle however, this interleaving fails and the

do is not acknowledged. This failure originates in the

hardware sharing from asu 0 and is called a pipeline

con
ict. Thus, the accelerator controller takes care of

two key functions:

� Run-time scheduling of ASU micro-instructions

and detection of con
icts

� Interleaving of accelerator-level instructions

This leads to the accelerator controller hardware

presented in �gure 5. Three parts are discerned:

� The Micro-Instruction Shifter

� The Con
ict Controller

� The Processor Interface

The micro-instruction shifter is used to store reser-

vation table initiations. Each ASU micro-instruction

bus or input/output strobe has a proper shift regis-

ter corresponding to one row in the reservation table.

A start signal loads one instance of the reservation

table into the shift registers, in order to obtain the

interleaving shown earlier.

The start signal is also fed into the con
ict con-

troller. This is a hardware con
ict model that signals

occuring pipeline con
icts through the ready output.

Whenever this output is low, a new reservation ta-

ble can be interleaved in the micro-instruction shifter.

When this output is high, interleaving is not possible.

The start signal depends on two conditions:

do

doAck

done

example interface behavior

1 1 1 1 1 0 0

1 1 0 0 1 0 0

0 0 0 1 1 0 0 1

0

0

asu 0

asu 1

io 0

io 1

m0

m1

m2

m3

m4

asu 0

asu 1

io 0

io 1

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

1

0

0

Figure 4: The Processor Interface Behavior

� The user requests accelerator execution through

the do pin of the processor interface.

� The con
ict controller indicates the shift register

controller is ready to accept a new initiation.

Therefore, the start can be derived out of the do

and ready signals by means of an AND gate.

The two remaining processor interface signals are

easily derived out of the start signal. The done out-

put models the latency of the accelerator, and is ob-

tained out of start through simple delay.

The processor interface makes both stand-alone and

slave operation possible. For stand-alone operation,

the do-pin is tied to a logical high. In this case, the

processing rate is �xed by the con
ict controller, and

the processing of a frame will be initiated whenever

there is no pipeline con
ict occuring.

2.3 The Controller at work

The con
ict controller contains the core of the dy-

namic scheduling properties of the accelerator. A sim-

ple control strategy and architecture, which can be

used as con
ict controller, is due to Davidson [1]. His

approach is based on dynamic modeling of data path

resource con
icts.

The instances at which a con
ict occurs after the

initiation of a reservation table are called forbidden

latencies. In the example reservation table, an initi-

ation will introduce a pipeline con
ict, due to asu 0,

two cycles after this initiation.

An initiation latency is de�ned as the delay, in clock

cycles, between two succesive initiations. In order to

satisfy the resource constraints, an initiation latency

cannot equal a forbidden latency.

do donedoAck

start

micro
instruction

shifter

conflict
controller

processor
interface

ready

reservation table shift reg

instruction bus

acceleration controller

asu 0

asu 1

io 0

io 1

m0

m1

m2

m3

m4

Figure 5: The Accelerator Controller

To achieve dynamic modeling, the pipeline con
icts

are marked as indices in a bit vector, which is shifted

right as time proceeds. This bit vector, which is called

collision vector, is numbered right to left starting from

1. Bit position i of this vector indicates wether a

pipeline con
ict occurs within i clock cycles. Hence,

bit position one indicates wether a con
ict occurs the

next cycle, and thus wether a new initiation is possible

at the next cycle.

The initial marking of the forbidden latencies found

out of the reservation table results in an initial collision

vector. Upon each new initiation, the initial collision

vector is marked into the current collision vector.

Taking the initial collision vector, a state diagram

can be constructed, with the states indicating initia-

tion instances and edges carrying the initiation laten-

cies. This state diagram is discussed in literature [9, 4].

The states are marked with a collision vector. The ini-

tial state carries the initial collision vector, and rep-

resents the moment just after initiation of the empty

pipeline.

Out of the positions within a collision vector with

zero bits, the initiation latencies can be derived. Out

of the initial state in the example (state 10), a new

initiation is possible already the next cycle. At that

moment, the initial collision vector is shifted one posi-

tion, corresponding to a one cycle delay. At the same

time, the pipeline con
icts introduced by this new ini-

tiation are annotated in the collision vector by OR-ing

the initial collision vector into the current one. This

results in a new collision vector (state 11). Out of

this state, an initiation latency of at least 3 cycles is

required, as bit positions 1 and 2 are non-zero in the

collision vector. This next initiation returns us to the

10

11

3 or more

1
3 or more

2

State transition diagram

Forbidden Latencies

1 0collision
vector

shift reg

Conflict Controller

asu 0

asu 1

io 0

io 1

m0

m1

m2

m3

m4

io 0
asu 0
asu 1
io 1

{ } (no conflict)

{ }
{ }

{2}

2 1

1 0

all {2}

Initial Collision Vector

{2}

1 0

1 0

1 0

1 1

+

1 clock cycle

start
ready

Figure 6: Construction of the Con
ict Controller .

initial state.

The state diagrammodels every valid pipeline state,

and therefore any cycle within this state diagram is a

valid schedule.

Using the initial collision vector, a simple hardware

structure that generates the state diagram can be con-

structed. The collision vector is modeled by means of

a shift register. Upon initiation, a new version of the

initial collision vector is or-ed into the current collision

vector. This structure is used as the con
ict controller.

The advantages of using this controller architecture

are

� Static and dynamic schedules are available within

the same controller architecture (corresponding to

stand-alone and slave-mode operation). By using run-

time con
ict modeling, all possible schedules are sup-

ported.

�The controller has a regular structure, and is small

and fast. It can be shown that careful design reduces

the critical path to one gate delay.

� It allows parallel, pipelined execution of several

SFG frames.

3 Design example

The example concerns an accelerator to evaluate a

Fast Fourier Transform butter
y operation [11], which

is de�ned as follows

X = (A + B)

Y = (A - B) * W

All signals are complex, and will be denoted Ar, Ai

and so on to indicate the real and imaginary parts

respectively.

The upper left of �gure 7 shows the accelerator in-

tegration. Complex input data A and B enters along a

shared bus, while complex weight factors W use a sec-

ond bus. The sources of this bus are for example RAM

and ROMmemories. The complex outputs X and Y are

send to a shared output bus.

The operations composing the complex butter
y

are shown on the upper right, together with an opera-

tion name, and operator assignment. This assignment

�xes the clustering and is driven by two design issues:

� The boundary conditions imposed by the integra-

tion are modelled by io strobe assignments.

� Hardware sharing, which is obtained by assign-

ment of similar operations to the same asu operator.

In the environment used to design the accelerator,

the input SFG is represented graphically. The assign-

ment of operations to clusters is indicated by draw-

ing shapes and shades around the operator nodes. All

nodes with the same shade and shape thus belong to

the same cluster.

Next, the datapaths are designed by behavioral syn-

thesis [10]. The implementation technology, 5.0 Vdc

0�7 CMOS, �xes the timing views of the hardware.

One pipeline section is added in the retiming of asu 1

to balance the critical path to that of operator asu 0.

The timing views are backannotated to the clus-

tered graph, which is scheduled. The resulting sched-

ule is modelled in a reservation table, from which the

collision vector and the con
ict controller is obtained.

Using the schedule, the interconnection network and

accelerator controller is found. Finally, the overall ar-

chitecture is obtained as a VHDL netlist, with a 16

ns critical path and 2.48 mm2 active area. The de-

sign script is implemented in software to provide an

integrated design traject from SFG to netlist.

input(Ar)
input(Ai)
input(Br)
input(Bi)
input(Wr)
input(Wi)
Xr = Ar + Br
Cr = Ar - Br
Xi = Ai + Bi
Ci = Ai - Bi
Yr1 = W(Cr * Wr)
Yr2 = W(Ci * Wi)
Yr = Yr1 - Yr2
Yi1 = W(Cr * Wi)
Yi2 = W(Ci * Wr)
Yi = Yi1 - Yi2
output(Xr)
output(Xi)
output(Yr)
output(Yi)

operation node name cluster assignment
unit instruction

op5
op7
op6
op8
op14
op16
op1
op13
op2
op15
op9
op10
op3
op11
op12
op4
chipOut1
chipOut2
chipOut3
chipOut4

io 0 m0

io 0 m1

io 1 m2

asu 0 m3

asu 0 m4

asu 1 m5

asu 1 m6

io 2 m7

io 2 m8

(all signals fixed point 12 bits with 11 bit fractional part)

input
data

weight
factors

Re Im Re Im

Re Im

output
data

butfferfly

io 0 io 2

io 1

+

-

+

* *

+/-
+

Ar Ai Br Bi WrWi

Xi

Ci Cr

Xr

LC

asu 1

collision vector = 101

101

2 or more

Reservation Table

LC

YiYr

Collision Vector Schedule

Datapath + Interconnect

SFG

Integration
List of Operations

asu 0

Figure 7: Design of a butter
y unit

4 Conclusion
A strategy was presented to integrate data path

synthesis and retiming tools into a system component

design environment.

� The proposed strategy allows to generate small

and e�cient control for pipelined systems.

� In addition, an implementation of a system level

data model is o�ered through a processor interface.

� Di�erent schedules are available within one con-

troller architecture, allowing non-manifest data rates.

An integrated environment for the design of these

accelerators, was developed. Currently, it is being

used for the design of accelerator parts in systems for

videotelephony and advanced CATV.

Acknowledgements
The authors wish to thank Karl Van Rompaey and

Serge Vernalde from IMEC for the constructive re-

marks during the writing of this paper.

References
[1] E. Davidson, L. Shar, A. Thomas, J. Patel, 'E�ective Con-

trol for pipelined computers', COMPCON 75, IEEE, N.Y.,

1975, pp. 181-184.

[2] K.S. Hwang, A.E. Casavant, 'Scheduling and Hardware

Sharing in Pipelined Data Paths', Proc. ICCAD, Nov. 1989,

pp. 24-27.

[3] H.S. Jun, S.Y. Hwang, 'Design of a PipelinedDatapath Syn-

thesis System for Digital Signal Processing', IEEE Trans.

VLSI Syst., Vol 2, no. 3, Sep 1994, pp 292-303.

[4] P.M. Kogge, 'The Architecture of Pipelined Computers',

Hemisphere Publishing, N.Y., 1981.

[5] E.A. Lee, D.G. Messerschmitt, 'Synchronous data
ow',

IEEE Proceedings, Sep 1987.

[6] P.E.R. Lippens, J.L. van Meerbergen, W.F.J. Verhaegh,

D.M. Grant and A. van der Werf, 'Design of a 30 MHz,

32/16/8-pointsDCT processor with PHIDEO', VLSI Signal

Processing VII, IEEE Catalog Number 94TH8008, 1994.

[7] S. Note, W. Geurts, F. Catthoor, H. De Man, 'Cathedral-

III: Architecture-Driven High-level Synthesis for High

Throughput DSP Applications', Proc. DAC91, San Fran-

cisco, Calif., 1991, pp. 597-602.

[8] N. Park, A.C. Parker, 'Sehwa: A Software Package for Syn-

thesis of Pipelines from Behavioral Speci�cations', IEEE

Trans. Computer Aided Design, Vol 7, no. 3, Mar 1988, pp

356-370.

[9] C.V. Ramamoorthy, H.F. Li, 'Pipeline Architecture', ACM

Computing Surveys, Vol. 9, No 1, March 1977, pp 61-101.

[10] S. Vernalde, P. Schaumont, I. Bolsens, H. De Man, J. Fre-

hel, 'Synthesis of high ThroughputDSP ASICs using Appli-

cation Speci�c Data paths',DSP & Multimedia Technology,

June 1994.

[11] Vetterli M, and Nussbaumer H.J., 'Simple FFT and DCT

algorithms with reduced number of operations', Signal Pro-

cessing, 6, 1984, pp. 267-278.

	Compendium95
	ISSS95
	Front Matter
	Table of Contents
	Session Index
	Author Index

