
HDL simulation is different from C execution

 Need to express concurrency (things happening
simultaneously)

 Need to model time

 Need to model non-standard wordlengths

 Need to model non-standard values (X,Z)

 Need organization in modules rather than functions

HDL simulation is different from C execution

 Need to express concurrency (things happening
simultaneously)

 Need to model time

 Need to model non-standard wordlengths

 Need to model non-standard values (X,Z)

 Need organization in modules rather than functions

Simulation Time + Concurrency Model (events, cycles, ..)

New data types, custom syntax

Focus of this lecture

 Need to express concurrency (things happening
simultaneously)

 Need to model time

• Understand the concept of event driven simulation
• Understand how gate-level models are simulated
• Understand how behavioral models are simulated

Objectives:

Simulation Time + Concurrency Model (events, cycles, ..)

The need for concurrent hardware models

a b

Let's write a simulation for this circuit in C

int a, b;
void clock_cycle() {
 a = b;
 b = a;
}

We create a function clock_tick which will be called for each
clock cycle. Is the following a correct implementation of this function?

clk

The need for concurrent hardware models

a b

Let's write a simulation for this circuit in C

int a, b;
void clock_cycle() {
 a = b;
 b = a;
}

clk

No! a and b will have the
same value after one call

We create a function clock_tick which will be called for each
clock cycle. Is the following a correct implementation of this function?

A better solution

a b

Let's write a simulation for this circuit in C

clk

int a, b;
int new_a, new_b;
void clock_cycle() {
 new_a = b;
 new_b = a;
 b = new_b;
 a = new_a;
}

Is this better?

A better solution

a b

Let's write a simulation for this circuit in C

clk

This is better.

new_a, new_b variables account
for the fact that registers have
two values: the previous value
and the current value (i.e. the input
and the output of a register can be
different values)

int a, b;
int new_a, new_b;
void clock_cycle() {

 // evaluate new inputs
 new_a = b;
 new_b = a;

 // update outputs
 b = new_b;
 a = new_a;
}

Cycle-based simulation
Thus, we simulate concurrency by making the simulation progress in
two phases, which alternate at the pace of the clk signal

1. Evaluate 2. Update
Find new values at the

inputs of a and b

new_value_a = logic(a,b);
new_value_b = logic(a,b);

Adjust the 'output' value of a
and b to reflect the new values

a = new_value_a;
b = new_value_b;

a

b

clk

logic_a

logic_b

logic_a and logic_b
appear to execute
concurrently

Transition between phases driven by events

1. Evaluate 2. Update
Find what the new values at the

inputs of a and b

new_value_a = logic(a,b);
new_value_b = logic(a,b);

Adjust the 'old' value of a and b
to reflect the new values

a = new_value_a;
b = new_value_b;

The evaluate event

indicates when a gate or function
would change its about because

the input has changed

The update event

adjusts the value of a
variable to reflect a new value

Cycle-based simulation has two types of events

The evaluate event

indicates when a gate or function
would change its output because

the input has changed

The update event

adjusts the value of a
variable to reflect a new value

What is the cause of the evaluate event ?

a

b

clk

logic_a

logic_b

Cycle-based simulation has two types of events

The evaluate event

indicates when a gate or function
would change its output because

the input has changed

The update event

adjusts the value of a
variable to reflect a new value

What is the cause of the evaluate event ?

a

b

clk

logic_a

logic_b

The output of the registers (a, b) changing their value

The evaluate event

indicates when a gate or function
would change its output because

the input has changed

The update event

adjusts the value of a
variable to reflect a new value

What is the cause of the update event ?

a

b

clk

logic_a

logic_b

Transition between phases driven by events

Cycle-based simulation has two types of events

The evaluate event

indicates when a gate or function
would change its output because

the input has changed

The update event

adjusts the value of a
variable to reflect a new value

What is the cause of the update event ?

a

b

clk

logic_a

logic_b

The cause of the update event is the upgoing clock edge

But what exactly is an event?

 Event = tuple (activity, simulation time)

10 20 30 40 50 60 70

r

s

Events: (r_rises, 20), (s_rises, 20), (r_falls, 30), (s_falls, 35)

 A list of events expresses concurrent activities
 E.g. (s_rises, 20) and (r_rises, 20) happen at the same time
 !!! In fact, the simulator cannot tell which of (s_rises, 20) and

(r_rises, 20) happens first.

Verilog is an event-driven simulator

 The Verilog simulator maintains an ordered list of
all future events of interest: the Event Queue

 The simulation engine reads events from the queue,
executes them, and inserts new events as needed

Simulation
Engine

Time-ordered
Event Queue

schedule new event

remove
event

Active events with identical timestamps
can be removed in arbitrary order

Verilog is an event-driven simulator

Variable (reg)
or Net (wire)

Processes
Processes
Processes

reg/wire
reg/wire
reg/wire

When a variable or a net
changes its value, one or more
processes can run (evaluate).

"Evaluate" is an event

When a process runs,
it can update the value of

one or more variables or nets.

"Update" is an event

 There are two types of events: evaluate events and
update events

We will just call them 'events'.

Some Verilog 'processes'

 Primitives (gates)

 Initial Blocks and Always Blocks

 Procedural Assignments

 Continuous Assignments and Ports

Variable (reg)
or Net (wire)

Processes
Processes
Processes

reg/wire
reg/wire
reg/wire

We talk about
these in this

lecture

This is for
later

Fanout of a net

Let's see how gate-level simulation works

a b c

d

G1 G2

G3

G4

empty

T = 0
Initialize simulation
All nets are at X

All gates have
propagation delay

of 5 unitse

Event Queue

initial begin
 #20 a = 1;
end

Let's see how gate-level simulation works

a b c

d

G1 G2

G3

G4

update
a = 1

@T = 20

T = 0
Initialize simulation
All nets are at X

X X XX

X

All gates have
propagation delay

of 5 unitse

Event Queue

T=0

Let's see how gate-level simulation works

a b c

d

G1 G2

G3

G4

Remove event from Q. Event T = 20
Adjust simulation time to T = 20
Update value of a
Fanout of a = {G1}
Execute G1. Output b should change to 0 at T = 20 + 5 = 25

X X XX

X

All gates have
propagation delay

of 5 units

update
a = 1

@T = 20

e

Event Queue

T=0

Let's see how gate-level simulation works

a b c

d

G1 G2

G3

G4

update
b = 0

@T = 25

1 X XX

X

All gates have
propagation delay

of 5 unitse

Event Queue

T=20

Let's see how gate-level simulation works

a b c

d

G1 G2

G3

G4

update
b = 0

@T = 25

Remove event from Q. Event T = 25
Adjust simulation time to T = 25
Update value of b
Fanout of b = {G2, G3}
Execute G2. c should change to 1 at T = 25 + 5 = 30
Execute G3. d should change to 1 at T = 25 + 5 = 30

1 X XX

X

All gates have
propagation delay

of 5 unitse

Event Queue

T=20

Let's see how gate-level simulation works

a b c

d

G1 G2

G3

G41 0 XX

X

All gates have
propagation delay

of 5 units

update
c = 1

@T = 30

update
d = 1

@T = 30

e

Event Queue

T=25

Let's see how gate-level simulation works

a b c

d

G1 G2

G3

G4

Remove event from Q. Event T = 30.
Adjust simulation time to T = 30
Update value of d
Fanout of d = {G4}
Execute G4. e will remain at X. No new event.

1 0 XX

X

All gates have
propagation delay

of 5 units

update
c = 1

@T = 30

update
d = 1

@T = 30

e

Event Queue
Note: It is equally
valid to choose update-c
event. Event processing
order for equal timestamps
is not guaranteed.

T=25

Let's see how gate-level simulation works

a b c

d

G1 G2

G3

G41 0 XX

1

All gates have
propagation delay

of 5 units

update
c = 1

@T = 30

e

Event Queue

T=30

Let's see how gate-level simulation works

a b c

d

G1 G2

G3

G4

Remove event from Q. Event T = 30.
Simulation time remains at 30.
Update value of c
Fanout of c = {G4}
Execute G4. e should change to 1 at T = 30 + 5 = 35.

1 0 XX

1

All gates have
propagation delay

of 5 units

update
c = 1

@T = 30

e

Event Queue

T=30

Let's see how gate-level simulation works

a b c

d

G1 G2

G3

G41 0 X1

1

All gates have
propagation delay

of 5 units

update
e = 1

@T = 35

e

Event Queue

T=30

Let's see how gate-level simulation works

a b c

d

G1 G2

G3

G4

Remove event from Q. Event T = 35.
Simulation time adjusts to 35.
Update value of e
Fanout of e = { }

1 0 X1

1

All gates have
propagation delay

of 5 units

update
e = 1

@T = 35

e

Event Queue

T=30

Let's see how gate-level simulation works

a b c

d

G1 G2

G3

G4

No new events. Done.

1 0 11

1

All gates have
propagation delay

of 5 unitse

Event Queue

T=35

Gate-level simulation

a b c

d

G1 G2

G3

G41 0 11

1

e

Gate-level simulation works as follows
 If a wire is updated, then all gates attached to the

fan-out of that wire are executed.
 Gate Execution really means: generate update

event for the wire at the gate output

Event driven simulation in Behavioral Models

We next discuss event modeling in always and initial
blocks, and for procedural blocking assignments. E.g.:

module tata;
 reg a, b;
 initial begin
 b = 0;
 #100 a = 1;
 end
 always begin
 @(upedge a);
 b = a + 1;
 a = #20 b;
 end
endmodule

 A few constructs (procedural non-blocking
assignments, continuous assignments, module ports)
will be covered later.

Modeling time and events in behavioral code

#(number):
 Delay a specified units of time

@(expression):
 Wait for an event of that expression

wait(expression):
 Test the expression. If true, continue, else wait for

update of that expression and test again.

@(expression)

Means: stop execution and wait for an update event for
that expression

wire a;

always @(a)
begin
 ...
end

always @(posedge a)
begin
 ...
end

always @(negedge a)
begin
 ...
end

X X

X X

X X

wait(expression)

Wait for the value of expression to become TRUE.

wait tests levels, @ tests edges.

reg a;

always
begin
 ...
 wait(a == 5);
 ...
end

test the value of a
if a !=5 then
 stop execution
 wait for update a
 repeat the test
else
 continue execution

while and wait

Wait is not a busy loop - it really pauses the execution
of behavioral code
reg[4:0] a, b;

initial a = 0;
initial b = 0;
always #10 a = a + 1;

always
begin
 wait(a == 5);
 #10 b = 1;
end

reg[4:0] a, b;

initial a = 0;
initial b = 0;
always #10 a = a + 1;

always
begin
 while (a != 5) b = 0;
 #10 b = 1;
end

This will pause the bottom always
and continue with the top always
when a reaches 5, bottom always

continues and sets b to 1

This will never set b to 1;
a while loop does not interrupt

procedural flow. Once the bottom
always block starts, it cannot exit

Simulating Behavioral Models with Events

 In a block statement, we can control execution by
using multiple #, @, wait

module tata;
 reg a, b;
 initial begin
 b = 0;
 #100 a = 1;
 b = b + 1;
 end
 always begin
 @(upedge a);
 b = a + 1;
 #20 a = b;
 end
endmodule

Simulating Behavioral Models with Events

 You can think of a single block statement as several
pieces of code.

b = 0

a = 1
b = b + 1

b = a + 1

a = b

#100

up(a)

#20

Each piece will run in one step
after event is seen

module tata;
 reg a, b;
 initial begin
 b = 0;
 #100 a = 1;
 b = b + 1;
 end
 always begin
 @(upedge a);
 b = a + 1;
 #20 a = b;
 end
endmodule

Simulating Behavioral Models with Events

 T = 0. initial block and always block start. b set to 0.
always block waits for upedge of a.

b = 0

b = a + 1

a = b

#100

up(a)

#20

a = 1
b = b + 1

module tata;
 reg a, b;
 initial begin
 b = 0;
 #100 a = 1;
 b = b + 1;
 end
 always begin
 @(upedge a);
 b = a + 1;
 #20 a = b;
 end
endmodule

Simulating Behavioral Models with Events

 T = 0. #100 schedules evaluate of initial block at 100.
always block still waits for upedge of a.

b = 0

b = a + 1

a = b

#100

up(a)

#20

a = 1
b = b + 1

module tata;
 reg a, b;
 initial begin
 b = 0;
 #100 a = 1;
 b = b + 1;
 end
 always begin
 @(upedge a);
 b = a + 1;
 #20 a = b;
 end
endmodule

Simulating Behavioral Models with Events

 T = 100. Initial block updates a, b to 1 (update event of
a,b at 100). Initial block terminates. Always block still
waits for upedge of a.

b = 0

b = a + 1

a = b

#100

up(a)

#20

a = 1
b = b + 1

module tata;
 reg a, b;
 initial begin
 b = 0;
 #100 a = 1;
 b = b + 1;
 end
 always begin
 @(upedge a);
 b = a + 1;
 #20 a = b;
 end
endmodule

Simulating Behavioral Models with Events

 T = 100. Update event a triggers @(upedge a). b
updated to 2. #20 schedules an evaluate of the always
block at 120.

b = 0

b = a + 1

a = b

#100

up(a)

#20

a = 1
b = b + 1

module tata;
 reg a, b;
 initial begin
 b = 0;
 #100 a = 1;
 b = b + 1;
 end
 always begin
 @(upedge a);
 b = a + 1;
 #20 a = b;
 end
endmodule

Simulating Behavioral Models with Events

 T = 120. Update a to 2. Wait for upedge of a (which will
never come).

b = 0

b = a + 1

a = b

#100

up(a)

#20

a = 1
b = b + 1

module tata;
 reg a, b;
 initial begin
 b = 0;
 #100 a = 1;
 b = b + 1;
 end
 always begin
 @(upedge a);
 b = a + 1;
 #20 a = b;
 end
endmodule

LHS and RHS Delay

module tata;
 reg a, b;
 initial begin
 b = 0;
 #100 a = 1;
 end
 always begin
 @(upedge a);
 b = a + 1;
 a = #20 b;
 end
endmodule

module tata;
 reg a, b;
 initial begin
 b = 0;
 #100 a = 1;
 end
 always begin
 @(upedge a);
 b = a + 1;
 #20 a = b;
 end
endmodule

Intra-assignment events

 Intra-assignments means: while an assignment is
executing

always
 #10 a = a + 1;

always
 a = #10 a + 1;

at time = 10, read a, add 1, assign to a

at time = 0, read a and add 1.
at time = 10 assign result to a.
Equivalent to:

always
 tmp = a + 1;
 #10 a = tmp;

Used for transport delay

Sensitivity List

a b c
G1 G2

G3

e

 Sensitivity List of a process is the list of nets that will
affect a given process

Gate-level models have a fixed sensitivity list:

Sensitivity(G3) = {c, d}

d
G4

Sensitivity List

 Behavioral models have a variable sensitivity list,
changing during execution

Here it waits
for an upedge of aalways begin

 @(upedge a);
 b = a + 1;
 wait (c == 3);
 #20 b = a + 1;
end
endmodule

Here it waits for
c to be 3

Here it waits for time
to advance 20 units

So in a nutshell

Nets
Variables

are in the
sensitivity

list of

Gates

Behavioral
code

execute and make
changes to

 Events glue everything together and allow to mix gate-
level code and behavioral code

Concurrent Programming - Pay attention!

We already discussed this one ..

module syntst;
reg b;

initial
begin
 b = 0;
end

initial
begin
 b = 1;
end

endmodule;

Concurrent Programming - Pay attention!

 But sometimes it gets very subtle

module doh(muxout, select, a, b)
 output muxout;
 reg muxout;
 input a, b, select;
 wire notselect;

 always
 @select muxOut = (a & select) | (b & notselect);

 not (notselect, select);

endmodule;

What is the issue here ?

Concurrent Programming - Pay attention!

 But sometimes it gets very subtle

module doh(muxout, select, a, b)
 output muxout;
 reg muxout;
 input a, b, select;
 wire notselect;

 always
 @(select or notselect or a or b)
 muxOut = (a & select) | (b & notselect);

 not (notselect, select);

endmodule;

This may be better

Summary

 Event driven simulation:
 Update events are tuples of (time + signal_value)
 Evaluate events are tuples of (time + process_execution)
 Events are sorted over time in an event queue and processed

 Fan-out = Set of process inputs driven by a signal

 Sensitivity List = Set of signals attached to process
execution

Gates have fixed fanout and sensivity list

 Behavioral models have variable fanout and sensitivity
 They make use of event control (@, #, wait)

	HDL simulation is different from C execution
	HDL simulation is different from C execution
	Focus of this lecture
	The need for concurrent hardware models
	The need for concurrent hardware models
	A better solution
	A better solution
	Cycle-based simulation
	Transition between phases driven by events
	Cycle-based simulation has two types of events
	Cycle-based simulation has two types of events
	Transition between phases driven by events
	Cycle-based simulation has two types of events
	But what exactly is an event?
	Verilog is an event-driven simulator
	Verilog is an event-driven simulator
	Some Verilog 'processes'
	Let's see how gate-level simulation works
	Let's see how gate-level simulation works
	Let's see how gate-level simulation works
	Let's see how gate-level simulation works
	Let's see how gate-level simulation works
	Let's see how gate-level simulation works
	Let's see how gate-level simulation works
	Let's see how gate-level simulation works
	Let's see how gate-level simulation works
	Let's see how gate-level simulation works
	Let's see how gate-level simulation works
	Let's see how gate-level simulation works
	Gate-level simulation
	Event driven simulation in Behavioral Models
	Modeling time and events in behavioral code
	@(expression)
	wait(expression)
	while and wait
	Simulating Behavioral Models with Events
	Simulating Behavioral Models with Events
	Simulating Behavioral Models with Events
	Simulating Behavioral Models with Events
	Simulating Behavioral Models with Events
	Simulating Behavioral Models with Events
	Simulating Behavioral Models with Events
	LHS and RHS Delay
	Intra-assignment events
	Sensitivity List
	Sensitivity List
	So in a nutshell
	Concurrent Programming - Pay attention!
	Concurrent Programming - Pay attention!
	Concurrent Programming - Pay attention!
	Summary

