
ECE4530 Fall 2016

Codesign Challenge - Star Map Plotter

Assignment posted on 10 November
Solutions due on 2 December 11:59PM

The Codesign Challenge is the final assignment in ECE 4530. This project is an exercise in
performance optimization: you will start from a reference application on an ARM processor.
You have to improve the performance of the reference application as much as possible, using
the hardware/software codesign techniques covered in this course. Typically, you would
design a hardware coprocessor. In addition, you would also optimize the driver software,
and/or modify the system architecture.

The major constraints in the design are as follows.

• The final result has to run on a DE1-SoC board

• The final result has to be turned in before the submission deadline, 2 December
11:59PM

• The testbench needs to remain in C on the ARM core; the assignment defines the
required API for the accelerated design.

Application: Star Map Drawing

The assignment is an application of a line drawing algorithm over a raster-display. The
raster display is a memory of 64 Kilobytes, storing the pixels of a 1024 (X-dimension) by
512 (Y-dimension) display. Your objective is to plot 100 stars of varying origin and size on
this display as quickly as possible. ’Plotting a star’ means turning on all the pixels that lie
on the edge of a star. Each star has a shape that is isomorph to the figure shown below.
Note the symmetry in this start. By computing the pixels from only two edges of this star,
you are able to directly derive all other pixels.

1



The reference implementation writes pixels into the memory. By dumping the contents
of the memory after the testbench of 100 stars completes, you can get a sense of the data
present in the display memory.

The materials you receive for the assignment include the reference hardware implemen-
tation, and a reference software testbench.

Implementation of the raster display

The raster display is emulated in a 64 Kilobyte on-chip memory in the FPGA-AXI bus. The
on-chip memory has a 64-bit port, even though each pixel is implemented as a single bit.
The following functions demonstrate how to set and get pixels from such a memory-mapped
display.

volatile unsigned char *screen;

#define SCREENSIZEX 1024

#define SCREENSIZEY 512

#define SCREENBYTES (SCREENSIZEX * SCREENSIZEY / 8)

2



void setpixel(unsigned x, unsigned y) {

unsigned bytenum = (y * SCREENSIZEX + x)/8;

unsigned bitnum = x % 8;

if (x > (SCREENSIZEX-1))

return;

if (y > (SCREENSIZEY-1))

return;

screen[bytenum] |= (1 << bitnum);

}

unsigned getpixel(unsigned x, unsigned y) {

unsigned bytenum = (y * SCREENSIZEX + x)/8;

unsigned bitnum = x % 8;

if (x > (SCREENSIZEX-1))

return 0;

if (y > (SCREENSIZEY-1))

return 0;

if (screen[bytenum] & (1 << bitnum))

return 1;

else

return 0;

}

Plotting stars

The plotting of a star makes use of a line drawing algorithm called Bresenham’s algorithm.
This algorithm allows to draw slanted lines using only integer operations - and this makes
it quite amendable to hardware implementation. The main function that plots a star the
following.

void plotstar (unsigned xorig,

unsigned yorig,

unsigned starsize) {

plotstaredge(xorig, yorig, 2*starsize, -starsize, 6*starsize, 0);

plotstaredge(xorig, yorig, 2*starsize, starsize, 4*starsize, 4*starsize);

}

This function plots a star at center point (xorig, yorig). The star dimensions are
scaled by starsize, an integer value between 1 and 12. The plotstar function plots in
fact only 2 edges of a star, but further lower-level functions will replicate these plotting
operations in each of the 8 octants of the star, thereby rendering all 16 edges.

3



The function to plot an edge follows the Bresenham algorithm (which we will explain in
class on 11/10).

void plotstaredge (unsigned xorig,

unsigned yorig,

unsigned x0,

unsigned y0,

unsigned x1,

unsigned y1) {

// Plots the edge of a star at (xorig, yorig)

// The algorithm requires that (x1 - x0) > 0 and (y1 - y0) > 0

int y, x, dx, dy, delta;

dx = x1 - x0;

dy = y1 - y0;

if (dx > dy) {

delta = 2*dy - dx;

y = y0;

for (x = x0; x <= x1; x++) {

plotoctants(xorig, yorig, x, y);

if (delta > 0) {

y = y + 1;

delta = delta - dx;

}

delta = delta + dy;

}

} else {

delta = 2*dx - dy;

x = x0;

for (y = y0; y <= y1; y++) {

plotoctants(xorig, yorig, x, y);

if (delta > 0) {

x = x + 1;

delta = delta - dy;

}

delta = delta + dx;

}

}

}

Finally, the plotoctants function replicates a generated pixel over all 8 octants.

4



void plotoctants(unsigned xorig,

unsigned yorig,

unsigned x,

unsigned y) {

setpixel(xorig + x, yorig + y);

setpixel(xorig - x, yorig + y);

setpixel(xorig + x, yorig - y);

setpixel(xorig - x, yorig - y);

setpixel(xorig + y, yorig + x);

setpixel(xorig - y, yorig + x);

setpixel(xorig + y, yorig - x);

setpixel(xorig - y, yorig - x);

}

Testbench and performance measurement

The testbench generates the coordinates for 100 stars, and plots each start sequentially.

unsigned dx[NUMSTARS];

unsigned dy[NUMSTARS];

unsigned ds[NUMSTARS];

void referencedata() {

unsigned i, starsize;

for (i=0; i<NUMSTARS; i++) {

starsize = random() % (SCREENSIZEY / 40);

dx[i] = 6*starsize + random() % (SCREENSIZEX - 12*starsize);

dy[i] = 6*starsize + random() % (SCREENSIZEY - 12*starsize);

ds[i] = starsize;

}

}

void testbench_sw() {

unsigned i;

for (i=0; i<NUMSTARS; i++) {

plotstar(dx[i], dy[i], ds[i]);

}

}

void main() {

...

5



referencedata();

//==== reference software implementation

long long time_start_sw = 0;

long long time_end_sw = 0;

clearscreen();

time_start_sw = cyclecount();

testbench_sw();

time_end_sw = cyclecount();

printf("Reference Plotting time is %lld\n", time_end_sw - time_start_sw);

printf("Reference Checksum is %d\n", chksumscreen());

...

}

The testbench then repeats the same for testbench hw() which, by default, will call
testbench sw().

Objective and rules of implementation

• The accelerated design have the same functionality as the reference software design;
the chksumscreen() function, which computes a checksum over all bytes stored in the
raster display, will be used to verify that the pixel map for the reference software and
the accelerated design are identical.

• You are allowed to change anything beyond the call to testbench hw() function call.
This call needs to make use of the list of coordinates for stars, stored in dx[], dy[]

and ds[]. However, beyond this list of input data (which needs to be identical for
reference software and accelerated hardware), everything is customizable.

• In particular, it’s completely your decision on how you will accelerate testbench hw().
This can include building hardware versions of the line drawing algorithm, optimizing
the software of the line drawing algorithm, designing a more efficient version of the
onchip memory. Note that changes to the onchip memory structure may require adap-
tions to the chksumscreen() function; this is allowed as long as you guarantee that
it computes the same operations as the original chksumscreen() (that is, mod-256
accumulation of screen bytes).

6



• You are allowed to change tool settings and enable optimizations as you wish. You are
allowed to change the operating frequency of the board as you wish.

• The speedup of your design is equal to the execution time of the original reference
design (129.8 million cycles) to the accelerated design. Your speedup will be computed
as (129800000 / accelerated plotting time). The value 129800000 can be considered
absolute and will not be affected when you use software optimization compiler flags.
Obviously, your checksum value must match that of the reference testbench.

Ranking Criteria

All designs will be strictly ranked from best to worst. We will use the following metrics to
evaluate the rank of your design.

• Functional Correctness: This requirement is mandatory for all designs. Your design
has to work, in order to be considered for ranking. If it does not work, you will
be automatically ranked last. Working means: your accelerated design computes the
correct checksum.

• Metric 1: The speedup of your design following the formula given above. Higher is
better.

• Metric 2: The area efficiency of the resulting design, expressed in ALMs. An ALM is
an Adaptive Logic Module, a unit of hardware in a Cyclone V FPGA. A lower ALM
cell count corresponds to a smaller design. You can find the ALM count in the ’Flow
Summary’ of Quartus.

• Metric 3: The turn-in time of your design and report, as measured by the turn-in time
on Scholar. Turning in the solution earlier is better. Note that, if you turn in the
design multiple times, only the latest turn-in time will be used.

Two designs will be compared as follows, to determine their ranking order. If a design is
functionally not correct (i.e. fails the testbench), it will automatically be moved to the last
rank. If multiple designs are not operational, they will all share the same lowest rank. All
functionally correct designs will get a better and unique rank.

• First, the speedup (Metric 1) will be compared. If there is a difference of more than
5% between them (with the fastest design considered 100%), the fastest design will get
a better rank. If, on the other hand, the difference is smaller than 5%, Metric 2 will
be used as tie-breaker.

• Metric 2 will be used in a similar way to compare two designs. If the difference in
area efficiency between two designs is larger than 5%, then the smallest design gets the
better rank. Otherwise, if they are separated less than 5%, Metric 3 will be used as
tie-breaker.

7



• Metric 3 will be used as a final metric in case the ranking decision cannot be made
using Metric 1 and Metric 2 alone. In this case, the design turned-in earlier wins.

The grade for your project is determined as follows.

• 60 points of the grade are determined by the ranking of your project as described
above. The best design gets 60 (out of 60) points, the worst design gets 30 (out of 60)
points, and all other designs are linearly distributed between 30 and 60 points.

• 40 points of the grade are determined by the quality of the written documentation you
provide with the solution.

Acceleration Strategies

The main objective of this assignment is to make the testbench run as fast as possible, using
hardware software codesign. There are several layers to this problem and it is worthwhile to
carefully think them through.

• First, there is the Bresenham line drawing algorithm itself. You can study the code
of the reference implementation and observe that this is a simple while loop that
sequentially generates the pixels from an octant.

• Next, there is a sequence of 100 stars, each with a different centerpoint and size. You
cannot predict these specifications; your accelerator will need to be able to accept
flexible input.

• The access to the pixel memory is sequential, since the memory is attached as a slave
to the Avalon Memory Bus. Hence, building an accelerator needs to consider not only
the computation tasks, but also the memory access bottleneck.

• The reference testbench takes over 129 million clock cycles to generate just 100 stars.
That is more than a millions cycles per star. The reference implementation is inherently
inefficient.

Given these layers, there are several optimization mechanisms to consider.

• Avoid using a random lets try this and see strategy. Very likely you will forget some-
thing, or it will lead you into a local optimum while loosing sight of the big picture.
Always keep an objective in mind (eg. a desired acceleration factor), and measure your
progress in reaching your objective. Such a final objective should be derived through
a reasonable back-of-the-envelope calculation. Always look for the bottleneck in the
overall system.

• The line drawing algorithm could be completely converted into an FSMD.

8



• The pixel memory itself can be customized as well. Observe that the number of par-
allel write-ports and read-ports to the memory is your design decision, and that it
is possible to partition a single memory into many smaller memories which could be
written into simultaneously. As long as the software can call the chksumscreen()

function on your memory, you are allowed to make architectural changes. ’Being able
to call chksumscreen() ’ means that your raster screen memory, regardless of your
optimizations, needs to have an Avalon Memory Mapped Slave Port.

• The key to succeed in this assignment is NOT in a monster session of back-to-back
all-nighters a few days before the deadline. The key is to work on this design in small
steps over a longer period. Design is a creative process, and that takes time. Ideas
take time to develop. Think about your strategy and discuss with your colleagues.
This is an open-ended assignment, and you are competitively graded, so its not in your
advantage to disclose all your ideas. However, a brainstorm session or two with your
peers may do wonders to sharpen your insight in this assignment.

What to turn in

You have to deliver the following items for the project result:

• A rbf (bitstream) file of your final design, and a compiled executable (elf) of your final
design.

• The source code of your optimized testbench driver, as a C file.

• The source code of your Verilog design, in case you added a new coprocessor to the
QSYS system.

• A PDF document that describes your resulting design. Please explain your design
strategy, the architecture of your hardware/software solution, and overall observations
on the design. Note that the PDF document counts for 40 % of the grade, so it’s worth
to do this carefully. In the PDF, make sure to clearly state the results you
obtained for each of the three metrics.

9


