DESIGN, AUTOMATION & TEST IN EUROPE

27 – 31 March, 2017 · STCC · Lausanne · Switzerland The European Event for Electronic System Design & Test

Security in the Internet of Things: A Challenge of Scale

Patrick Schaumont Bradley Department of Electrical and Computer Engineering

Internet of Things

Internet of Things

Internet of Things

Security Services

Four essential security services

- Access Authorization
- Key Exchange
- Data Confidentiality
- Data Authentication

Standard Crypto Algorithms

	Symmetric Key		Public Key	
	Symmetric Encryption	Message Authentication	Signatures	Diffie Hellman
Confidentiality	\checkmark			
Authentication		\checkmark	\checkmark	
Key Exchange	(PSK)			\checkmark

Standard CryptoAES-128SHA2, SHA3ECC, RSAECDH, DH
--

How to build Crypto for Things?

How to build Crypto for Things?

What is secure Information Security?

• Brute Force Security

Computational Security

Implementation Security

Brute Force Security implied through key-length under Von Neumann computing

Primitive	Symmetric Encryption	Message Authentication	Signatures	Diffie Hellman
Algorithm	AES-128	SHA2, SHA3	ECC, RSA	ECDH, DH

Brute Force Security implied through key-length under Von Neumann computing

Primitive	Symmetric Encryption	Message Authentication	Signatures	Diffie Hellman
Algorithm	AES-128	SHA2, SHA3	ECC, RSA	ECDH, DH

However ..

	Increased Computational Cost		
Post Quantum	AES-256	SHA-512 SHA3-512	

Brute Force Security implied through key-length under Von Neumann computing

Primitive	Symmetric Encryption	Message Authentication	Signatures	Diffie Hellman
Algorithm	AES-128	SHA2, SHA3	ECC, RSA	ECDH, DH

However..

	Increased Computational Cost		New Algorithm	
Post Quantum	AES-256	SHA-512 SHA3-512	Lattice Based Hash Based Code Based	Lattice Based

Current algorithms trusted, but IoT constraints require innovation

Primitive	Symmetric Encryption	Message Authentication	Signatures	Diffie Hellman
Algorithm	AES-128	SHA2, SHA3	ECC, RSA	ECDH, DH

Lightweight Cryptography: Jointly Optimize {Security, Performance, Area}

Current algorithms trusted, but IoT constraints require innovation

Primitive	Symmetric Encryption	Message Authentication	Signatures	Diffie Hellman
Algorithm	AES-128	SHA2, SHA3	ECC, RSA	ECDH, DH

	Published Proposals since 2005					
Lightweight	21 Block	8 Hash				
Cryptography	4 Stream	5 Auth Enc				

Current algorithms trusted, but IoT constraints require innovation

Primitive	Symmetric Encryption	Message Authentication	Signatures	Diffie Hellman
Algorithm	AES-128	SHA2, SHA3	ECC, RSA	ECDH, DH

	Published Propo	osals since 2005	Hardly an	y choice ?	_
Lightweight Cryptography	21 Block 4 Stream	8 Hash 5 Auth Enc	?	?	

Authentication Protocol

- MSP430 (10 MHz)
- CC2500 RF

Public-Key Crypto in Constrained Environment

CC2500 RF

Precomputed Security

Precomputed Security

EH Operation *without* precomputing

29 March 2017

EH Operation with precomputing

29 March 2017

Energy-Driven Computing

Authentication Protocol

- MSP430 (10 MHz)
- CC2500 RF

Implementation Security

Brute Force Security Computational Security Implementation Security

Hardware

Connected Platform

I/O Attacker Model

Better Software

Implementation Security

Brute Force Security Computational Security Implementation Security

Connected Platform

I/O Attacker Model

Better Software

Machine Code Attacker Model

Secure Architecture Isolation

29 March 2017

Implementation Security

Brute Force Security Computational Security Implementation Security

Connected Platform

I/O Attacker Model

Better Software

Machine Code Attacker Model

Secure Architecture Isolation

Hardware Attacker Model

? Composable ? Countermeasures

Example – Side-channels

Software

Secret S is used in

Memory Lookup Control Flow Decision Computation

29 March 2017

Example – Side-channels

Secret S is used in

Memory Lookup **Control Flow Decision** Computation

Secret S may cause

Cache Timing Instruction Timing I/O Timing

ALU

I/O

Debug

Perf

Example – Side-channels

Secret S is used in

Memory Lookup Control Flow Decision Computation

Secret S may cause

Cache Timing Instruction Timing I/O Timing

Secret S may cause

EM Side-channel Power Side-channel Fault-based Side-Channel

Conclusions

IoT Security builds on comprehensive solutions for

- Brute-force Security
- Computational Security
- Implementation Security

• Plenty of hard problems remain

- Public-key cryptography in Energy/resource-constrained context
- Composable Countermeasures (Timing, Power, Faults, ..)
- Design Correctness, Implementation Correctness, Operation Correctness

Thank you for your attention!

Patrick Schaumont schaum@vt.edu