TEXAS INSTRUMENTS INCORPORATED

I3 TEXAS

INSTRUMENTS

Cortex-M3/M4F Instruction Set

TECHNICAL USER'S MANUAL

UM-COREISM-7703 Copyright © 2010-2011
Texas Instruments Inc.

Copyright

Copyright © 2010-2011 Texas Instruments Inc. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments. ARM and
Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Texas Instruments Incorporated

108 Wild Basin, Suite 350 i3 TeExAS
Austin, TX 78746 INSTRUMENTS LUl

http://www.ti.com/stellaris
http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm

MW POWERED

®

Cortex

Intelligent Processors by ARM"

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

Table of Contents

1 INErodUCLION ... 19
1.1 INStruction Set SUMMANY ... e 19
1.2 About the Instruction DesCriptioNScouiiiiiiii e 26
L B O T o =T o o - T PSPPSR 27
1.2.2 Restrictions When Using the PC Or SP ... 27
1.2.3 Flexible Second OPerandoooiiiiiiiiiiiii e 27
S 011 A o =T =1 o] PP 28
1.2.5 AdAress AlIGNMENt ... o e 31
1.2.6 PC-Relative EXPreSSIONSuiiiiiiiiiiii e e e e e e e 32
1.2.7 Conditional EXECULIONccuiii e e e e e eeens 32
1.2.8 Instruction Width Selectiono e 34
2 Memory Access INStructionscccccciiienin e ——— 35
2.1 0 L PSPPSR 36
P2t O T Y | 7= PSP 36
Nt I O o 1= 1 (1] o ISP 36
2.1.3 RESICHONS ..ot et e e e 36
Nt I 0o g o [1T] o TN o F= To [PPN 36
D R T = - T] o] [PP 36
2.2 LDR and STR (Immediate OffSet)cooiiiiiiiii e 37
A Y/ | 7= PP 37
A O o 1= 1 (1] o ISP 38
2.2.3 RESIICHONS ..ottt et 39
Y A 0o 4 o |} (1] o TN o F= To [PRI 39
A T = - Y1 1]] L= PP 39
23 LDR and STR (Register OffSEt)uuiiiiiiiiiei e 40
P R I Y | 7= PSP 40
R B O o 1= 1 (1] o I PP 41
2.3.3 RESICHONS ..ottt 41
2.3.4 CoNitioN FIAGS ...uuiiiiiiiiieie e 41
2.3, D EXAIMIPIES oot 41
24 LDR and STR (UNpPrivileged ACCESS)iiuiiiiiiieeii et 42
o T Y | 7= PP 42
N O o 1= 1 (1] o ISP 43
2.4.3 RESHICHONS ..ottt e s 43
Y 0o g o [1T] o TN o F= To [PP PPN 43
A 3 T = - Y1 1]][PP 43
2.5 [G (O = P 1Y P 44
P T I Y/ | 7= b PP TPPPTR 44
I O o 1= 1 (1] o ISP 44
2.5.3 RESIICHONS ..ottt 45
R 0o 4 o |1 1] o TN o F= To [PPN 45
B TR T = - Y1 1]] L= PP 45
2.6 [=T o S I Y PPN 46
PG I Y/ | 7= b PP TPPPTR 46
G O o 1= 1 (1] o ISP 47
November 04, 2011 3

Texas Instruments Incorporated

Table of Contents

2.6.3
2.6.4
2.6.5
2.6.6
2.7

2.71
2.7.2
2.7.3
274
275
2.8

2.8.1
2.8.2
2.8.3
2.84
285
2.9

2.91
292
293
294

3.1

3.1.1
3.1.2
3.13
3.1.4
3.1.5
3.1.6
3.2

3.2.1
3.2.2
3.2.3
3.24
3.25
3.3

3.3.1
3.3.2
3.3.3
3.34
3.3.5
3.4

3.4.1
3.4.2
3.4.3
3.4.4
3.45
3.5

=T (e (oo - S TP 47
1070] ol [o] 1 = To |- PP PP UPPPT 47
= 0] o] 1= 47
[aTeTo] g = Tod =T g 1] o] [PP 47
PUSH aNd POP ...ttt e e e et e e e et e e e eaaa e eeenens 48
311 5=) TP 48
(0] 01=1 £=1 (o] o HN PP UPTRPPRN 48
Y] (o (oo - T 48
1070] ol [o] B = To [~ PSPPI 49
EXAMIDIES e e et 49
LDREX @nd STREX ..ottt e et e e et e e e e e eeeeen 50
3T 115) TP 50
(] 01=1 £=1 (o] o HUU PO UPR SRR 50
Y] (o (oo - T 51
1070] T [o] 1 = To |- U UPPP 51
EXAMIDIES e e et 51
O PSP 52
3T 115) TP 52
(0] 01=1 £=1 i o] o HU PRSPPI 52
1070] Lo [o] B = To [~ PP PP PPPPPT 52
= 0 T o] 1= 52
General Data Processing InStructionscccovmmmiiiiisnsssnn s 53
ADD, ADC, SUB, SBC, @nd RSBcccuuiiiiiiiiieeiiie et e et eeeatn e aeees 55
1]] 2= PSP 55
(01T = (o o TP TUPPPTPRUPIN 56
RESHICHONS ..ot et e e e e et e e e e aaa s 56
(070] oo 1 iTo] g W o F=To - TSP PTRPT 57
= 11 4] 0] L= P 57
Multiword Arithmetic EXamPIESc..oiniinii e 57
AND, ORR, EOR, BIC, and ORNccoiiiiiiiiiiiiiii et e e e et eeeaaa e aeees 58
1] 0] = PSP 58
(0] 0= =1 (o] o P 58
RESIFICHIONS ...t ettt e e e e 59
(070) o Lo 11 o] 1 - To T3S 59
EXAMIPIES .ot 59
ASR, LSL, LSR, ROR, @and RRXcciuiiiiiiiiiiieieei e e e e e e eanen 60
1] 0] = PSSP 60
(0] 0= =1 (o] o P 62
RESIFICHIONS ...t ettt e e e e 62
(070) o Lo 11 o] 1 - To T3S 62
EXAMIPIES .ot 62
O PP 63
1] 0] 2=) PSP 63
(0] 0= =1 (o] o P 63
RESIFICHIONS ...t ettt e e e e 63
(070) g Lo [o] 1 - To T3S 63
= 0 T o] L= 63
OV =T o To [4 V| PRSPPI 64

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

T T IR Y/ o | - PP 64
TR 02 O o1 - o] o [PP 64
3.5.3 RESHICHONS e e aan 64
K20 S O g To [(o] o T o F= o =SSP 64
B TR TG T b e a1 o] L= PP 64
3.6 MOV @Nd MVN L.t e et e e et e e et e e e e et eeeeaa s 65
G R T Y/ o | - PP 65
G TG 02 O T o1 - o] o [PP 65
3.6.3 RESHICHONS ..ceeiie e e eaas 66
3.6.4 CONAItION FIAGS .. it 66
3.8.5 EXAMPIE oo e 66
3.7 1Y 1 A P 67
T A T Y/ o | - PP 67
T A O T o1 - o] o [PP 67
3.7.3 RESHICHONS <. et aan 67
A S O g To [1o o T o F= o =SSP 67
BT A T b e 4o o] L= PP 67
3.8 REV, REV16, REVSH, and RBIT ... 68
S 0 I Y/ o | - PP 68
TS T2 O T o1 T -] o [PP 68
3.8.3 RESHICHONS e e aan 69
3.8.4 CONAItION FIAGS ...t 69
3.8.5 EXAMPIES oo e a e r e 69
3.9 SADD16 and SADDS ..o e 70
TR I Y/ o | - PP 70
IR I o1 - o] o [PP 70
3.9.3 RESHICHONS «.ceiieee e e aan 70
3.9.4 CONAItION FIAGSneiiiiieee e 71
3.9.5 EXAMIPIES .oniiiiiiii e e a e a e a e 71
3.10 SHADD16 @nd SHADDScooitiiiiiiii e e e e e et a s 72
R Tt 0T B Y o | - P 72
G T L0 02 T o1 - o] o PP 72
R Tt 100 N o= 13 o 1o 1= 73
3.10.4 CoNAItION FIAGS ...neiieii e 73
3.10.5 EXAMPIES ..ot e a e e e aae 73
3.1 SHASX @nd SHO AX ..ot e et e e et e e et e e e e e 74
R Tt B T T Y o | - PP 74
G Tt B O T o1 - o] o PP 74
R Tt B O T =T 3 o 1o 1= N 75
3114 CoNAItION FlAGSneieiiiee e e 75
G Tt B R b e o o] L= PP 76
3.12 SHSUBT6 and SHSUBScciiiiiiiiiii e et e e e et eeeaaanas 77
Tt 2 B Y o | - PP 77
G Tt D T o1 - o] o [PP 77
G Tt 2 o= 4 o 1o 1= 78
3.12.4 CoNAItION FIAGSn it 78
G Tt D T b e o o] L= PP 78
313 SSUBMB @nd SSUBBo 79
November 04, 2011 5

Texas Instruments Incorporated

Table of Contents

3.13.1
3.13.2
3.13.3
3.13.4
3.135
3.14

3.14.1
3.14.2
3.14.3
3.14.4
3.145
3.15

3.15.1
3.15.2
3.15.3
3.15.4
3.155
3.16

3.16.1
3.16.2
3.16.3
3.16.4
3.16.5
3.17

3.17.1
3.17.2
3.17.3
3.17.4
3.17.5
3.18

3.18.1
3.18.2
3.18.3
3.18.4
3.18.5
3.19

3.19.1
3.19.2
3.19.3
3.19.4
3.19.5
3.20

3.20.1
3.20.2
3.20.3
3.20.4
3.20.5
3.21

11 =) SPP 79
(©]'o1=1 = 110} o KNP UPTRPTRPRN 79
=] 1o (oo - 80
1070] T 11 o] 10 1 F= Lo - TSP 80
=T] o] 1= 80
SASX ANA SO AKX ittt et e et a et e a e et e aaaa e aaaes 81
11 =) SPP 81
(0] 0= =1 (o] o PR 81
=] (o (oo - 82
1070] T 11 o] 10 1 F= Lo - TSP 82
=T] o] 1= 83
IS TR L Lo R I =1 O PP 84
11 =) SPP 84
(0] 0= =1 (o] o PR 84
=] 1o (oo - 84
1070] ol [} o] 1 ol = To [TSP 85
=T] o] 1= 85
UADDT6 and UADDS ..o ettt e et e e e e e e e eaan e e e ennnns 86
11 =) SPP 86
(0] 0= =1 (o] o PR 86
=] (o (oo - 86
1070] T 11 o] 10 1 F= Lo - TSP 87
=T] o] 1= 87
UASX @NA USAX oottt et e e e et e e e ettt e e e e et e e e eeat e e e eeaaaaaeee 88
11 =) SPP 88
(0] 0= =1 (o] o PR 88
=] (o (oo - 89
1070] T 11 o] 0 1 F= Lo - TSP 89
=T] o] 1= 90
UHADDT6 @nd UHADDSottt e et e e e et e e e e aaa e eeeeean 91
11 =) SPP 91
(O] o1 = 110} o KNP UPTRPTRPRN 91
=] 1o (oo - 92
1070] T 11 o] 0 1 F= Lo - TSP 92
=0] o] 1= 92
UHASX @nd UHSAX .ottt e e e et e e e et e e e e e s 93
101 =) SPP 93
(0] 0= =1 1o o PR 93
=] 1o (oo - 94
1070] T 11 o] 0 1 F= Lo - TSP 94
=0] o] 1= 95
UHSUB16 and UHSUBS ..o e s 96
11 =) S SPP 96
(O] o1 = 110} o KN PP RPTRPRN 96
=] 1o (oo - 97
CoNItION FIagS ... i e e 97
=0] o] 1= 97
T PSP 98

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

0 Iy B Y o | - PP 98
G 30 I T o1 - o] o PP 98
G T R o= 4 o 1o 1= 98
3.21.4 CoNAItION FlAGSn it 98
B I T b e 4] o] L= PP 98
R0 U 7 N I 1 PP 99
0 B Y/ o | - PP 99
I ©] o1 - o] [PP 99
3.22.3 RESHICHONS «.eeieee e et aan 99
3.22.4 CONAItION FIAGSn it 99
B I T b e 4] o] L= PP 99
R0 L U 7 NI 7 PP 101
R0 TR B Y/ o | - PP 101
I T © o1 - o] o [P 101
3.23.3 RESHICHONS ... ean 101
3.23.4 CONAItION FIAGS .. iieiiieiiii e 101
3.23.5 EXAMPIES ..oeeiiiiiiei e a e e 101
3.24 USUBTB anNd USUBS ...ttt e e et e et e e e et e e e eatnaaaaes 103
R Sy T Y o | - PP 103
I @ T o1 - o] o [PR 103
3.24.3 RESHICHONS ... ean 104
3.24.4 CONAItION FIAGS .. iieiii i e 104
3.24.5 EXAMPIES ..ooniiiiiiiiii et e e a e a e aa e 104
4 Multiply and Divide INStructionscccccoiiiiiiimimnnrrr s 105
4.1 MUL, MLA, and MLS ... e e e e e et e e e e 106
g Ot S 1V 0 -) G SR 106
o B O] 1Y = 11 o PSPPI 106
413 RESIICHONS ...t ettt eaaas 106
o S ©7o] To 1 1To] o N =T 1< U 107
g o T = Y1] o] 1= 107
4.2 SMLA and SIMLAW ..o e e e 108
Nt B 1V 0 -) G PR 108
A O] 11 - 1] o PSPPI 108
4.2.3 RESIICHONS ...t e et e e eaaas 109
SO0 [o 1170} o T = To [PN 109
o T - Y1] o] 1= 109
4.3 SIMLAD .o e e e e et a et aaa 111
I Tt S 1V 0 -) G PP 111
N T O] 1Y - 11] o PSPPI 111
4.3.3 RESIICHONS ...t et 111
4.3.4 Condition Flags ...coevniiiiiii e 112
435 EXGMPIES ..o e aa e eeas 112
4.4 SMLAL and SMLALDiiiii e 113
B 1V 01 - GRS 113
A O] 1Y - 1] o PSPPI 114
443 RESHICHONS ...t e ettt e eaaas 114
S ©7o] [o 11 Te] o i = To [PN 114
o T €= Y1] o] = 114
November 04, 2011 7

Texas Instruments Incorporated

Table of Contents

4.5
451
452
453
454
455
4.6
4.6.1
46.2
46.3
464
4.6.5
4.7
4.71
472
4.7.3
4.7.4
4.7.5
4.8
4.8.1
48.2
4.8.3
484
4.8.5
4.9
491
492
493
494
4.10
4.10.1
4.10.2
4.10.3
4104
4.10.5
4.1
4111
4.11.2
411.3
4114
4.11.5

5.1

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5

SMLSD @Nd SIMLSLD ...ttt e e e et eaaan 116
01 1 €= P 116
L0 0= =1 1o o 116
=] 1o (o g - S 117
(@70] oo 1 o] T { = To 1= S 117
= 141 0] L= PPN 117
SMMLA and SMIVILSiiiiii et e e e e e et e e e et e e e eata e e eeetnaeeeee 119
01 1 €= P 119
L0 0= =1 1o o 119
=] 1 o (o g TS 120
(@70] oo 1 o T { = To 1= S 120
= 141 0] L= P 120
SIMIMUL oot e e et e e 121
01 1 €= P 121
1 0= =1 (o o T 121
=] 1 o (o o - N 121
(@70] oo 1 o T { = To 1= S 121
= 141 0] L= PN 122
SMUAD @nd SMUSDoiiiiiiiii e e e et e et e e et e e e et e e e eannnns 123
S NEAX et 123
1 0= =1 1o o T 123
=] 1 o (o o - N 124
(@70] oo 1 o T { = To 1= S 124
= 141 0] L= PN 124
SMUL and SIMULW ..ot e e e e e e e et e e e e eet s e e e eatn s e eeeatnaaees 125
01 1 €= 125
1 0= =1 1o o T 125
=] 1 o (o o - N 126
= T8] o] 1= 126
UMULL, UMAAL, UMLAL, SMULL, and SMLALcoiiiiiiieiiiie e 128
1=) PR 128
10 0= =1 (o o 128
=] 1o (o o - S 129
CoNditioN Flags ...oeeeiiiie e s 129
=10] o] 1= 129
ST] V=T o B | PN 130
171 =) P 130
10 o= =1 (o] o 130
=] (o (o o - S 130
(O70] ol [} o] N F=To 1~ PSP 130
=T] o] 1= 130
Saturating INStructions ..o ———— 131
SSAT ANA US AT .ttt e e e e 132
311 €= 132
(0] 01=1 £=1 (o] o TN PP 132
=T (o2 (o o - PN 133
COoNAItION FIAGSveieiiii e e 133
=T 0] o] 1= 133

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

5.2 SIS TN I = Ty o B0 1S 7 I T 134
o Y 0| 7= b PO PP TPPPRTT 134
Lo O T o T - o) o 134
B5.2.3 RESHICHONS .eiiiiiii e aan 134
5.2.4 CoNdition flagsuoiiieiiiiiiii e 135
LT T = - Y1] o] [PPN 135
5.3 QADD and QSUB ...t a e 136
TR R Y 0| 7= b PO TPPPRT 136
LR T O T o T - o) o 136
5.3.3 RESHICHONS .eiieiee e e 137
5.3.4 CoNdition flagsuiiiiniiiii i 137
LG TR T = - Y1] o] [PPN 137
5.4 QASX AN QS AX ottt e e et e et e e e et e e e et aaae 138
T Y | 7= b PP TPPPRT 138
Lo O T o T - o) o P 138
B5.4.3 RESHICHONS ..uiiiiiii e et aan 138
5.4.4 CoNition flagsuoiiiniiiii i 139
LT T = - Y1]][PPN 139
5.5 QDADD and QDSWUBcoiiiiiiiiiii e e e e et aaaaan 140
TSI Y | 7= b OO PPPPRTT 140
LR T O T o T - o) o 140
5.5.3 RESHICHONS .eiiiieiii e aan 140
5.5.4 CoNdition flagsuoiivniiiii i 141
LT TR T = =T]][PPN 141
5.6 UQASX @nd UQISAX ..ttt e e e et e e e et e e e eaa e e e esan e eeennnns 142
LG Tt B Y o 142
LG T o T - o) o P 142
B5.6.3 RESHICHONS ..o 143
5.6.4 CoNdition flagsuoiiiniiiiii i 143
LT TR T = =T] o[PPN 143
5.7 UQADD and UQSUBooiiiiiieiiii et e et e et e e e e et e e e e et e e e e eaan s 144
L A0t B Y/ o -) 144
Lo A O T o T - o) o 144
B5.7.3 RESHICHONS .eiieiiei e e e aan 145
5.7.4 CoNdition flagsuiiiniiiii i 145
LT A8 T = - T] o] [PPN 145
6 Packing and Unpacking Instructionsccccccee i 147
6.1 [N = =T o To B o 1 1 I = PP 148
0t T T Y o | - GO 148
(ST I @ o1 -1 (o] RPN 148
B.1.3 RESHICHONS ... e e 149
6.1.4 CoNAItION FIAGS .. eiiiiiieii e e 149
B.1.5 EXAMIPIES i e 149
6.2 3 - 3o 1 U PP 150
0 T Y/ o | - G PP 150
I A @ o1 -1 (o] o RPNt 151
B.2.3 RESHICHONS ... e 151
6.2.4 CONAItION FIAGS .. iieeiieieii e e 151
November 04, 2011 9

Texas Instruments Incorporated

Table of Contents

6.2.5
6.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.4

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

7.1

711
7.1.2
7.1.3
7.1.4
7.1.5
7.2

7.21
7.2.2
7.2.3
7.2.4
7.2.5

8.1

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.2

8.2.1
8.2.2
8.2.3
8.24
8.2.5
8.3

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.4

8.4.1
8.4.2

= 110 0] L= PP 151
S QI = N LT Ta e I 6) QI = 1 PP 152
1Y/ 122 PP 152
(O] 01T = (o o PSSP 152
RESHICHONS ..eei et e e e e e e es 153
(@70] g o1 o] TN { = To [SO PPPR PN 153
= 110 0] L= PP 153
3 Q1N 1 o B) I PP 154
1Y 1 2= PP 154
(O] 01T = (o o PSSP 155
RESHICHONS ..eei et e e e e e e es 155
(@70] g o1 o] TN { = To [S PSPPI 155
= 110 0] L= PP 155
Bitfield INStructions ... 156
=] = Lo = PP 157
101 =) TP 157
[©]'o=1 = 1170} o KPP 157
=] o (o o - S 157
(O70] ol [} o] B F=To 1~ PSP 157
=10] o1 =P 157
SBEX @nd UBFX ..ottt e et e et e e et e e et e e e et e e aaa e aaa 158
11 =) TP 158
(O] o1 = 1170} o KU PP 158
=] o (o o - S 158
(O70] ol [} o] B F=To 1~ PSP 158
=10] o1 =P 158
Floating-Point ... ——————_——— 159
LYY = 1 TP PPPPRP 161
311 €= G 161
(0] 01=1 £=1 (o] o KPP 161
Y] (o2 (o o - S 161
@70] oo 1 o] o i § = To 1= TS 161
= 0] o] 1= 161
VDD oo e e e e e s 162
311 €= 162
(0] 01=1 £=1 (o] o KPP 162
Y] (o2 (o o - PPN 162
@70] oo 1 o] o i =T 1= TS 162
=T 0] o] 1= 162
VOMP, VCOMPE ...ttt et e e e e e e e et e e e e et eeaaes 163
311 €= 163
(0] 0= =1 1 o] o P 163
Y] (o2 (o o - PPN 163
CoNditioN FlagS ...ceeieeiei e 163
=T 0] o] 1= 164
VCVT, VCVTR between floating-point and integercoooiiiiiiiiiii e, 167
311 €= 165
(0] 0= =1 1 o] o P 165

10

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.4.3 RESHICHONS ... et 165
8.4.4 CoNAItION FIAGS .. .ieeiii i 166
8.5 VCVT between floating-point and fixed-point ..., 167
ST T Y | 7= PP 167
S TR0 @ o1 - (o) o [P 167
8.5.3 RESHICHONS ... et 168
8.5.4 CONAItION FIAGS .. iiiiiiieiiii ettt a s 168
8.6 RV O 1 = TV Y I PPN 169
TG TS Y | 7= PP 169
8.6.2 OPEIALION ...ttt et 169
8.6.3 RESIICHONS ..ouiiii i e 169
8.6.4 CoNditioN flAagsciiviiiiiiii s 170
8.7 Y4 L PP 171
T At B Y/ o -) 171
T A O T o T - o) o 171
8.7.3 RESHICHONS .eiiieiii e aan 171
8.7.4 CoNitioN flagsuoiiiiiiiii i 171
8.8 RV Y 4 Y PP 172
RS R T Y o | - PP 172
TS T2 O T o T - o] o [P 172
8.8.3 RESHICHONS ... e 172
8.8.4 CONAItION FIAGS .. ieeeiiiieii e 172
8.9 VENMA, VENMS e e et e e e e eaaans 173
GRS TR TS Y/ o | - PP 173
oIS I @] o1T -1 (o] o IR PT PP 173
8.9.3 RESHICHONS ... e 173
8.9.4 CoNAItION FIAGS .. .iieiieieii e s 173
B.10 VLD Lo 174
G TRt O TR B o | = PP 174
T LI @] o1 -1 (o] o PRSPPI 174
8.10.3 RESHICHONS ... ettt eas 174
8.10.4 CoNAItiON FIAGS ... ciieiiiieii e e 175
8.1 Y | PP 176
0t B T TS Y | - PO 176
S Tt O @ T oY - o) o 176
8.11.3 RESHICHONS ... ettt et e e e e e eas 177
Tt I S 0o T To [o o T = o PP 177
8.12 VLIMA, VLIS oot e et e e e e e e et e e e et e e e aaa e e e anaans 178
Tt 1 B Y | 7= G PP 178
T D O o 1= 1 (1] o ISP 178
8.12.3 RESIICHONS ..euiiii ittt e et e e eeaaa s 178
8.12.4 Condition flAagsccovniiiiiiii s 178
8.13 VMOV IMMEAIALE ..uiieiiiiieeeii et e e e e et e e e et e e e e eaanns 179
T I TR B | 7= PO TPPPRTR 179
S Tt T T o T - o) o P 179
8.13.3 RESHICHONS ... e aan 179
8.13.4 CoNditioN flagsuoiiiiiiiii i e 179
814 VMOV REGISIEI ...uiiiiiiii ettt e e e e e e e e 180
November 04, 2011 11

Texas Instruments Incorporated

Table of Contents

8.14.1
8.14.2
8.14.3
8.14.4
8.15

8.15.1
8.15.2
8.15.3
8.15.4
8.16

8.16.1
8.16.2
8.16.3
8.16.4
8.17

8.17.1
8.17.2
8.17.3
8.17.4
8.18

8.18.1
8.18.2
8.18.3
8.18.4
8.19

8.19.1
8.19.2
8.19.3
8.19.4
8.20

8.20.1
8.20.2
8.20.3
8.20.4
8.21

8.21.1
8.21.2
8.21.3
8.21.4
8.22

8.22.1
8.22.2
8.22.3
8.22.4
8.23

8.23.1
8.23.2
8.23.3

1=) PR 180
10 0= =1 (o] o U 180
=] 1o (o o - S 180
CoNditioN Flags ...oeeeeiiiii e e 180
VMOV Scalar to ARM COre re€gisteroovuuiiiiiiiii e 181
3T 415 ¥ PSPPSR 181
(0] 01=T ¢=1 (o] o KPP 181
=] (o (o o - S 181
CoNditioN Flags ...oeee i e 181
VMOV ARM Core register to single precisSion ... 182
311 €= 182
(0] 01=1 £=1 (o] o KPP PRTRPPR 182
=T (e (o o - PN 182
CoNditioN FlagS ...ceeeeeie e 182
VMOV Two ARM Core registers to two single precisionccoooviiiiiiiiiiiiie, 183
1Y/ 1= PP 183
1] 0= =1 (o] o T 183
RESIICHONS ...ttt 183
(070) 9T [} o] i { - To =SSP 183
VMOV ARM Core register 0 SCaAlarooieuuiiiiiiii e 184
177 1 2= PSP 184
(O] 01T = (o o PSSP 184
RESIICHONS ...t e e 184
(@70] g o1 o] TN { = To [S PP PNN 184
BT TSP 185
S NEAX et 185
1 0= =1 1o o T 185
=] 1 o (o o - N 185
(@70] oo 1 o T { = To 1= S 185
BT T PP 186
1=) PR 186
10 0= =1 (o o 186
=] 1o (o o - S 186
CoNditioN Flags ...oeeeiiiie e s 186
Y L PP 187
3T 415 ¥ PSPPSR 187
(0] 01=T £ 1 (o] o TP 187
Y] (o (o o - S 187
CoNditioN Flags ...ceeiiieiee e e 187
VINEG ..ottt e e e e e a e aa s 188
311 €= 188
(0] 01=1 x=1 (o] o T PP 188
=T (e (o o - RPN 188
CoNditioN FlagS ...coeeeieiee e 188
VNMLA, VNMLS, VNMUL ..ot e et e e e e 189
1] 1= PP 189
1] 0= =1 1o o T 189
RESHCHONS ...t et 190

12

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.23.4 CONAItION FIAGS .. iiiiiiieiiiiii ettt aaa s 190
8.24 VPO .. e e aa s 191
Sy B Y | 7= PSPPI 191
I O o 1= 1 (1] o ISP 191
8.24.3 RESIICHONS ...uiiiiiit et e et 191
8.24.4 CoNdition flAagsciivniiiiiiii e 191
8.25 MV PUSH o e e 192
ST Tt B Y o=) 192
S I 0 © T o T - (o) o P 192
8.25.3 RESHICHONS ... aan 192
8.25.4 CoNdition flagsiiiuiiiiii i e 192
S0 Y T8 PR 193
S0 TR B Y/ | - PP 193
I I @ o T - o] o [PR 193
8.26.3 RESHICHONS ... e aan 193
8.26.4 CONAItION FIAGS .. ieeiiiieii e 193
G A AV 1 PR 194
GO 0 TS Y/ | - PP 194
A N @] o1 -1 (o) o PR PP PPNt 194
8.27.3 RESHICHONS ... et 194
8.27.4 CoNAItION FIAGS .. .ieeei i e 195
B.28 VST R o 196
S0 TRy B | - PP 196
I T A @] o1 -1 (o) o PRSPPI 196
8.28.3 RESHICHONS ...t et e eas 196
8.28.4 CoNAItION FIAGS .. .eeeeiiieii e 196
e Y U1 PPN 197
A T TS Y o - D PP RPPPRTR 197
A I @ o1 - (o) o [197
8.29.3 RESIICHONS ...t et ettt e 197
I R ©7o g To [y o o T = o - PP 197
8.290.5 OPEIAtION ...eeiiiiiie e e e e e e e aea e 197
8.29.6 CoNAItION FIAGS .. .iiiiii i e 197
8.20.7 EXAMPIES it e 198
9 Branch and Control INStructions ... 199
9.1 B, BL, BX, @Nd BLX ...t 200
1S Tt I T Y o | - PRSPPI 200
1S TRt 0 O oY - (o) o [200
9.1.3 RESHICHONS ... et ettt e 201
1S Tt I S 0o T3 To [o o T = To L= PSP 201
1o IR I T = =T] o] [PPN 201
9.2 CBZ @Nd CBNZoeiie ettt e et e e et e e e e e e e et e e e et e e e aar e aaes 202
1S I I Y o - PP 202
LS I @ o1 - (o) o [202
9.2.3 RESHICHONS ... ettt 202
1S D S 0o g To [o o T = To LSRR 202
L I T = e Ta] o] (Y= PPN 202
9.3 N PPN 203
November 04, 2011 13

Texas Instruments Incorporated

Table of Contents

9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.4

9.4.1
9.4.2
943
9.4.4
9.4.5

10
10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.5
10.5.1
10.5.2
10.5.3
10.5.4
10.6
10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.7
10.7.1
10.7.2
10.7.3

1=) PR 203
10 0= =1 (o] o U 203
=] 1o (o o - S 204
(O70] o To [} o] N F=To 1= PSPPI 204
= 0] o] = 204
LI =] = 2= 10 Lo I =1 PP 206
1=) PR 206
10 0= =1 (o] o 206
=] 1o (o o - S 206
(O70] o To [} o] N F=To 1= PSPPI 206
= T8] o] 1= 206
Miscellaneous INStructions ... icrssccsrss s e 208
2] 4 IR 209
311 €= 209
(0] 01=] £=1 (o] o KPP 209
(070) 9T [} o] B o =T 1= TP 209
EXAMIPIES ..o 209
L0 o SRR 210
177 1= PP 210
1] 0= =1 1o o T 210
RESIFICHONS ... ettt e e ees 210
(070) 9 Lo [} o] I o =T 1= TP 210
EXAMIPIES ..o e 210
91/ PP 211
177122) PP 211
1] 0= =1 1o o T 211
(070] g o1 iTo] g ol F=To T PP PTRPI 211
= 1101 0] L= PPN 211
9T P 212
1Y 122 PP 212
(O] 01T = (o o PSPPSR 212
(@70 oo 1 o] T =T - 212
= 141 0] L= P 212
1] = PP 213
1Y 122 PP UPPPTTRP 213
10 0= =1 1o o 213
(O70] ol [} o] N F=To 1= PSP 213
=10] o1 1= 213
Y PP 214
101 =) TP 214
(O] o1 = 1170} o KU PP 214
=] (o (o o - S 214
(O70] ol [} o] B F=To 1= PSP 214
=10] o1 1= 214
YT PP 215
101 =) TP 215
(O] o1 = 1170} o KPP 215
=] (o (o o - S 215

14

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

(L A S 07014 o [oo B =T 1= 215
LA T =T g o] L= 215
O N[PSP 216
T0.8.T Sy NAX 1otuiiiiiii e et e e e et e e e 216
LIRS T @ o T = 1T o O SPS 216
10.8.3 CoNAItiON FIAGS .. cvnniiiiiii e 216
ORS¢ 11 4] o] L= T PP 216
L0 1 P 217
T0.9.T S NAX ot e e ettt e s 217
(LRI @ o 1T = (o] o PP 217
OIS TR T @70) Lo 1 1To o T =T £ 217
(OB TR €= o 4] o] L= T PP 217
0t O T 1 PP 218
TO.M0.T SYNTAX ettt et a e 218
O IR 022 @ o T = 1T o S 218
10.10.3 CoNAItION FIAGSeunieieiiiieee et e et e e 218
TR 0 =T g o] =TSP 218
0t B T PP 219
0 B T S 0 - G 219
Ol I @ o =T i o] o IR PSPPI 219
10.11.3 CoNAItION FIAGSvnieieiiie et 219
O B I =T 43T o] [PP 219
0t 1 PP 220
O 2 B -) P 220
(O B A @ o T=T = o] o PP 220
10.12.3 CoNAItION FIAGSvnniiiiieee ettt 220
TR 2 =Yg g o] =S 220
November 04, 2011 15

Texas Instruments Incorporated

Table of Contents

List of Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.

16

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

List of Tables

Table 1-1. Cortex-M3/MAF INSITUCLIONSuiiiiiiii e 19
Table 1-2. Condition Code SUFFIXESiiuuuiiiiiiii e 33
Table 2-1. Memory Access INSIFUCHIONSo.. i e 35
Table 2-2. OffSEE RANGES ... it 38
Table 2-3. OffSEE RANGES ... i 45
Table 3-1. General Data Processing INStructionscoioiiiiiiiiii e 53
Table 4-1. Multiply and Divide INStrUCHONSiieiiiiii e 105
Table 5-1. Saturating INStrUCtioNS ... 131
Table 6-1. Packing and Unpacking InStructions ... 147
Table 7-1. Bitfield INSTrUCHIONSo e 156
Table 8-1. Floating-Point INStruCtiONScooiii e 159
Table 9-1. Branch and Control INStrUCHONScocuiiiiii e 199
Table 9-2. BranCh RANGESoiiiiiiii et e e 201
Table 10-1. Miscellaneous INSrUCHONSoooiuiii e 208
November 04, 2011 17

Texas Instruments Incorporated

Table of Contents

List of Examples

Example 1-1. Absolute Value
Example 1-2. Compare and Update Value
Example 1-3. Instruction Width Selection
Example 3-1. 64-Bit Addition
Example 3-2. 96-Bit Subtraction

18

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

1 Introduction

Each of the following chapters describes a functional group of Cortex-M3/M4F instructions. Together

they describe all the instructions supported by the Cortex-M3/M4F processor:

“Memory Access Instructions” on page 35
“General Data Processing Instructions” on page 53
“Multiply and Divide Instructions” on page 105
“Saturating Instructions” on page 131
“Packing and Unpacking Instructions” on page 147
“Bitfield Instructions” on page 156
“Floating-Point” on page 159
“Branch and Control Instructions” on page 199
“Miscellaneous Instructions” on page 208

1.1 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 1-1 on page 19 lists the
supported instructions.

In Table 1-1 on page 19:

m Angle brackets, <>, enclose alternative forms of the operand.

m Braces, {}, enclose optional operands.

m The Operands column is not exhaustive.

m Op2is a flexible second operand that can be either a register or a constant.

m Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions. Figure
1-1 on page 26 shows the Cortex-M3/M4F instructions by category.

Table 1-1. Cortex-M3/M4F Instructions

M3 | M4 | M4F |Mnemonic Operands Brief Description Flags See Page
v v v |ADC, ADCS {Rd,} Rn, Op2 Add with carry N,Z,C.V 55
v | v | v |ADD, ADDS {Rd,} Rn, Op2 Add N,z,C.V 55
v v v |ADD, ADDW {Rd,} Rn, #imml2 Add N,Z,CV 55
v v v |ADR Rd, label Load PC-relative address - 36
v | v | v |AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C 58
v | v | ¥ |ASR, ASRS Rd, Rm, <Rs]|#n> Arithmetic shift right N,Z,C 60
v v v |B label Branch - 200
v | v | v |BFC Rd, #lIsb, #width Bit field clear - 157
v | v | v |BFI Rd, Rn, #lIsb, #width Bit field insert - 157
v v v |BIC, BICS {Rd,} Rn, Op2 Bit clear N,Z,C 55
v v v |BKPT #imm Breakpoint - 209
v | v | v |BL label Branch with link - 200
v v v |BLX Rm Branch indirect with link - 200
November 04, 2011 19

Texas Instruments Incorporated

Introduction

Table 1-1. Cortex-M3/M4F Instructions (continued)

M3 | M4 | M4F |Mnemonic Operands Brief Description Flags See Page
v v v |BX Rm Branch indirect - 200
v v v |CBNZ Rn, label Compare and branch if non-zero |- 202
v v v |CBZ Rn, label Compare and branch if zero - 202
v v v |CLREX - Clear exclusive - 52
v v v |CLZ Rd, Rm Count leading zeros - 63
v v v |CMN Rn, Op2 Compare negative N,Z,CV 64
v v v |CMP Rn, Op2 Compare N,Z,C.V 64
v v v |CPSID iflags Change processor state, disable |- 210
interrupts
v v v |CPSIE iflags Change processor state, enable |- 210
interrupts
v v v |DMB - Data memory barrier - 211
v v v |DSB - Data synchronization barrier - 211
v | v | v |EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C 55
v v v |ISB - Instruction synchronization barrier |- 213
v v v [T - If-Then condition block - 203
v v v |LDM Rn{1}, reglist Load multiple registers, increment |- 46
after
v v v |LDMDB, LDMEA Rn{!}, reglist Load multiple registers, decrement |- 46
before
v v v |LDMFD, LDMIA Rn{!}, reglist Load multiple registers, increment |- 46
after
v v v |LDR Rt, [Rn{, #offset}] Load register with word - 37
v v v |LDRB, LDRBT Rt, [Rn{, #offset}] Load register with byte - 37
v v v |LDRD Rt, Rt2, [Rn{, #offset}] |Load register with two words - 37
v v v |LDREX Rt, [Rn, #offset] Load register exclusive - 50
v v v |LDREXB Rt, [Rn] Load register exclusive with byte |- 50
v v v |LDREXH Rt, [Rn] Load register exclusive with - 50
halfword
v v v |LDRH, LDRHT Rt, [Rn{, #offset}] Load register with halfword - 37
v v v |LDRSB, LDRSBT Rt, [Rn{, #offset}] Load register with signed byte - 37
v v v |LDRSH, LDRSHT Rt, [Rn{, #offset}] Load register with signed halfword |- 37
v v v |LDRT Rt, [Rn{, #offset}] Load register with word - 42
v v v |LSL, LSLS Rd, Rm, <Rs|#n> Logical shift left N,Z,C 60
v | v | v |LSR, LSRS Rd, Rm, <Rs]|#n> Logical shift right N,z,C 60
v v v |MLA Rd, Rn, Rm, Ra Multiply with accumulate, 32-bit - 106
result
v v v |MLS Rd, Rn, Rm, Ra Multiply and subtract, 32-bit result |- 106
v | v | v |MOV, MOVS Rd, Op2 Move N,z,C 65
v v v |MOV, MOVW Rd, #imml6 Move 16-bit constant N,z,C 65
v v |MOVT Rd, #imml6 Move top - 67
v v v |MRS Rd, spec_reg Move from special register to - 214
general register
20 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

Table 1-1. Cortex-M3/M4F Instructions (continued)

M3 | M4 | M4F |Mnemonic Operands Brief Description Flags See Page
v v v |MSR spec_reg, Rn Move from general register to N,Z,C.V 215
special register
v | v | v [MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z 106
v v v |MVN, MVNS Rd, Op2 Move NOT N,Z,C 65
v v v |NOP - No operation - 216
v | v | v |ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,z,C 55
v | v | v |ORR, ORRS {Rd,} Rn, Op2 Logical OR N,z,C 55
v v v |PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack halfword - 148
v v v |POP reglist Pop registers from stack - 48
v v v |PUSH reglist Push registers onto stack - 48
v v |QADD {Rd,} Rn, Rm Saturating add Q 136
v v |QADD16 {Rd,} Rn, Rm Saturating add 16 - 136
v v |QADD8 {Rd,} Rn, Rm Saturating add 8 - 136
v v |QASX {Rd,} Rn, Rm Saturating add and subtract with |- 138
exchange
v v |QDADD {Rd,} Rn, Rm Saturating double and add Q 140
v v |QDSUB {Rd,} Rn, Rm Saturating double and subtract Q 140
v v |QSAX {Rd,} Rn, Rm Saturating subtract and add with |- 138
exchange
v v |QSuUB {Rd,} Rn, Rm Saturating subtract Q 136
v v |QSUB16 {Rd,} Rn, Rm Saturating subtract 16 - 136
v v |QSUBS8 {Rd,} Rn, Rm Saturating subtract 8 - 136
v v v |RBIT Rd, Rn Reverse bits - 68
v v v |REV Rd, Rn Reverse byte order in a word - 68
v v v |REV16 Rd, Rn Reverse byte order in each halfword |- 68
v v v |REVSH Rd, Rn Reverse byte order in bottom - 68
halfword and sign extend
v v v |ROR, RORS Rd, Rm, <Rs|#n> Rotate right N,z,C 60
v v v |RRX, RRXS Rd, Rm Rotate right with extend N,Z,C 60
v v v |RSB, RSBS {Rd,} Rn, Op2 Reverse subtract N,Z,C.V 55
v | v |SADD16 {Rd,} Rn, Rm Signed add 16 GE 70
v v |SADD8 {Rd,} Rn, Rm Signed add 8 GE 70
v v |SASX {Rd,} Rn, Rm Signed add and subtract with GE 70
exchange
v | v | v |SBC, SBCS {Rd,} Rn, Op2 Subtract with carry N,z,C.V 55
v v v |SBFX Rd, Rn, #lIsb, #width Signed bit field extract - 158
v v v |SDIV {Rd,} Rn, Rm Signed divide - 130
v v |SEL {Rd,} Rn, Rm Select bytes - 98
v v v |SEV - Send event - 217
v v |SHADD16 {Rd,} Rn, Rm Signed halving add 16 - 72
v v |SHADDS8 {Rd,} Rn, Rm Signed halving add 8 - 72
v v |SHASX {Rd,} Rn, Rm Signed halving add and subtract |- 74
with exchange
November 04, 2011 21

Texas Instruments Incorporated

Introduction

Table 1-1. Cortex-M3/M4F Instructions (continued)

M3 | M4 | M4F |Mnemonic Operands Brief Description Flags See Page
v v |SHSAX {Rd,} Rn, Rm Signed halving add and subtract |- 74
with exchange
v v |SHSUB16 {Rd.,} Rn, Rm Signed halving subtract 16 - 77
v | v |SHSUBS {Rd,} Rn, Rm Signed halving subtract 8 - 77
v v |SMLABB, Rd, Rn, Rm, Ra Signed multiply accumulate long |Q 108
SMLABT, (halfwords)
SMLATB,
SMLATT
v v |SMLAD, Rd, Rn, Rm, Ra Signed multiply accumulate dual |Q 111
SMLADX
v v v |SMLAL RdLo, RdHi, Rn, Rm Signed multiply with accumulate |- 128
(32x32+64), 64-bit result
v v v |SMLALBB, RdLo, RdHi, Rn, Rm Signed multiply accumulate long |- 113
SMLALBT, (halfwords)
SMLALTB,
SMLALTT
v v |SMLALD, SMLALDX |RdLo, RdHi, Rn, Rm Signed multiply accumulate long |- 113
dual
v v |SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed multiply accumulate, word |Q 108
by halfword
v v |SMLSD Rd, Rn, Rm, Ra Signed multiply subtract dual Q 116
SMLSDX
v v |SMLSLD RdLo, RdHi, Rn, Rm Signed multiply subtract long dual 116
SMLSLDX
v v |SMMLA Rd, Rn, Rm, Ra Signed most significant word - 119
multiply accumulate
v v |SMMLS, Rd, Rn, Rm, Ra Signed most significant word - 119
SMMLR multiply subtract
v v |SMMUL, SMMULR {Rd,} Rn, Rm Signed most significant word - 121
multiply
v v |SMUAD {Rd,} Rn, Rm Signed dual multiply add Q 123
SMUADX
v v |SMULBB, {Rd,} Rn, Rm Signed multiply halfwords - 125
SMULBT,
SMULTB,
SMULTT
v v v |SMULL RdLo, RdHi, Rn, Rm Signed multiply (32x32), 64-bit - 128
result
v v |SMULWB, {Rd,} Rn, Rm Signed multiply by halfword - 125
SMULWT
v v |SMUSD, {Rd,} Rn, Rm Signed dual multiply subtract - 123
SMUSDX
v v v |SSAT Rd, #n, Rm {,shift #s} Signed saturate 132
v v |SSAT16 Rd, #n, Rm Signed saturate 16 Q 134
22 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

Table 1-1. Cortex-M3/M4F Instructions (continued)

M3 | M4 | M4F |Mnemonic Operands Brief Description Flags See Page
v v |SSAX {Rd,} Rn, Rm Saturating subtract and add with |GE 81
exchange
v v |SSUB16 {Rd.,} Rn, Rm Signed subtract 16 - 79
v v |SSUBS8 {Rd,} Rn, Rm Signed subtract 8 - 79
v v v |STM Rn{!}, reglist Store multiple registers, increment |- 46
after
v v v |STMDB, STMEA Rn{!}, reglist Store multiple registers, decrement |- 46
before
v v v |STMFD, STMIA Rn{!}, reglist Store multiple registers, increment |- 46
after
v v v |STR Rt, [Rn{, #offset}] Store register word - 37
v v v |STRB, STRBT Rt, [Rn{, #offset}] Store register byte - 37
v v v |STRD Rt, Rt2, [Rn{, #offset}] |Store registertwo words - 37
v v v |STREX Rd, Rt, [Rn, #offset] Store register exclusive - 50
v v v |STREXB Rd, Rt, [Rn] Store register exclusive byte - 50
v v v |STREXH Rd, Rt, [Rn] Store register exclusive halfword |- 50
v v v |STRH, STRHT Rt, [Rn{, #offset}] Store register halfword - 37
v v v |STRSB, STRSBT Rt, [Rn{, #offset}] Store register signed byte - 37
v v v |STRSH, STRSHT Rt, [Rn{, #offset}] Store register signed halfword - 37
v v v |STRT Rt, [Rn{, #offset}] Store register word - 42
v | v | v |SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C.V 55
v v v |SUB, SUBW {Rd,} Rn, #imml2 Subtract 12-bit constant N,zZ,C,V 55
v v v |SVC #imm Supervisor call - 218
v v |SXTAB {Rd,} Rn, Rm, {,ROR #} Extend 8 bits to 32 and add - 154
v v |SXTAB16 {Rd,} Rn, Rm,{,ROR #} Dual extend 8 bits to 16 and add |- 154
v | v |SXTAH {Rd,} Rn, Rm,{,ROR #} Extend 16 bits to 32 and add - 154
v v |SXTB16 {Rd,} Rm {,ROR #n} Signed extend byte 16 - 150
v v v |SXTB {Rd,} Rm {,ROR #n} Sign extend a byte - 150
v v v |SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword - 150
v v v |TBB [Rn, Rm] Table branch byte - 206
v v v |TBH [Rn, Rm, LSL #1] Table branch halfword - 206
v v v |TEQ Rn, Op2 Test equivalence N,Z,C 84
v | v | v |TST Rn, Op2 Test N,Z,C 84
v v |UADD16 {Rd,} Rn, Rm Unsigned add 16 GE 86
v v |UADD8 {Rd,} Rn, Rm Unsigned add 8 GE 86
v v |UASX {Rd,} Rn, Rm Unsigned add and subtract with GE 88
exchange
v v |UHADD16 {Rd,} Rn, Rm Unsigned halving add 16 - 91
v v |UHADDS {Rd,} Rn, Rm Unsigned halving add 8 - 91
v v |UHASX {Rd,} Rn, Rm Unsigned halving add and subtract |- 93
with exchange
v v |UHSAX {Rd,} Rn, Rm Unsigned halving subtract and add |- 93
with exchange
November 04, 2011 23

Texas Instruments Incorporated

Introduction

Table 1-1. Cortex-M3/M4F Instructions (continued)

M3 | M4 | M4F |Mnemonic Operands Brief Description Flags See Page
v v |UHSUB16 {Rd,} Rn, Rm Unsigned halving subtract 16 - 96
v v |UHSUBS {Rd,} Rn, Rm Unsigned halving subtract 8 - 96
v v v |UBFX Rd, Rn, #lIsb, #width Unsigned bit field extract - 158
v v v |uDIv {Rd,} Rn, Rm Unsigned divide - 130
v v |UMAAL RdLo, RdHi, Rn, Rm Unsigned multiply accumulate - 128
accumulate long (32x32+64), 64-bit
result
v v v |UMLAL RdLo, RdHi, Rn, Rm Unsigned multiply with accumulate |- 128
(32x32+64), 64-bit result
v | v | v [UMULL RdLo, RdHi, Rn, Rm Unsigned multiply (32x32), 64-bit |- 128
result
v v |UQADD16 {Rd,} Rn, Rm Unsigned saturating add 16 - 144
v v |UQADDS8 {Rd,} Rn, Rm Unsigned saturating add 8 - 144
v v |UQASX {Rd,} Rn, Rm Unsigned saturating add and - 142
subtract with exchange
v v |UQSAX {Rd,} Rn, Rm Unsigned saturating subtract and |- 142
add with exchange
v v |UQSUB16 {Rd,} Rn, Rm Unsigned saturating subtract 16 |- 144
v v |UQSUBS {Rd,} Rn, Rm Unsigned saturating subtract 8 - 144
v v |USADS8 {Rd,} Rn, Rm Unsigned sum of absolute - 99
differences
v v |USADAS8 {Rd,} Rn, Rm, Ra Unsigned sum of absolute - 101
differences and accumulate
v v v |USAT Rd, #n, Rm {,shift #s} Unsigned saturate Q 132
v v |USAT16 Rd, #n, Rm Unsigned saturate 16 Q 134
v v |USAX {Rd,} Rn, Rm Unsigned subtract and add with GE 93
exchange
v v |USUB16 {Rd,} Rn, Rm Unsigned subtract 16 GE 96
v v |USUB8 {Rd,} Rn, Rm Unsigned subtract 8 GE 96
v v |UXTAB {Rd,} Rn, Rm, {,ROR #} Rotate, extend 8 bits to 32 and add |- 154
v v |UXTAB16 {Rd,} Rn, Rm, {,ROR #} Rotate, dual extend 8 bits to 16 and |- 154
add
v v |UXTAH {Rd,} Rn, Rm, {,ROR #} Rotate, unsigned extend and add |- 154
halfword
v v v |UXTB {Rd,} Rm {,ROR #n} Zero extend a byte - 150
v v |UXTB16 {Rd,} Rm, {,ROR #n} Unsigned extend byte 16 - 150
v v v |UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword - 150
v |VABS.F32 Sd, Sm Floating-point absolute - 161
v |VADD.F32 {Sd,} Sn, Sm Floating-point add - 162
v |VCMP.F32 Sd, <Sm | #0.0> Compare two floating-point FPSCR 163
registers, or one floating-point
register and zero
v |VCMPE.F32 Sd, <Sm | #0.0> Compare two floating-point FPSCR 163
registers, or one floating-point
register and zero with extend byte
check
24 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

Table 1-1. Cortex-M3/M4F Instructions (continued)

M3 | M4 | M4F |Mnemonic Operands Brief Description Flags See Page

v |VCVT.S32.F32 Sd, Sm Convert between floating-point and | - 167
integer

v |VCVT.S16.F32 Sd, Sd, #fbits Convert between floating-point and | - 167
fixed point

v |VCVTR.S32.F32 Sd, Sm Convert between floating-point and | - 167
integer with rounding

v |VCVT<B|H>.F32_F16|Sd, Sm Converts half-precision value to |- 169
single-precision

v |VCVTT<B|T>.F32.F16|Sd, Sm Converts single-precision register |- 169
to half-precision

v |VDIV.F32 {Sd,} Sn, Sm Floating-point divide - 171

v |VFMA.F32 {Sd,} Sn, Sm Floating-point fused multiply - 172
accumulate

v |VFNMA_F32 {Sd,} Sn, Sm Floating-point fused negate multiply |- 173
accumulate

v |VFMS.F32 {Sd,} Sn, Sm Floating-point fused multiply - 172
subtract

v |VFNMS.F32 {Sd,} Sn, Sm Floating-point fused negate multiply |- 173
subtract

v |VLDM.F<32|64> Rn{!}, list Load multiple extension registers |- 174

v |VLDR.F<32|64> <Dd]Sd>, [Rn] Load an extension register from |- 176
memory

v |VLMA.F32 {Sd,} Sn, Sm Floating-point multiply accumulate |- 178

v |VLMS.F32 {Sd,} Sn, Sm Floating-point multiply subtract - 178

v |VMOV.F32 Sd, #imm Floating-point move immediate - 179

v |VMOV Sd, Sm Floating-point move register - 180

v |VMOV Sn, Rt Copy ARM core register to single |- 182
precision

v |VMOV Sm, Sml, Rt, Rt2 Copy 2 ARM core registers to 2 - 183
single precision

v |VMOV Dd[x], Rt Copy ARM core register to scalar |- 184

v |VMOV Rt, Dn[x] Copy scalar to ARM core register |- 181

v |VMRS Rt, FPSCR Move FPSCR to ARM core register(N,Z,C,V 185
or APSR

v |VMSR FPSCR, Rt Move to FPSCR from ARM core [FPSCR 186
register

v |VMUL.F32 {Sd,} Sn, Sm Floating-point multiply - 187

v |VNEG.F32 Sd, Sm Floating-point negate - 188

v |VNMLA.F32 {Sd,} Sn, Sm Floating-point multiply and add - 189

v |VNMLS.F32 {Sd.,} Sn, Sm Floating-point multiply and subtract |- 189

v |VNMUL {Sd,} Sn, Sm Floating-point multiply - 189

v |VPOP list Pop extension registers - 191

v |VPUSH list Push extension registers - 192

v |VSQRT.F32 Sd, Sm Calculates floating-point square root | - 193

v |VSTM Rn{1}, list Floating-point register store multiple |- 194

November 04, 2011 25

Texas Instruments Incorporated

Introduction

Table 1-1. Cortex-M3/M4F Instructions (continued)

M3 | M4 | M4F |Mnemonic Operands Brief Description Flags See Page
v |VSTR.F3<32|64> Sd, [Rn] Stores an extension register to - 194
memory
v |VSUB.F<32]|64> {Sd,} Sn, Sm Floating-point subtract - 196
v v v |WFE - Wait for event - 219
v v v |WFI - Wait for interrupt - 220

1.2

Figure 1-1. Cortex-M Extensions

Qsusie

1]

£

LDRBTY

LDRSBT

PLOW

o

BIT

SMULL

G GRS GEITED GELTND GEIEED GEETED
D GEEED GECED GEITED CD G GEEIND

G G GETID
@E OO R GIEIED GIEIED
D GEEID GECTD
G HCHE I GRS GRS
=T GRS GRS GELTID
D D G GRS GELTED
D GECD GELTED
GEED GEIIED GEITED
€D @D CORTEX-MOM! EEIND GELD EEIIND

G GRS GEIIED

D GETIED GECUED GELD GEECIED GEECIED GEECAND
G GRS GEIIED GEIITED GETTID GETIND GEUIED
D GEIED GECTED G

CORTEX-M3

Cortex-M4

(VABS J(VADD) VCMP) (VCMPE) VCvT) (VCVTR) (VDIV pld VLDM) (VLDR)
(VMLA J(VMLS 3 (VMOV) (VM 3 VMSR 3 (VMUL 3 (VNEG (VNMLA 3 (VNMLS)
(VNMUL (VPOP) (VPUSH) (VSQRT) (VSTM) (VSTR) VSUB) COI’tGX-M4F

About the Instruction Descriptions

The following sections give more information about using the instructions:

“Operands” on page 27
“Restrictions When Using the PC or SP” on page 27

“Flexible Second Operand” on page 27
“Shift Operations” on page 28

“Address Alignment” on page 31
“PC-Relative Expressions” on page 32
“Conditional Execution” on page 32
“Instruction Width Selection” on page 34

26

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

1.21 Operands

An instruction operand can be an ARM Cortex-M3/M4F register, a constant, or another
instruction-specific parameter. Instructions act on the operands and often store the result in a
destination register. When there is a destination register in the instruction, it is usually specified
before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant. See
“Flexible Second Operand” on page 27.

See the Stellaris® Data Sheet for more information on the ARM Cortex-M3/M4F registers.

1.2.2 Restrictions When Using the PC or SP

Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack
Pointer (SP) for the operands or destination register. See the instruction descriptions for more
information.

Important: Bit[0] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction
must be 1 for correct execution, because this bit indicates the required instruction set,
and the Cortex-M3/M4F processor only supports Thumb instructions.

1.2.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as
Operand?2 in the descriptions of the syntax of each instruction.

Operand2 can be a constant or a register with optional shift.
1.2.3.1 Constant

You specify an Operand2 constant in the form:

#const ant

where const ant can be (X and Y are hexadecimal digits):

m Any constant that can be produced by shifting an 8-bit value left by any number of bits within a
32-bit word.

m Any constant of the form Ox00XYOOXY.
m Any constant of the form OxXYOO0XYOO.
m Any constant of the form OxXXYXYXYXY.

Note: In the constants listed above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, const ant can take a wider range of values. These
are described in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS,
BICS, TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than
255 and can be produced by shifting an 8-bit value. These instructions do not affect the carry flag
if Operand?2 is any other constant.

November 04, 2011 27
Texas Instruments Incorporated

Introduction

1.2.3.2

1.24

Your assembler might be able to produce an equivalent instruction in cases where you specify a
constant that is not permitted. For example, an assembler might assemble the instruction CMP Rd,
#0xFFFFFFFE as the equivalent instruction CMN Rd, #0x2.

Register With Optional Shift

You specify an Operand2 register in the form:
Rm {, shift}
where:

Rm
Is the register holding the data for the second operand.

shift
Is an optional shift to be applied to Rm. It can be one of:

ASR #n
Arithmetic shift right n bits, 1 < n < 32.

LSL #n
Logical shift left n bits, 1 < n < 31.

LSR #n
Logical shift right n bits, 1 < n < 32.

ROR #n
Rotate right n bits, 1 < n < 31.

RRX
Rotate right one bit, with extend.

If omitted, no shift occurs; equivalent to LSL #0.

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used
by the instruction. However, the contents in the register Rm remain unchanged. Specifying a register
with shift also updates the carry flag when used with certain instructions. For information on the shift
operations and how they affect the carry flag, see “Shift Operations” on page 28.

Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the
shift length. Register shift can be performed:

m Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination
register.

m During the calculation of Operand?2 by the instructions that specify the second operand as a
register with shift (see “Flexible Second Operand” on page 27). The result is used by the
instruction.

28

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

The permitted shift lengths depend on the shift type and the instruction (see the individual instruction
description or see “Flexible Second Operand” on page 27). If the shift length is 0, no shift occurs.
Register shift operations update the carry flag except when the specified shift length is 0. The
following sub-sections describe the various shift operations and how they affect the carry flag. In
these descriptions, Rm is the register containing the value to be shifted, and n is the shift length.

Texas Instruments Incorporated

1.241 ASR
An arithmetic shift right (ASR) by n bits moves the left-hand 32-n bits of the register Rm, to the right
by n places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register
into the left-hand n bits of the result. See Figure 1-2 on page 29.
You can use the ASR #n operation to divide the value in the register Rm by 2", with the result being
rounded towards negative-infinity.
When the instruction is ASRS or when ASR #n is used in Operand?2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out,
bit[n-1], of the register Rm.
Note: m If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
m If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of
Rm.
Figure 1-2. ASR #3
Carry
YYYY Flag
31 5/413[2|1]|0 |:|
| | A | | A A A A
. |
§ I
L I -------- JI
1.24.2 LSR
A logical shift right (LSR) by n bits moves the left-hand 32-n bits of the register Rm, to the right by
n places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0.
See Figure 1-3 on page 30.
You can use the LSR #n operation to divide the value in the register Rm by 2", if the value is regarded
as an unsigned integer.
When the instruction is LSRS or when LSR #n is used in Operand?2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out,
bit[n-1], of the register Rm.
Note: m If nis 32 or more, then all the bits in the result are cleared to 0.
m If nis 33 or more and the carry flag is updated, it is updated to O.
November 04, 2011 29

Introduction

1.243

1.24.4

Figure 1-3. LSR #3

- O —
- O —
- © ——

A A 4
| ! | !

LSL

A logical shift left (LSL) by n bits moves the right-hand 32-n bits of the register Rm, to the left by n
places, into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result to 0.
See Figure 1-4 on page 30.

You can use the LSL #n operation to multiply the value in the register Rm by 2", if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur without
warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to
the last bit shifted out, bit[32-n], of the register Rm. These instructions do not affect the carry flag
when used with LSL #0.

Note: m If nis 32 or more, then all the bits in the result are cleared to 0.
m If nis 33 or more and the carry flag is updated, it is updated to 0.

Figure 1-4. LSL #3

N |j-o—

o |[eo——

ROR

A rotate right (ROR) by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it moves the right-hand n bits of the register
into the left-hand n bits of the result. See Figure 1-5 on page 31.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ, or TST, the carry flag is updated to the last bit rotation,
bit[n-1], of the register Rm.

Note: m If nis 32, then the value of the result is the same as the value in Rm, and if the carry
flag is updated, it is updated to bit[31] of Rm.

m ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

30

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

Figure 1-5. ROR #3

| Carry
YVYY Flag
31 5/4(3(2|1]|0
A A A | | AlA f
' I
e ;
1.2.4.5 RRX

A rotate right with extend (RRX) moves the bits of the register Rm to the right by one bit. And it copies
the carry flag into bit[31] of the result. See Figure 1-6 on page 31.

When the instruction is RRXS or when RRX is used in Operand?2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ, or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 1-6. RRX

Carry
Flag

313 1

fULL... LU

1.2.5 Address Alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or
multiple word access, or where a halfword-aligned address is used for a halfword access. Byte
accesses are always aligned.

The Cortex-M3/M4F processors support unaligned access only for the following instructions:

LDR, LDRT
LDRH, LDRHT
LDRSH, LDRSHT
STR, STRT
STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an unaligned
access, and therefore their accesses must be address aligned. For more information about usage
faults, see "Fault Handling" in the Stellaris® Data Sheet.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions
might not support unaligned accesses. Therefore, ARM recommends that programmers ensure that
accesses are aligned. To avoid accidental generation of unaligned accesses, use the UNAL1GNED
bit in the Configuration and Control (CFGCTRL) register to trap all unaligned accesses (see
CFGCTRL in the Stellaris® Data Sheet).

November 04, 2011 31
Texas Instruments Incorporated

Introduction

1.2.6

1.2.7

1.2.71

PC-Relative Expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal
data. Itis represented in the instruction as the PC value plus or minus a numeric offset. The assembler
calculates the required offset from the label and the address of the current instruction. If the offset
is too big, the assembler produces an error.

Note: m ForB, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current
instruction plus 4 bytes.

m For all other instructions that use labels, the value of the PC is the address of the current
instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

m Your assembler might permit other syntaxes for PC-relative expressions, such as a label
plus or minus a number, or an expression of the form [PC, #number].

Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application
Program Status Register (APSR) register according to the result of the operation (see APSR in
the Stellaris® Data Sheet). Some instructions update all flags, and some only update a subset. If a
flag is not updated, the original value is preserved. See the instruction descriptions for the flags they
affect.

You can execute an instruction conditionally, based on the condition flags set in another instruction,
either immediately after the instruction that updated the flags, or after any number of intervening
instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code suffixes
to instructions. See Table 1-2 on page 33 for a list of the suffixes to add to instructions to make
them conditional instructions. The condition code suffix enables the processor to test a condition
based on the flags. If the condition test of a conditional instruction fails, the instruction:

m Does not execute

m Does not write any value to its destination register
m Does not affect any of the flags

m Does not generate any exception

Conditional instructions, except for conditional branches, must be inside an If-Then instruction block.
See “IT” on page 203 for more information and restrictions when using the 1T instruction. Depending
on the vendor, the assembler might automatically insert an 1T instruction if you have conditional
instructions outside the IT block. See “IT” on page 203 for more on the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch on
the result.

Condition Flags
The Application Program Status Register (APSR) contains the following condition flags:

m N. Setto 1 when the result of the operation was negative; cleared to 0 otherwise.

m Z. Set to 1 when the result of the operation was zero; cleared to 0 otherwise.

32

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

1.2.7.2

m C. Setto 1 when the operation resulted in a carry; cleared to 0 otherwise.
m V. Set to 1 when the operation caused overflow; cleared to 0 otherwise.

For more information about APSR, see the Stellaris® Data Sheet.

A carry occurs:

m If the result of an addition is greater than or equal to 232

m [f the result of a subtraction is positive or zero

m As the result of an inline barrel shifter operation in a move or logical instruction

Overflow occurs if the result of an add, subtract, or compare is greater than or equal to 23", or less
than —231.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction
descriptions for more information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions
as {cond}. Conditional execution requires a preceding I T instruction. An instruction with a condition
code is only executed if the condition code flags in APSR meet the specified condition. Table

1-2 on page 33 shows the condition codes to use.

You can use conditional execution with the IT instruction to reduce the number of branch instructions
in code.

Table 1-2 on page 33 also shows the relationship between condition code suffixes and the N, Z, C,
and V flags.

Table 1-2. Condition Code Suffixes

Suffix Flags Meaning

EQ Z=1 Equal

NE Z=0 Not equal

CS or HS c=1 Higher or same, unsigned =
CCorlLO c=0 Lower, unsigned <

Ml N=1 Negative

PL N=0 Positive or zero

'S] V=1 Overflow

vC V=0 No overflow

HI C=1andzZ=0 Higher, unsigned >

LS C=0o0rz=1 Lower or same, unsigned <

GE N = Greater than or equal, signed =
LT N!=V Less than, signed <

GT Z=0andN=V Greater than, signed >

LE Z=1andN!=V Less than or equal, signed <
AL Can have any value Always. This is the default when no suffix is specified.

November 04, 2011

Texas Instruments Incorporated

33

Introduction

1.2.8

Example 1-1, “Absolute Value” on page 34 shows the use of a conditional instruction to find the
absolute value of a number. RO = ABS(R1).

Example 1-1. Absolute Value

MOVS RO, R1 ; RO = R1, setting flags.
IT MI ; IT instruction for the negative condition.
RSBMI RO, R1, #0 ; I negative, RO = -R1.

Example 1-2, “Compare and Update Value” on page 34 shows the use of conditional instructions
to update the value of R4 if the signed value RO is greater than R1 and R2 is greater than R3.

Example 1-2. Compare and Update Value

CmMP RO, R1 ; Compare RO and R1, setting flags

ITT GT ; IT instruction for the two GT conditions

CMPGT R2, R3 ; If "greater than®, compare R2 and R3, setting flags
MOVGT R4, R5 ; I still "greater than®, do R4 = R5

Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending
on the operands and destination register specified. For some of these instructions, you can force a
specific instruction size by using an instruction width suffix. The .W suffix forces a 32-bit instruction
encoding. The .N suffix forces a 16-bit instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction encoding
of the requested width, it generates an error.

Note: In some cases it might be necessary to specify the .W suffix, for example if the operand is
the label of an instruction or literal data, as in the case of branch instructions. This is because
the assembler might not automatically generate the right size encoding.

To use an instruction width suffix, place itimmediately after the instruction mnemonic and condition
code, if any. Example 1-3, “Instruction Width Selection” on page 34 shows instructions with the
instruction width suffix.

Example 1-3. Instruction Width Selection

BCS.W label ; creates a 32-bit instruction even for a short branch

ADDS.W RO, RO, R1 ; creates a 32-bit instruction even though the same
; operation can be done by a 16-bit instruction

34

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

2 Memory Access Instructions

Table 2-1 on page 35 shows the memory access instructions:

Table 2-1. Memory Access Instructions

Mnemonic Brief Description See Page
ADR Load PC-relative address 36
CLREX Clear exclusive 52
LDM{mode} Load multiple registers 46
LDR{type} Load register using immediate offset 37
LDR{type} Load register using register offset 40
LDR{type}T Load register with unprivileged access 42
LDR{type} Load register using PC-relative address 44
LDRD Load register using PC-relative address (two words) 44
LDREX{type} Load register exclusive 50
POP Pop registers from stack 48
PUSH Push registers onto stack 48
STM{mode} Store multiple registers 46
STR{type} Store register using immediate offset 37
STR{type} Store register using register offset 40
STR{type}T Store register with unprivileged access 42
STREX{type} Store register exclusive 50
November 04, 2011 35

Texas Instruments Incorporated

Memory Access Instructions

2.1 ADR
Generate PC-relative address.
M3 | M4 | M4F
Applies to...
v v v
211 Syntax
ADR{cond} Rd, I abel
where:
cond
Is an optional condition code. See Table 1-2 on page 33.
Rd
Is the destination register.
label
Is a PC-relative expression. See “PC-Relative Expressions” on page 32.
21.2 Operation
ADR determines the address by adding an immediate value to the PC, and writes the result to the
destination register.
ADR produces position-independent code, because the address is PC-relative.
If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that bit[0]
of the address you generate is set to 1 for correct execution.
Values of label must be within the range of -4095 to +4095 from the address in the PC.
Note: You might have to use the .W suffix to get the maximum offset range or to generate
addresses that are not word-aligned. See “Instruction Width Selection” on page 34.
213 Restrictions
Rd must not be SP and must not be PC.
214 Condition Flags
This instruction does not change the flags.
21.5 Examples
ADR R1, TextMessage ; Write address value of a location labeled as
; TextMessage to R1.
36 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

2.2

2.21

LDR and STR (Immediate Offset)

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate

offset.

M3 | M4 | M4F
Applies to...

v v v
Syntax

op{type}{cond} R, [Rn {, #offset}]
op{type}{cond} R, [Rn, #offset]!
op{type}{cond} R, [Rn], #offset
opD{cond} Rt, Rt2, [Rn {, #offset}]
opD{cond} R, Rt2, [Rn, #offset]!
opD{cond} R, Rt2, [Rn], #of fset
where:

op
Is one of:

LDR
Load Register.

STR
Store Register.

type
Is one of:

B

Unsigned byte, zero extend to 32 bits on loads.

SB

Signed byte, sign extend to 32 bits (LDR only).

H

Unsigned halfword, zero extend to 32 bits on loads.

SH

Signed halfword, sign extend to 32 bits (LDR only).

Omit, for word.

cond

Is an optional condition code. See Table 1-2 on page 33.

immediate offset

; pre-indexed

; post-indexed

immediate offset, two words

; pre-indexed, two words

; post-indexed, two words

November 04, 2011

Texas Instruments Incorporated

37

Memory Access Instructions

Rt
Is the register to load or store.

Rn
Is the register on which the memory address is based.

offset
Is an offset from Rn. If of f set is omitted, the address is the contents of Rn.

Rt2
Is the additional register to load or store for two-word operations.

2.2.2 Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

Offset addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The
result is used as the address for the memory access. The register Rn is unaltered. The assembly
language syntax for this mode is:
[Rn, #of fset]

Pre-indexed addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The
result is used as the address for the memory access and written back into the register Rn. The
assembly language syntax for this mode is:
[Rn, #of fset]!

Post-indexed addressing
The address obtained from the register Rn is used as the address for the memory access. The
offset value is added to or subtracted from the address, and written back into the register Rn.
The assembly language syntax for this mode is:
[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can

either be signed or unsigned. See “Address Alignment” on page 31.

Table 2-2 on page 38 shows the ranges of offset for immediate, pre-indexed and post-indexed

forms.

Table 2-2. Offset Ranges

Instruction Type Immediate Offset Pre-Indexed Post-Indexed

Word, halfword, signed halfword, | -255 to 4095 -255 to 255 -255 to 255

byte, or signed byte

Two words Multiple of 4 in the range Multiple of 4 in the range Multiple of 4 in the range

-1020 to 1020 -1020 to 1020 -1020 to 1020
38 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

223 Restrictions
For load instructions
m Rt can be SP or PC for word loads only.
m Rt must be different from Rt 2 for two-word loads.
m Rn must be different from Rt and Rt 2 in the pre-indexed or post-indexed forms.
When Rt is PC in a word load instruction:
m Bit[0] of the loaded value must be 1 for correct execution.
m A branch occurs to the address created by changing bit[0] of the loaded value to 0.
m If the instruction is conditional, it must be the last instruction in the IT block.
For store instructions
m Rt can be SP for word stores only.
m Rt must not be PC.
= Rn must not be PC.
m Rn must be different from Rt and Rt 2 in the pre-indexed or post-indexed forms.
224 Condition Flags
These instructions do not change the flags.
2.2.5 Examples
LDR R8, [R10] ; Loads R8 from the address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
; 960 bytes above the address in R5, and
; Increments R5 by 960.
STR R2, [R9,#const-struc] ; const-struc is an expression evaluating
; to a constant in the range 0-4095.
STRH R3, [R4], #4 ; Store R3 as halfword data into address in
; R4, then increment R4 by 4.
LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above the
; address in R3, and load R9 from a word 36
; bytes above the address in R3.
STRD RO, R1, [R8], #-16 ; Store RO to address in R8, and store R1 to
; a word 4 bytes above the address in RS,
; and then decrement R8 by 16.
November 04, 2011 39

Texas Instruments Incorporated

Memory Access Instructions

2.3

2.31

LDR and STR (Register Offset)

Load and Store with register offset.

M3 | M4 | M4F

Applies to...
PP v v v

Syntax
op{type}{cond} R, [Rn, Rm {, LSL #n}]
where:

op
Is one of:

LDR
Load Register.

STR
Store Register.

type
Is one of:

B
Unsigned byte, zero extend to 32 bits on loads.

SB
Signed byte, sign extend to 32 bits (LDR only).

H
Unsigned halfword, zero extend to 32 bits on loads.

SH
Signed halfword, sign extend to 32 bits (LDR only).

Omit, for word.

cond
Is an optional condition code. See Table 1-2 on page 33.

Rt
Is the register to load or store.

Rn
Is the register on which the memory address is based.

Rm
Is a register containing a value to be used as the offset.

LSL #n
Is an optional shift, with n in the range 0 to 3.

40

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

2.3.2 Operation
LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.
The memory address to load from or store to is at an offset from the register Rn. The offset is
specified by the register Rmand can be shifted left by up to 3 bits using LSL.
The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords
can either be signed or unsigned. See “Address Alignment” on page 31.
233 Restrictions
In these instructions:
= Rn must not be PC.
m Rmmust not be SP and must not be PC.
m Rt can be SP only for word loads and word stores.
m Rt can be PC only for word loads.
When Rt is PC in a word load instruction:
m Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address.
m If the instruction is conditional, it must be the last instruction in the IT block.
234 Condition Flags
These instructions do not change the flags.
2.3.5 Examples
STR RO, [R5, R1] ; Store value of RO into an address equal to
; sum of R5 and R1.
LDRSB RO, [R5, R1, LSL #1] ; Read byte value from an address equal to
; sum of R5 and two times R1, sign extend it
; to a word value and put it in RO.
STR RO, [R1, R2, LSL #2] ; Store RO to an address equal to sum of R1
; and four times R2.
November 04, 2011 41

Texas Instruments Incorporated

Memory Access Instructions

24 LDR and STR (Unprivileged Access)
Load and Store with unprivileged access.
Anpies M3 | M4 | M4F
pplies to... % % %
241 Syntax
op{type}T{cond} Rt , [Rn {, #offset}] immediate offset
where:
op
Is one of:
LDR
Load Register.
STR
Store Register.
type
Is one of:
B
Unsigned byte, zero extend to 32 bits on loads.
SB
Signed byte, sign extend to 32 bits (LDR only).
H
Unsigned halfword, zero extend to 32 bits on loads.
SH
Signed halfword, sign extend to 32 bits (LDR only).
Omit, for word.
cond
Is an optional condition code. See Table 1-2 on page 33.
Rt
Is the register to load or store.
Rn
Is the register on which the memory address is based.
offset
Is an offset from Rn and can be 0 to 255. If of f set is omitted, the address is the value in Rn.
42 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

24.2 Operation
These load and store instructions perform the same function as the memory access instructions
with immediate offset (see “LDR and STR (Immediate Offset)” on page 37). The difference is that
these instructions have only unprivileged access even when used in privileged software.
When used in unprivileged software, these instructions behave in exactly the same way as normal
memory access instructions with immediate offset.
243 Restrictions
In these instructions:
m Rn must not be PC.
m Rt must not be SP and must not be PC.
244 Condition Flags
These instructions do not change the flags.
245 Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in
; R4 to an address in R7, with unprivileged access.
LDRHT R2, [R2, #8] ; Load halfword value from an address equal to
; sum of R2 and 8 into R2, with unprivileged access.
November 04, 2011 43

Texas Instruments Incorporated

Memory Access Instructions

2.5

2.51

2.5.2

LDR (PC-Relative)

Load register from memory.

M3 | M4 | M4F

Applies to...
PP v v v

Syntax
LDR{t ype}{cond} Rt , | abel
LDRD{cond} Rt , Rt2, | abel ; Load two words

where:

type
Is one of:

B
Unsigned byte, zero extend to 32 bits.

SB
Signed byte, sign extend to 32 bits.

H
Unsigned halfword, zero extend to 32 bits.

SH
Signed halfword, sign extend to 32 bits.

Omit, for word.

cond
Is an optional condition code. See Table 1-2 on page 33.

Rt
Is the register to load or store.

Rt2
Is the second register to load or store.

label
Is a PC-relative expression. See “PC-Relative Expressions” on page 32.
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is
specified by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords
can either be signed or unsigned. See “Address Alignment” on page 31.

label must be within a limited range of the current instruction. Table 2-3 on page 45 shows the
possible offsets between label and the PC.

44

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

Table 2-3. Offset Ranges

Instruction Type Offset Range®
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
Two words -1020 to 1020

a. You might have to use the W suffix to get the maximum offset range. See “Instruction Width Selection” on page 34.

253 Restrictions
In these instructions:
m Rt can be SP or PC only for word loads.
m Rt 2 must not be SP and must not be PC.
m Rt must be different from Rt 2.
When Rt is PC in a word load instruction:
m Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address.
m If the instruction is conditional, it must be the last instruction in the IT block.
254 Condition Flags
These instructions do not change the flags.
255 Examples
LDR RO, LookUpTable ; Load RO with a word of data from an address
; labeled as LookUpTable.
LDRSB R7, localdata ; Load a byte value from an address labeled
; as localdata, sign extend it to a word
; value, and put it in R7.
November 04, 2011 45

Texas Instruments Incorporated

Memory Access Instructions

2.6 LDM and STM
Load and Store Multiple registers.
M3 | M4 | M4F
Applies to...
v v v
2.6.1 Syntax
op{addr _node}{cond} Rn{!}, reglist
where:
op
Is one of:
LDM
Load Multiple registers.
STM
Store Multiple registers.
addr_mode
Is any one of the following:
1A
Increment address After each access. This is the default.
DB
Decrement address Before each access.
cond
Is an optional condition code. See Table 1-2 on page 33.
Rn
Is the register on which the memory addresses are based.
!
Is an optional writeback suffix. If | is present then the final address, that is loaded from or stored
to, is written back into Rn.
reglist
Is a list of one or more registers to be loaded or stored, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or register range. See
47.
LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full
Descending stacks.
LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.
STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty
Ascending stacks.
STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks
46 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

2.6.2

2.6.3

2.6.4

2.6.5

2.6.6

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on
Rn.

STMinstructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA, the memory addresses used for the accesses

are at 4-byte intervals ranging from Rnto Rn + 4 * (n-1), where n is the number of registers in reglist.
The accesses happen in order of increasing register numbers, with the lowest numbered register

using the lowest memory address and the highest number register using the highest memory address.
If the writeback suffix is specified, the value of Rn + 4 * (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD, the memory addresses used for the accesses are at 4-byte
intervals ranging from Rnto Rn-4 * (n-1), where n is the number of registers in reglist. The accesses
happen in order of decreasing register numbers, with the highest numbered register using the highest
memory address and the lowest number register using the lowest memory address. If the writeback
suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” on page 48
for details.

Restrictions

In these instructions:

= Rn must not be PC.

m reglist mustnot contain SP.

m Inany STMinstruction, r egl i st must not contain PC.

m In any LDM instruction, r egl i st must not contain PC if it contains LR.
m reglist mustnot contain Rn if you specify the writeback suffix.
When PCis inregl i st inan LDM instruction:

m Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this
halfword-aligned address.

m [f the instruction is conditional, it must be the last instruction in the 1T block.

Condition Flags

These instructions do not change the flags.
Examples

LDM R8,{R0O,R2,R9} ; LDMIA is a synonym for LDM.
STMDB R1!,{R3-R6,R11,R12}

Incorrect Examples

STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable.
LDM R2, {} ; There must be at least one register in the list.

November 04, 2011 47

Texas Instruments Incorporated

Memory Access Instructions

2.7 PUSH and POP
Push registers on and pop registers off a full-descending stack.
M3 | M4 | M4F
Applies to...
v v v
271 Syntax
PUSH{cond} regli st
POP{cond} regli st
where:
cond
Is an optional condition code. See Table 1-2 on page 33.
reglist
Is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be
comma separated if it contains more than one register or register range.
PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the
access based on SP, and with the final address for the access written back to the SP. PUSH and
POP are the preferred mnemonics in these cases.
2.7.2 Operation
PUSH stores registers on the stack in order of decreasing register numbers, with the highest numbered
register using the highest memory address and the lowest numbered register using the lowest
memory address.
POP loads registers from the stack in order of increasing register numbers, with the lowest numbered
register using the lowest memory address and the highest numbered register using the highest
memory address.
See “LDM and STM” on page 46 for more information.
273 Restrictions
In these instructions:
m reglist mustnot contain SP.
m For the PUSH instruction, r egl i st must not contain PC.
m For the POP instruction, r egl i st must not contain PC if it contains LR.
When PCisinregl i st inaPOP instruction:
m Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this
halfword-aligned address.
m If the instruction is conditional, it must be the last instruction in the IT block.
48 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

274 Condition Flags

These instructions do not change the flags.
2.7.5 Examples

PUSH {RO,R4-R7}

PUSH {R2,LR}
POP {RO,R10,PC}

November 04, 2011 49
Texas Instruments Incorporated

Memory Access Instructions

2.8 LDREX and STREX
Load and Store Register Exclusive.
M3 | M4 | M4F
Applies to...
v v v
2.8.1 Syntax
LDREX{cond} Rt , [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt , [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt , [Rn]
STREXH{cond} Rd, R, [Rn]
where:
cond
Is an optional condition code. See Table 1-2 on page 33.
Rd
Is the destination register for the returned status.
Rt
Is the register to load or store.
Rn
Is the register on which the memory address is based.
offset
Is an optional offset applied to the value in Rn. If of f set is omitted, the address is the value
in Rn.
2.8.2 Operation
LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.
STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory
address. The address used in any Store-Exclusive instruction must be the same as the address in
the most recently executed Load-exclusive instruction. The value stored by the Store-Exclusive
instruction must also have the same data size as the value loaded by the preceding Load-exclusive
instruction. This means software must always use a Load-exclusive instruction and a matching
Store-Exclusive instruction to perform a synchronization operation (see "Synchronization Primitives"
in the Stellaris® Data Sheet).
If a Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not
perform the store, it writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to
the destination register, it is guaranteed that no other process in the system has accessed the
memory location between the Load-exclusive and Store-Exclusive instructions.
50 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive
and Store-Exclusive instruction to a minimum.

Important: The result of executing a Store-Exclusive instruction to an address that is different from
that used in the preceding Load-Exclusive instruction is unpredictable.

2.8.3 Restrictions
In these instructions
m Do not use PC.
m Do notuse SP for Rd and Rt .
m For STREX, Rd must be different from both Rt and Rn.
m The value of of f set must be a multiple of four in the range 0-1020.
284 Condition Flags
These instructions do not change the flags.
2.8.5 Examples
MoV R1, #0x1 ; Initialize the “lock taken” value.
try
LDREX RO, [LockAddr] ; Load the lock value.
CmMP RO, #0 ; Is the lock free?
ITT EQ ; IT instruction for STREXEQ and CMPEQ.
STREXEQ RO, R1, [LockAddr] ; Try and claim the lock.
CMPEQ RO, #0 ; Did this succeed?
BNE try ; No — try again.
; Yes — we have the lock.
November 04, 2011 51

Texas Instruments Incorporated

Memory Access Instructions

2.9 CLREX

Clear Exclusive.

M3 | M4 | M4F

Applies to...

RV
291 Syntax
CLREX{cond}
where:
cond

Is an optional condition code. See Table 1-2 on page 33.

2.9.2 Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register
and fail to perform the store. It is useful in exception handler code to force the failure of the store
exclusive if the exception occurs between a load exclusive instruction and the matching store
exclusive instruction in a synchronization operation (see "Synchronization Primitives" in the Stellaris®
Data Sheet).

293 Condition Flags

This instruction does not change the flags.

294 Examples

CLREX

52 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3 General Data Processing Instructions

Table 3-1 on page 53 shows the data processing instructions:

Table 3-1. General Data Processing Instructions

Mnemonic Brief Description See Page
ADC Add with carry 55
ADD Add 55
ADDW Add 55
AND Logical AND 58
ASR Arithmetic shift right 60
BIC Bit clear 58
CLz Count leading zeros 63
CMN Compare negative 64
CMP Compare 64
EOR Exclusive OR 58
LSL Logical shift left 60
LSR Logical shift right 60
MoV Move 65
MOVT Move top 67
MOVW Move 16-bit constant 65
MVN Move NOT 65
ORN Logical OR NOT 58
ORR Logical OR 58
RBIT Reverse bits 68
REV Reverse byte order in a word 68
REV16 Reverse byte order in each halfword 68
REVSH Reverse byte order in bottom halfword and sign extend 68
ROR Rotate right 60
RRX Rotate right with extend 60
RSB Reverse subtract 55
SADD16 Signed add 16 70
SADD8 Signed add 8 70
SASX Signed add and subtract with exchange 81
SSAX Signed subtract and add with exchange 81
SBC Subtract with carry 55
SEL Select bytes 98
SHADD16 Signed halving add 16 72
SHADDS8 Signed halving add 8 72
SHASX Signed halving add and subtract with exchange 74
SHSAX Signed halving subtract and add with exchange 74
SHSUB16 Signed halving subtract 16 77
SHSUBS8 Signed halving subtract 8 77
November 04, 2011 53

Texas Instruments Incorporated

General Data Processing Instructions

Table 3-1. General Data Processing Instructions (continued)

Mnemonic Brief Description See Page
SSUB16 Signed subtract 16 79
SSUB8 Signed subtract 8 79
SUB Subtract 55
SUBW Subtract 55
TEQ Test equivalence 84
TST Test 84
UADD16 Unsigned add 16 86
UADD8 Unsigned add 8 86
UASX Unsigned add and subtract with exchange 88
USAX Unsigned subtract and add with exchange 88
UHADD16 Unsigned halving add 16 91
UHADD8 Unsigned halving add 8 91
UHASX Unsigned halving add and subtract with exchange 93
UHSAX Unsigned halving subtract and add with exchange 93
UHSUB16 Unsigned halving subtract 16 96
UHSUB8 Unsigned halving subtract 8 96
USAD8 Unsigned sum of absolute differences 99
USADA8 Unsigned sum of absolute differences and accumulate 101
UsuB16 Unsigned subtract 16 103
usuB8 Unsigned subtract 8 103

54

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

3.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

M3 | M4 | M4F

Applies to...
PP v v v

3141 Syntax
op{S}H{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, # mi2 ; ADD and SUB only

where:

op
Is one of:

ADD
Add.

ADC
Add with Carry.

SUB
Subtract.

SBC
Subtract with Carry.

RSB
Reverse Subtract.

Is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation. See 32.

cond
Is an optional condition code. See Table 1-2 on page 33.

Rd
Is the destination register. If Rd is omitted, the destination register is Rn.

Rn
Is the register holding the first operand.

Operand?2
Is a flexible second operand. See “Flexible Second Operand” on page 27 for details of the
options.

imm12
Is any value in the range 0-4095.

November 04, 2011 55
Texas Instruments Incorporated

General Data Processing Instructions

3.1.2

313

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand?2, together with the carry flag.
The SUB instruction subtracts the value of Operand?2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand?2 from the value in Rn. If the carry flag is clear,
the result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand?2. This is useful because
of the wide range of options for Operand?.

Use ADC and SBC to synthesize multiword arithmetic. See 57.
See also 36.

Note: ADDW is equivalent to the ADD syntax that uses the i mml2 operand. SUBW is equivalent to
the SUB syntax that uses the i mmL2 operand.

Restrictions

In these instructions:
m Operand2 must not be SP and must not be PC.
m Rd can be SP only in ADD and SUB, and only with the additional restrictions:
— Rn must also be SP.
— any shift in Operand2 must be limited to a maximum of 3 bits using LSL.
m Rncan be SP only in ADD and SUB.
m Rd can be PC only in the ADD{cond} PC, PC, Rminstruction where:
— You must not specify the S suffix.
— Rm must not be PC and must not be SP.
— If the instruction is conditional, it must be the last instruction in the IT block.

m With the exception of the ADD{cond} PC, PC, Rminstruction, Rn can be PC only in ADD and
SUB, and only with the additional restrictions:

— You must not specify the S suffix.

— The second operand must be a constant in the range 0 to 4095.

Note: — When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded
to bOO before performing the calculation, making the base address for the calculation
word-aligned.

— If you want to generate the address of an instruction, you have to adjust the constant
based on the value of the PC. ARM recommends that you use the ADR instruction
instead of ADD or SUB with Rn equal to the PC, because your assembler automatically
calculates the correct constant for the ADR instruction.

56

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

When Rd is PC in the ADD{cond} PC, PC, Rminstruction:
m Bit[0] of the value written to the PC is ignored

m A branch occurs to the address created by forcing bit[0] of that value to 0.

314 Condition Flags
If S is specified, these instructions update the N, Z, C and V flags according to the result.
3.1.5 Examples
ADD R2, R1, R3
SUBS R8, R6, #240 ; Sets the flags on the result.
RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280.
ADCHI R11, RO, R3 ; Only executed if C flag set and Z
; flag clear.
3.1.6 Multiword Arithmetic Examples
Example 3-1, “64-Bit Addition” on page 57 shows two instructions that add a 64-bit integer contained
in R2 and R3 to another 64-bit integer contained in RO and R1, and place the result in R4 and R5.
Example 3-1. 64-Bit Addition
ADDS R4, RO, R2 ; Add the least significant words.
ADC R5, R1, R3 ; Add the most significant words with carry.
Multiword values do not have to use consecutive registers. Example 3-2, “96-Bit
Subtraction” on page 57 shows instructions that subtract a 96-bit integer contained in R9, R1, and
R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9, and R2.
Example 3-2. 96-Bit Subtraction
SUBS R6, R6, R9 ; Subtract the least significant words.
SBCS R9, R2, R1 ; Subtract the middle words with carry.
SBC R2, R8, R11 ; Subtract the most significant words with carry.
November 04, 2011 57

Texas Instruments Incorporated

General Data Processing Instructions

3.2

3.21

3.2.2

AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

M3 | M4 | M4F
v v v

Applies to...

Syntax
op{S}H{cond} {Rd,} Rn, Operand2

where:

op
Is one of:

AND
Logical AND.

ORR
Logical OR, or bit set.

EOR
Logical Exclusive OR.

BIC
Logical AND NOT, or bit clear.

ORN
Logical OR NOT.

Is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation. See 32.

cond
Is an optional condition code. See Table 1-2 on page 33.

Rd
Is the destination register.

Rn
Is the register holding the first operand.

Operand2
Is a flexible second operand. See “Flexible Second Operand” on page 27 for details of the
options.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the
values in Rn and Operand?2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand?2.

58

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

The ORN instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand?2.

3.2.3 Restrictions

Do not use SP and do not use PC.

3.24 Condition Flags

If S is specified, these instructions:
m Update the N and Z flags according to the resuilt.

m Can update the C flag during the calculation of Operand2. See “Flexible Second
Operand” on page 27.

m Do not affect the V flag.

3.2.5 Examples

AND R9, R2, #OxFFOO

ORREQ R2, RO, R5

ANDS R9, R8, #0x19

EORS R7, R11, #0x18181818
BIC RO, R1, #Oxab

ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

November 04, 2011 59
Texas Instruments Incorporated

General Data Processing Instructions

3.3

3.3.1

ASR, LSL, LSR, ROR, and RRX

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with
Extend.

M3 | M4 | M4F

Applies to...

Syntax

op{S}{cond} Rd, Rm, Rs
op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm
where:

op
Is one of:

ASR
Arithmetic Shift Right.

LSL
Logical Shift Left.

LSR
Logical Shift Right.

ROR
Rotate Right.

Is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation. See 32.

Rd
Is the destination register.

Rm
Is the register holding the value to be shifted.

Rs
Is the register holding the shift length to apply to the value in Rm Only the least significant byte
is used and can be in the range 0 to 255.

Is the shift length. The range of shift length depends on the instruction:

ASR
Shift length from 1 to 32.

LSL
Shift length from 0 to 31.

60

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

LSR
Shift length from 1 to 32.

ROR
Shift length from 1 to 31.

Note: MOV{S}{cond} Rd, Rmis the preferred syntax for LSL{S}{cond} Rd, Rm, #O.

November 04, 2011 61
Texas Instruments Incorporated

General Data Processing Instructions

3.3.2

3.3.3

3.3.4

3.3.5

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places
specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged.
For details on what result is generated by the different instructions, see “Shift Operations” on page 28.

Restrictions

Do not use SP and do not use PC.

Condition Flags
If S is specified:

m These instructions update the N and Z flags according to the result.

m The C flag is updated to the last bit shifted out, except when the shift length is 0. See “Shift

Operations” on page 28.

Examples

ASR R7, R8, #9
LSLS R1, R2, #3
LSR R4, R5, #6
ROR R4, R5, R6
RRX R4, R5

; Arithmetic shift right by 9 bits.

Logical shift left by 3 bits with flag update.

; Logical shift right by 6 bits.

; Rotate right with extend.

; Rotate right by the value in the bottom byte of R6.

62

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

3.4

3.41

3.4.2

3.4.3

3.4.4

3.4.5

CLz

Count Leading Zeros.

Applies to... MS Ma | MaF
v | v

Syntax

CLZ{cond} Rd, Rm

where:

cond

Is an optional condition code. See Table 1-2 on page 33.

Rd

Is the destination register.

Rm

Is the operand register.

Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in

Rd. The result value is 32 if no bits are set in the source register, and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.

Condition Flags

This instruction does not change the flags.

Examples

CLz
CLZNE

R4,R9
R2,R3

November 04, 2011

Texas Instruments Incorporated

63

General Data Processing Instructions

3.5

3.5.1

3.5.2

3.5.3

3.54

3.5.5

CMP and CMN

Compare and Compare Negative.

M3 | M4 | M4F
v v v

Applies to...

Syntax

CMP{cond} Rn, Operand2
CMN{cond} Rn, Operand2
where:

cond
Is an optional condition code. See Table 1-2 on page 33.

Rn
Is the register holding the first operand.

Operand?2
Is a flexible second operand. See “Flexible Second Operand” on page 27 for details of the
options.

Operation

These instructions compare the value in a register with Operand2. They update the condition flags
on the result, but do not write the result to a register.

The CMP instruction subtracts the value of Qper and2 from the value in Rn. This is the same as a
SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an ADDS
instruction, except that the result is discarded.

Restrictions

In these instructions:
m Do not use PC.

m Operand2 must not be SP.

Condition Flags

These instructions update the N, Z, C and V flags according to the result.

Examples

CmMP R2, R9
CMN RO, #6400
CMPGT SP, R7, LSL #2

64

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.6 MOV and MVN
Move and Move NOT.

M3 | M4 | M4F

Applies to...
PP v v v

3.6.1 Syntax
MOV{S}{cond} Rd, Operand2
MOV{cond} Rd, #i mi6
MVN{S}{cond} Rd, Operand2
where:

S
Is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation. See 32.

cond
Is an optional condition code. See Table 1-2 on page 33.

Rd
Is the destination register.

Operand2
Is a flexible second operand. See “Flexible Second Operand” on page 27 for details of the
options.

imm16
Is any value in the range 0-65535.

3.6.2 Operation
The MOV instruction copies the value of Operand? into Rd.

When Operand?2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax
is the corresponding shift instruction:

MOV Instruction Preferred Syntax using Shift Instruction
MOV{S}{cond} Rd, Rm, ASR #n ASR{S}{cond} Rd, Rm, #n
MOV{S}{cond} Rd, Rm, LSL #n (ifn!=0) LSL{S}{cond} Rd, Rm, #n
MOV{S}{cond} Rd, Rm, LSR #n LSR{S}{cond} Rd, Rm, #n
MOV{S}{cond} Rd, Rm, ROR #n ROR{S}{cond} Rd, Rm, #n
MOV{S}{cond} Rd, Rm, RRX RRX{S}{cond} Rd, Rm

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions.
See “ASR, LSL, LSR, ROR, and RRX” on page 60.

Shift Instruction MOV Instruction Synonym
ASR{S}{cond} Rd, Rm, Rs MOV{S}{cond} Rd, Rm, ASR Rs
November 04, 2011 65

Texas Instruments Incorporated

General Data Processing Instructions

Shift Instruction MOV Instruction Synonym

LSL{S}{cond} Rd, Rm, Rs MOV{S}{cond} Rd, Rm, LSL Rs
LSR{S}{cond} Rd, Rm, Rs MOV{S}{cond} Rd, Rm, LSR Rs
ROR{S}{cond} Rd, Rm, Rs MOV{S}{cond} Rd, Rm, ROR Rs

The MVN instruction takes the value of Operand?2, performs a bitwise logical NOT operation on the
value, and places the result into Rd.

Note: The MOVW instruction provides the same function as MOV, but is restricted to using the i mmL6

operand.
3.6.3 Restrictions
You can use SP and PC only in the MOV instruction, with the following restrictions:
m The second operand must be a register without shift
m You must not specify the S suffix.
When Rd is PC in a MOV instruction:
m Bit[0] of the value written to the PC is ignored
m A branch occurs to the address created by forcing bit[0] of that value to 0.
Note: Though it is possible to use MOV as a branch instruction, Texas Instruments strongly
recommends the use of a BX or BLX instruction to branch for software portability to the ARM
Cortex-M3/M4F instruction set.
3.6.4 Condition Flags
If S is specified, these instructions:
m Update the N and Z flags according to the result.
m Can update the C flag during the calculation of Operand2. See “Flexible Second
Operand” on page 27.
m Do not affect the V flag.
3.6.5 Example
MOVS R11, #0x000B ; Write value of 0x000B to R11l, flags get updated.
MOV R1, #OxFAO5 ; Write value of OxFAO0O5 to R1, flags are not updated.
MOVS R10, R12 ; Write value in R12 to R10, flags get updated.
MOV ~ R3, #23 ; Write value of 23 to R3.
MOV R8, SP ; Write value of stack pointer to R8.
MVNS R2, #OxF ; Write value of OXFFFFFFFO (bitwise inverse of OxF)
; to R2 and update flags.
66 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.7

3.71

3.7.2

3.7.3

3.7.4

3.7.5

MOVT
Move Top.

M3 | M4 | M4F

Applies to...

Syntax
MOVT{cond} Rd, #i nml6
where:

cond
Is an optional condition code. See Table 1-2 on page 33.

Rd
Is the destination register.

imm16
Is a 16-bit immediate constant.

Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination
register. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

Restrictions
Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

MOVT R3, #0xF123 ; Write OxF123 to upper halfword of R3, lower halfword
; and APSR are unchanged.

November 04, 2011 67

Texas Instruments Incorporated

General Data Processing Instructions

3.8

3.8.1

3.8.2

REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

M3 | M4 | M4F

Applies to...
PP v v v

Syntax
op{cond} Rd, Rn
where:

op
Is any of:

REV
Reverse byte order in a word.

REV16
Reverse byte order in each halfword independently.

REVSH
Reverse byte order in the bottom halfword, and sign extend to 32 bits.

RBIT
Reverse the bit order in a 32-bit word.

cond
Is an optional condition code. See Table 1-2 on page 33.

Rd
Is the destination register.

Rn
Is the register holding the operand.

Operation

Use these instructions to change endianness of data:

REV
Converts 32-bit big-endian data into little-endian data or 32-bit little-endian data into big-endian

data.

REV16
Converts 16-bit big-endian data into little-endian data or 16-bit little-endian data into big-endian

data.

REVSH
Converts either:

m 16-bit signed big-endian data into 32-bit signed little-endian data.

m 16-bit signed little-endian data into 32-bit signed big-endian data.

68

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.8.3 Restrictions

Do not use SP and do not use PC.

3.84 Condition Flags

These instructions do not change the flags.

3.8.5 Examples

REV R3,
REV16 RO,
REVSH RO,
REVHS R3,
RBIT R7,

R7
RO
R5
R7
R8

; Reverse byte order of value in R7 and write it to R3.
; Reverse byte order of each 16-bit halfword in RO.

; Reverse Signed Halfword.
; Reverse with Higher or Same condition.
; Reverse bit order of value

in R8 and write the result to R7.

November 04, 2011

Texas Instruments Incorporated

69

General Data Processing Instructions

3.9 SADD16 and SADD8
Signed Add 16 and Signed Add 8.

M3 | M4 | M4F

Applies to...
pp! v v

3.91 Syntax

op{cond}{Rd,} Rn, Rm
where:

op
is any of:

SADD16
Performs two 16-bit signed integer additions.

SADD8
Performs four 8-bit signed integer additions.

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rn
is the first register holding the operand.

Rm
is the second register holding the operand.

3.9.2 Operation

Use these instructions to perform a halfword or byte add in parallel:
The SADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Writes the result in the corresponding halfwords of the destination register.

The SADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the result in the corresponding bytes of the destination register.

3.9.3 Restrictions

Do not use SP and do not use PC.

70 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.94 Condition flags

These instructions do not change the flags.

3.9.5 Examples

SADD16 R1, RO ; Adds the halfwords in RO to the corresponding halfwords of
; R1 and writes to corresponding halfword of R1.

SADD8 R4, RO, R5 ; Adds bytes of RO to the corresponding byte in R5 and writes

; to the corresponding byte in R4.

November 04, 2011 71
Texas Instruments Incorporated

General Data Processing Instructions

3.10 SHADD16 and SHADDS8
Signed Halving Add 16 and Signed Halving Add 8.

M3 | M4 | M4F
Applies to...

v v

3.10.1 Syntax

op{cond}{Rd,} Rn, Rm

where:

op
is any of:

SHADD16

Signed Halving Add 16

SHADDS

Signed Halving Add 8

cond

is an optional condition code, see 33.

Rd

is the destination register.

Rn

is the first operand register.

Rm

is the second operand register.

3.10.2 Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the
result to the destination register:

The SHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second

operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halfword results in the destination register.

The SHADDBS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the result by one bit to the right, halving the data.

72

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

3. Writes the byte results in the destination register.

3.10.3 Restrictions

Do not use SP and do not use PC.

3.10.4 Condition flags

These instructions do not change the flags.

3.10.5 Examples

SHADD16 R1, RO ; Adds halfwords in RO to corresponding halfword of R1 and
; writes halved result to corresponding halfword in R1

SHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and

; writes halved result to corresponding byte in R4

November 04, 2011 73
Texas Instruments Incorporated

General Data Processing Instructions

3.11 SHASX and SHSAX
Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with
Exchange.
Anpies M3 | M4 | M4F
pplies to... % %
3.11.1 Syntax
op{cond} {Rd}, Rn, Rm
where:
op
is any of:
SHASX
Add and Subtract with Exchange and Halving.
SHSAX
Subtract and Add with Exchange and Halving.
cond
is an optional condition code, see 33.
Rd
is the destination register.
Rn, Rm
are registers holding the first and second operands.
3.11.2 Operation
The SHASX instruction:
1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
2. Writes the halfword result of the addition to the top halfword of the destination register, shifted
by one bit to the right causing a divide by two, or halving.
3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted
by one bit to the right causing a divide by two, or halving.
The SHSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Writes the halfword result of the addition to the bottom halfword of the destination register,
shifted by one bit to the right causing a divide by two, or halving.
3. Adds the bottom halfword of the first operand with the top halfword of the second operand.
74 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

4. Writes the halfword result of the division in the top halfword of the destination register, shifted
by one bit to the right causing a divide by two, or halving.

3.11.3 Restrictions

Do not use SP and do not use PC.

3.11.4 Condition flags

These instructions do not affect the condition code flags.

November 04, 2011 75
Texas Instruments Incorporated

General Data Processing Instructions

3.11.5 Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2

; and writes halved result to top halfword of R7

; Subtracts top halfword of R2 from bottom halfword of

; R4 and writes halved result to bottom halfword of R7

SHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top halfword

; of R3 and writes halved result to top halfword of RO

; Adds top halfword of R5 to bottom halfword of R3 and

; writes halved result to bottom halfword of RO

76 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.12 SHSUB16 and SHSUBS
Signed Halving Subtract 16 and Signed Halving Subtract 8.

M3 | M4 | M4F

Applies to...
pp! v v

3121 Syntax

op{cond}{Rd,} Rn, Rm
where:

op
is any of:

SHSUB16
Signed Halving Subtract 16

SHSUB8
Signed Halving Subtract 8

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rn
is the first operand register.

Rm
is the second operand register

3.12.2 Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the
result to the destination register:

The SHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfwords of the
first operand.

2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.
The SHSUBBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand,

2. Shuffles the result by one bit to the right, halving the data,

November 04, 2011 77
Texas Instruments Incorporated

General Data Processing Instructions

3. Writes the corresponding signed byte results in the destination register.

3.12.3 Restrictions

Do not use SP and do not use PC.

3.12.4 Condition flags

These instructions do not change the flags.

3.12.5 Examples

SHSUB16 R1, RO ;

SHSUB8 R4, RO, R5 ;

Subtracts halfwords in RO from corresponding halfword
of R1 and writes to corresponding halfword of R1

Subtracts bytes of RO from corresponding byte in R5,

and writes to corresponding byte in R4

78

November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.13 SSUB16 and SSUBS
Signed Subtract 16 and Signed Subtract 8.

M3 | M4 | M4F
v v

Applies to...

3.131 Syntax

op{cond}{Rd,} Rn, Rm
where:

op
is any of:

SSUB16
Performs two 16-bit signed integer subtractions.

SSUB8
Performs four 8-bit signed integer subtractions.

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rn
is the first operand register.

Rm
is the second operand register.

3.13.2 Operation

Use these instructions to change endianness of data:
The SSUB16 instruction:

1. Subtracts each halfword from the second operand from the corresponding halfword of the
first operand

2. Writes the difference result of two signed halfwords in the corresponding halfword of the
destination register.

The SSUBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand

2. Writes the difference result of four signed bytes in the corresponding byte of the destination
register.

November 04, 2011 79
Texas Instruments Incorporated

General Data Processing Instructions

3.13.3 Restrictions

Do not use SP and do not use PC.

3.13.4 Condition flags

These instructions do not change the flags.

3.13.5 Examples

SSUB16 R1, RO ; Subtracts halfwords in RO from corresponding halfword of R1
; and writes to corresponding halfword of R1

SSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in
; RO, and writes to corresponding byte of R4

80 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.14 SASX and SSAX
Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

M3 | M4 | M4F
v v

Applies to...

3141 Syntax

op{cond} {Rd}, Rm, Rn

op{cond} {Rd}, Rm, Rn
where:

op
is any of:

SASX
Signed Add and Subtract with Exchange.

SSAX
Signed Subtract and Add with Exchange.

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rn, Rm
are registers holding the first and second operands.

3.14.2 Operation
The SASX instruction:

1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second
operand.

2. Writes the signed result of the addition to the top halfword of the destination register.

3. Subtracts the signed bottom halfword of the second operand from the top signed highword of
the first operand.

4. Writes the signed result of the subtraction to the bottom halfword of the destination register.
The SSAX instruction:

1. Subtracts the signed bottom halfword of the second operand from the top signed highword of
the first operand.

2. Writes the signed result of the addition to the bottom halfword of the destination register.

November 04, 2011 81
Texas Instruments Incorporated

General Data Processing Instructions

3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second
operand.

4. Writes the signed result of the subtraction to the top halfword of the destination register.
3.14.3 Restrictions

Do not use SP and do not use PC.

3.14.4 Condition flags

These instructions do not affect the condition code flags.

82 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.14.5 Examples

SASX

SSAX

RO, R4, R5

R7, R3, R2

Adds top halfword of R4 to bottom halfword of R5 and

writes to top halfword of RO

Subtracts bottom halfword of R5 from top halfword of R4

and writes to bottom halfword of RO

; Subtracts top halfword of R2 from bottom halfword of R3

and writes to bottom halfword of R7

Adds top halfword of R3 with bottom halfword of R2 and

writes to top halfword of R7

November 04, 2011

83

Texas Instruments Incorporated

General Data Processing Instructions

3.15

3.15.1

3.15.2

3.15.3

TST and TEQ

Test bits and Test Equivalence.

M3 | M4 | M4F
v v v

Applies to...

Syntax

TST{cond} Rn, Operand2
TEQ{cond} Rn, Operand2
where:

cond
Is an optional condition code. See Table 1-2 on page 33.

Rn
Is the register holding the first operand.

Operand?2
Is a flexible second operand. See “Flexible Second Operand” on page 27 for details of the
options.

Operation

These instructions test the value in a register against Operand2. They update the condition flags
based on the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand?2.
This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand?2 constant that has
that bit set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of
Operand?2. This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical
Exclusive OR of the sign bits of the two operands.

Restrictions

Do not use SP and do not use PC.

84

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.15.4 Condition Flags

These instructions:
m Update the N and Z flags according to the result.

m Can update the C flag during the calculation of Operand2. See “Flexible Second
Operand” on page 27.

m Do not affect the V flag.

3.15.5 Examples

TST RO, #0x3F8 ; Perform bitwise AND of RO value to Ox3F8;
; APSR is updated but result is discarded.
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to

; value in R9; APSR is updated but result is discarded.

November 04, 2011 85
Texas Instruments Incorporated

General Data Processing Instructions

3.16 UADD16 and UADDS8
Unsigned Add 16 and Unsigned Add 8.
Anpies M3 | M4 | M4F
pplies to... % %
3.16.1 Syntax
op{cond}{Rd,} Rn, Rm
where:
op
is any of:
UADD16
Performs two 16-bit unsigned integer additions.
UADDS8
Performs four 8-bit unsigned integer additions.
cond
is an optional condition code, see 33.
Rd
is the destination register.
Rn
is the first register holding the operand.
Rm
is the second register holding the operand.
3.16.2 Operation
Use these instructions to add 16- and 8-bit unsigned data:
The UADD16 instruction:
1. adds each halfword from the first operand to the corresponding halfword of the second operand.
2. writes the unsigned result in the corresponding halfwords of the destination register.
The UADD16 instruction:
1. adds each byte of the first operand to the corresponding byte of the second operand.
2. writes the unsigned result in the corresponding byte of the destination register.
3.16.3 Restrictions
Do not use SP and do not use PC.
86 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.16.4 Condition flags

These instructions do not change the flags.

3.16.5 Examples

UADD16 R1, RO ; Adds halfwords in RO to corresponding halfword of R1,
; writes to corresponding halfword of R1

UADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and writes
; to corresponding byte in R4

November 04, 2011 87
Texas Instruments Incorporated

General Data Processing Instructions

3.17 UASX and USAX
Add and Subtract with Exchange and Subtract and Add with Exchange.

M3 | M4 | M4F

Applies to...
pp! v v

3171 Syntax

op{cond} {Rd}, Rn, Rm
where:

op
is one of:

UASX
Add and Subtract with Exchange.

USAX
Subtract and Add with Exchange.

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rn, Rm
are registers holding the first and second operands.

3.17.2 Operation
The UASX instruction:

1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.

4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:

1. Adds the bottom halfword of the first operand with the top halfword of the second operand.

2. Writes the unsigned result of the addition to the bottom halfword of the destination register.

3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.

4. Writes the unsigned result from the subtraction to the top halfword of the destination register.

88 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.17.3 Restrictions

Do not use SP and do not use PC.

3.17.4 Condition flags

These instructions do not affect the condition code flags.

November 04, 2011
Texas Instruments Incorporated

89

General Data Processing Instructions

3.17.5 Examples
UASX RO, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
; writes to top halfword of RO
; Subtracts bottom halfword of R5 from top halfword of RO
; and writes to bottom halfword of RO
USAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
; and writes to bottom halfword of R7
; Adds top halfword of R3 to bottom halfword of R2 and
; writes to top halfword of R7
90 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.18

3.18.1

3.18.2

UHADD16 and UHADDS8

Unsigned Halving Add 16 and Unsigned Halving Add 8.

M3 | M4 | M4F
v v

Applies to...

Syntax

op{cond}{Rd,} Rn, Rm
where:

op
is any of:

UHADD16
Unsigned Halving Add 16.

UHADDS
Unsigned Halving Add 8.

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rn
is the register holding the first operand.

Rm
is the register holding the second operand.

Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result

to the destination register:
The UHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Shuffles the halfword result by one bit to the right, halving the data.

3. Writes the unsigned results to the corresponding halfword in the destination register.

The UHADDS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the byte result by one bit to the right, halving the data.

3. Writes the unsigned results in the corresponding byte in the destination register.

November 04, 2011

Texas Instruments Incorporated

91

General Data Processing Instructions

3.18.3 Restrictions

Do not use SP and do not use PC.

3.18.4 Condition flags

These instructions do not change the flags.

3.18.5 Examples

UHADD16 R7, R3 ; Adds halfwords In R7 to corresponding halfword of R3
; and writes halved result to corresponding halfword in R7

UHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and writes

; halved result to corresponding byte in R4

92 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.19 UHASX and UHSAX

Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with
Exchange.

M3 | M4 | M4F

Applies to...

3.19.1 Syntax

op{cond} {Rd}, Rn, Rm
where:

op
is one of:

UHASX
Add and Subtract with Exchange and Halving.

UHSAX
Subtract and Add with Exchange and Halving.

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rn, Rm
are registers holding the first and second operands.

3.19.2 Operation
The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the addition to the top halfword of the destination register.

4. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the division in the bottom halfword of the destination register.
The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the subtraction in the top halfword of the destination register.

November 04, 2011 93
Texas Instruments Incorporated

General Data Processing Instructions

4. Adds the bottom halfword of the first operand with the top halfword of the second operand.
5. Shifts the result by one bit to the right causing a divide by two, or halving.
6. Writes the halfword result of the addition to the bottom halfword of the destination register.

3.19.3 Restrictions

Do not use SP and do not use PC.

3.19.4 Condition flags

These instructions do not affect the condition code flags.

94 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.19.5 Examples

UHASX

UHSAX

R7, R4, R2

RO, R3, R5

Adds top halfword of R4 with bottom halfword of R2

and writes halved result to top halfword of R7

Subtracts top halfword of R2 from bottom halfword of

R7 and writes halved result to bottom halfword of R7

; Subtracts bottom halfword of R5 from top halfword of

R3 and writes halved result to top halfword of RO

Adds top halfword of R5 to bottom halfword of R3 and

writes halved result to bottom halfword of RO

November 04, 2011

95

Texas Instruments Incorporated

General Data Processing Instructions

3.20

3.20.1

3.20.2

UHSUB16 and UHSUBS
Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8.

M3 | M4 | M4F
v v

Applies to...

Syntax

op{cond}{Rd,} Rn, Rm
where:

op
is any of:

UHSUB16
Performs two unsigned 16-bit integer additions, halves the results, and writes the results
to the destination register.

UHSUB8
Performs four unsigned 8-bit integer additions, halves the results, and writes the results to
the destination register.

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rn
is the first register holding the operand.

Rm
is the second register holding the operand.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the
result to the destination register:

The UHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfword of the first
operand.

2. Shuffles each halfword result to the right by one bit, halving the data.

3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.
The UHSUBS instruction:

1. Subtracts each byte of second operand from the corresponding byte of the first operand.

2. Shuffles each byte result by one bit to the right, halving the data.

96

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3. Writes the unsigned byte results to the corresponding byte of the destination register.

3.20.3 Restrictions

Do not use SP and do not use PC.

3.20.4 Condition flags

These instructions do not change the flags.

3.20.5 Examples

UHSUB16 R1, RO ; Subtracts halfwords in RO from corresponding halfword of
; R1 and writes halved result to corresponding halfword in

; R1
UHSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO and

; writes halved result to corresponding byte in R4

November 04, 2011 97
Texas Instruments Incorporated

General Data Processing Instructions

3.21 SEL
Select Bytes. Selects each byte of its result from either its first operand or its second operand,
according to the values of the GE flags.
Anpies M3 | M4 | M4F
|
pplies to v v
3.21.1 Syntax
SEL{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
where:
<c>, <g>
is a standard assembler syntax fields.
<Rd>
is the destination register.
<Rn>
is the first operand register.
<Rm>
is the second operand register.
3.21.2 Operation
The SEL instruction:
1. Reads the value of each bit of APSR.GE.
2. Depending on the value of APSR.GE, assigns the destination register the value of either the
first or second operand register.
3.21.3 Restrictions
None.
3.21.4 Condition flags
These instructions do not change the flags.
3.21.5 Examples
SADD16 RO, R1, R2 ; Set GE bits based on result
SEL RO, RO, R3 ; Select bytes from RO or R3, based on GE
98 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.22 USADS8

Unsigned Sum of Absolute Differences.

M3 | M4 | M4F

Applies to...

3.221 Syntax

USAD8{cond}{Rd,} Rn, Rm
where:

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rn
is the first operand register.

Rm
is the second operand register.

3.22.2 Operation
The USADS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first
operand register.

2. Adds the absolute values of the differences together.

3. Writes the result to the destination register.

3.22.3 Restrictions

Do not use SP and do not use PC.

3.22.4 Condition flags

These instructions do not change the flags.

3.22.5 Examples

USAD8 R1, R4, RO ; Subtracts each byte in RO from corresponding byte of R4
; adds the differences and writes to R1

USAD8 RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO,

; adds the differences and writes to RO

November 04, 2011 99
Texas Instruments Incorporated

General Data Processing Instructions

100 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.23 USADAS

Unsigned Sum of Absolute Differences and Accumulate.

M3 | M4 | M4F

Applies to...

3.231 Syntax

USADA8{cond}{Rd,} Rn, Rm, Ra
where:

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rn
is the first operand register.

Rm
is the second operand register.

Ra
is the register that contains the accumulation value.

3.23.2 Operation
The USADAS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first
operand register.

2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.

3.23.3 Restrictions

Do not use SP and do not use PC.

3.23.4 Condition flags

These instructions do not change the flags.

3.23.5 Examples

USADA8 R1, RO, R6 ; Subtracts bytes in RO from corresponding halfword of R1
; adds differences, adds value of R6, writes to R1

November 04, 2011 101
Texas Instruments Incorporated

General Data Processing Instructions

USADA8 R4, RO, R5, R2 ; Subtracts bytes of R5 from corresponding byte in RO

; adds differences, adds value of R2 writes to R4

102 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

3.24 USUB16 and USUBS8
Unsigned Subtract 16 and Unsigned Subtract 8.

M3 | M4 | M4F
v v

Applies to...

3.241 Syntax

op{cond}{Rd,} Rn, Rm
where:

op
is any of:

USuB16
Unsigned Subtract 16.

USuB8
Unsigned Subtract 8.

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rn
is the first operand register.

Rm
is the second operand register.

3.24.2 Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination
register:

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding halfword of
the first operand register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.
The USUBS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first
operand register.

2. Writes the unsigned byte result in the corresponding byte of the destination register.

November 04, 2011 103
Texas Instruments Incorporated

General Data Processing Instructions

3.24.3 Restrictions

Do not use SP and do not use PC.

3.24.4 Condition flags

These instructions do not change the flags.

3.24.5 Examples

USuB16 R1, RO ; Subtracts halfwords in RO from corresponding halfword of R1
; and writes to corresponding halfword in R1USUB8 R4, RO, R5

; writes to the corresponding byte in R4

104 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

4 Multiply and Divide Instructions

Table 4-1 on page 105 shows the multiply and divide instructions:

Table 4-1. Multiply and Divide Instructions

Mnemonic Brief Description See Page
MLA Multiply with accumulate, 32-bit result 106
MLS Multiply and subtract, 32-bit result 106
MUL Multiply, 32-bit result 106
SDIvV Signed divide 130
SMLA[B,T] Signed multiply accumulate (halfwords) 108
SMLAD, SMLADX Signed multiply accumulate dual 111
SMLAL Signed multiply with accumulate (32x32+64), 64-bit result 128
SMLAL[B,T] Signed multiply accumulate long (halfwords) 113
SMLALD, SMLALDX Signed multiply accumulate long dual 113
SMLAW[B|T] Signed multiply accumulate (word by halfword) 108
SMLSD Signed multiply subtract dual 116
SMLSLD Signed multiply subtract long dual 116
SMMLA Signed most significant word multiply accumulate 119
SMMLS, SMMLSR Signed most significant word multiply subtract 119
SMUAD, SMUADX Signed dual multiply add 123
SMUL[B,T] Signed multiply (word by halfword) 125
SMMUL, SMMULR Signed most significant word multiply 121
SMULL Signed multiply (32x32), 64-bit result 128
SMULWB, SMULWT Signed multiply (word by halfword) 125
SMUSD, SMUSDX Signed dual multiply subtract 123
univ Unsigned divide 130
UMAAL Unsigned multiply accumulate accumulate long 128
(32x32+32+32), 64-bit result
UMLAL Unsigned multiply with accumulate (32x32+64), 64-bit result 128
UMULL Unsigned multiply (32x32), 64-bit result 128
November 04, 2011 105

Texas Instruments Incorporated

Multiply and Divide Instructions

4.1

411

41.2

41.3

MUL, MLA, and MLS

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing
a 32-bit result.

M3 | M4 | M4F
Applies to...

v v v

Syntax

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply

MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, R, Rm, Ra ; Multiply with subtract
where:

cond
Is an optional condition code. See Table 1-2 on page 33.

S
Is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation. See 33.

Rd
Is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm
Are registers holding the values to be multiplied.

Ra
Is a register holding the value to be added or subtracted from.
Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least-significant 32 bits
of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the
least-significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from Ra, and places
the least-significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.

Restrictions
In these instructions, do not use SP and do not use PC.

If you use the S suffix with the MUL instruction:
m Rd, Rn, and Rm must all be in the range RO to R7.

m Rd must be the same as Rm.

106

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

m You must not use the cond suffix.

41.4 Condition Flags
If S is specified, the MUL instruction:

m Updates the N and Z flags according to the result.
m Does not affect the C and V flags.

41.5 Examples

MUL R10, R2, R5 ; Multiply, R10 = R2 x R5.

MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1) + R5.

MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2.

MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2.

MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 X R6).
November 04, 2011 107

Texas Instruments Incorporated

Multiply and Divide Instructions

4.2 SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

M3 | M4 | M4F

Applies to...
pp! v v

421 Syntax

op{X}{Y}{cond} Rd, Rn, Rm

op{Y}{cond} Rd, Rh, Rm, Ra
where

op
is one of:

SMLAXY
Signed Multiply Accumulate Long (halfwords)

Xand Y specifies which half of the source registers Rn and Rmare used as the first and second
multiply operand.

If Xis B, then the bottom halfword, bits [15:0], of Rn is used. If Xis T, then the top halfword, bits
[31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rmis used. If Y is T, then the top halfword, bits
[31:16], of Rmis used.

SMLAWY
Signed Multiply Accumulate (word by halfword)

Y specifies which half of the source register Rmis used as the second multiply operand.
If Yis T, then the top halfword, bits [31:16] of Rmis used.
If Y is B, then the bottom halfword, bits [15:0] of Rmis used.

cond
is an optional condition code, see Table 1-2 on page 33.

Rd
is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm
are registers holding the values to be multiplied.

Ra
is a register holding the value to be added or subtracted from.

4.2.2 Operation
The SMALBB, SMLABT, SMLATB, SMLATT instructions:

108 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

m Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
m Adds the value in Ra to the resulting 32-bit product.
m Writes the result of the multiplication and addition in Rd.

The non-specified halfwords of the source registers are ignored.
The SMLAWB and SMLAWT instructions:

= Multiply the 32-bit signed values in Rn with:
— The top signed halfword of Rm, T instruction suffix.

— The bottom signed halfword of Rm, B instruction suffix.
m Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product
m Writes the result of the multiplication and addition in Rd.

The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the
APSR. No overflow can occur during the multiplication.

4.2.3 Restrictions
In these instructions, do not use SP and do not use PC.
4.2.4 Condition flags
If an overflow is detected, the Q flag is set.
4.2.5 Examples
SMLABB R5, R6, R4, R1 ; Multiplies bottom halfwords of R6 and R4, adds
; R1 and writes to R5
SMLATB R5, R6, R4, R1 ; Multiplies top halfword of R6 with bottom halfword
; of R4, adds R1 and writes to R5
SMLATT R5, R6, R4, R1 ; Multiplies top halfwords of R6 and R4, adds
; R1 and writes the sum to R5
SMLABT R5, R6, R4, R1 ; Multiplies bottom halfword of R6 with top halfword
; of R4, adds R1 and writes to R5
November 04, 2011 109

Texas Instruments Incorporated

Multiply and Divide Instructions

SMLABT R4, R3, R2 ; Multiplies bottom halfword of R4 with top halfword of

; R3, adds R2 and writes to R4

SMLAWB R10, R2, R5, R3 ; Multiplies R2 with bottom halfword of R5, adds

; R3 to the result and writes top 32-bits to R10

SMLAWT R10, R2, R1, R5 ; Multiplies R2 with top halfword of R1, adds R5

; and writes top 32-bits to R10

110 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

4.3 SMLAD
Signed Multiply Accumulate Long Dual.
Anpies M3 | M4 | M4F
|
pplies to v v
431 Syntax
SMLAD{X}{cond} Rd, Rn, Rm, Ra ;
where:
SMLAD
Signed Multiply Accumulate Dual
SMLADX
Signed Multiply Accumulate Dual Reverse
X
Specifies which halfword of the source register Rn is used as the multiply operand. If Xis omitted,
the multiplications are bottom x bottom and top x top. If Xis present, the multiplications are
bottom x top and top x bottom.
cond
is an optional condition code, see Table 1-2 on page 33.
Rd
is the destination register.
Rn
is the first operand register holding the values to be multiplied.
Rm
the second operand register.
Ra
is the accumulate value.
4.3.2 Operation
The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The
SMLAD and SMLADX instructions:
m If Xis not present, multiply the top signed halfword value in Rn with the top signed halfword of
Rm and the bottom signed halfword values in Rn with the bottom signed halfword of Rm.
m Orif Xis present, multiply the top signed halfword value in Rn with the bottom signed halfword
of Rm and the bottom signed halfword values in Rn with the top signed halfword of Rm.
m Add both multiplication results to the signed 32-bit value in Ra.
m Writes the 32-bit signed result of the multiplication and addition to Rd.
4.3.3 Restrictions
Do not use SP and do not use PC.
November 04, 2011 111

Texas Instruments Incorporated

Multiply and Divide Instructions

4.3.4 Condition flags
These instructions do not change the flags.
4.3.5 Examples
SMLAD R10, R2, R1, R5 ; Multiplies two halfword values in R2 with
; corresponding halfwords in R1, adds R5 and writes to
; R10
SMLALDX RO, R2, R4, R6 ; Multiplies top halfword of R2 with bottom halfword
; of R4, multiplies bottom halfword of R2 with top
; halfword of R4, adds R6 and writes to RO
112 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

4.4

441

SMLAL and SMLALD

Signed Multiply Accumulate Long and Signed Multiply Accumulate Long Dual and Signed Multiply
Accumulate Long (halfwords).

SMLAL SMLALD
Appliesto...| M3 | M4 | M4F | M3 | M4 | M4F
v v v v v

Syntax

SMLAL{cond} RdLo, RdH , Rn, Rm

SMLAL{X}{Y}{cond} RdLo, RdH , Rn, Rm

SMLALD{X}{cond} RdLo, RdH , Rn, Rm
where:

SMLAL
Signed Multiply Accumulate Long

SMLAL{X}Y}
Signed Multiply Accumulate Long (halfwords, X and Y)

{XKY}
Specifies which halfword of the source registers Rn and Rmare used as the first and second
multiply operand:

If Xis B, then the bottom halfword, bits [15:0], of Rn is used. If Xis T, then the top halfword, bits
[31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rmis used. If Y is T, then the top halfword, bits
[31:16], of Rmis used.

SMLALD
Signed Multiply Accumulate Long Dual

SMLALDX
Signed Multiply Accumulate Long Dual Reversed

If the X is omitted, the multiplications are bottom x bottom and top x top.

If X is present, the multiplications are bottom x top and top x bottom.

cond
is an optional condition code, see Table 1-2 on page 33.

RdHi, RdLo
are the destination registers. RdLo is the lower 32 bits and RdHi is the upper 32 bits of the
64-bit integer. For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLALDX,
they also hold the accumulating value.

November 04, 2011 113

Texas Instruments Incorporated

Multiply and Divide Instructions

Rn, Rm
are registers holding the first and second operands.
4.4.2 Operation
The SMLAL instruction:

m Multiplies the two’s complement signed word values from Rn and Rm.
m Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
m Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:

m Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
m Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi .
m Writes the 64-bit result of the multiplication and addition in RdLo and RdHi .

The non-specified halfwords of the source registers are ignored.

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s
complement signed 16-bit integers. These instructions:

m if Xis not present, multiply the top signed halfword value of Rn with the top signed halfword of
Rm and the bottom signed halfword values of Rn with the bottom signed halfword of Rm.

m Orif Xis present, multiply the top signed halfword value of Rn with the bottom signed halfword
of Rm and the bottom signed halfword values of Rn with the top signed halfword of Rm.

m Add the two multiplication results to the signed 64-bit value in RdLo and RdH to create the
resulting 64-bit product.

m Write the 64-bit product in RdLo and RdHi .

443 Restrictions

In these instructions:

m do not use SP and do not use PC.
m RdHiand RdLo must be different registers.

44.4 Condition flags

These instructions do not affect the condition code flags.

4.4.5 Examples

SMLAL R4, R5, R3, R8 ; Multiplies R3 and R8, adds R5:R4 and writes to
; R5:R4
SMLALBT R2, R1, R6, R7 ; Multiplies bottom halfword of R6 with top

; halfword of R7, sign extends to 32-bit, adds

114 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

SMLALTB

SMLALD

SMLALDX

R2, R1, R6, R7 ;

R6, R8, R5, R1 ;

R6, R8, R5, R1 ;

R1:R2 and writes to R1:R2

Multiplies top halfword of R6 with bottom

halfword of R7,sign extends to 32-bit, adds R1:R2

and writes to R1:R2

Multiplies top halfwords in R5 and R1 and bottom

halfwords of R5 and R1, adds R8:R6 and writes to

R8:R6

Multiplies top halfword in R5 with bottom

halfword of R1, and bottom halfword of R5 with
top halfword of R1, adds R8:R6 and writes to

R8:R6

November 04, 2011

115

Texas Instruments Incorporated

Multiply and Divide Instructions

4.5 SMLSD and SMLSLD
Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual.

M3 | M4 | M4F
v v

Applies to...

451 Syntax

op{X}{cond} Rd, Rn, Rm, Ra
where:

op
is one of:

SMLSD
Signed Multiply Subtract Dual.

SMLSLD
Signed Multiply Subtract Long Dual.

If X is present, the multiplications are bottom x top and top x bottom. If the X is omitted, the
multiplications are bottom x bottom and top x top.

cond
is an optional condition code, see Table 1-2 on page 33.

Rd
is the destination register.

Rn, Rm
are registers holding the first and second operands.

Ra
is the register holding the accumulate value.

4.5.2 Operation

The SMLSD instruction interprets the values from the first and second operands as four signed
halfwords. This instruction:

m Optionally rotates the halfwords of the second operand.

m Performs two signed 16 x 16-bit halfword multiplications.

m Subtracts the result of the upper halfword multiplication from the result of the lower halfword
multiplication.

m Adds the signed accumulate value to the result of the subtraction.

m Writes the result of the addition to the destination register.

The SMLSLD instruction interprets the values from Rn and Rmas four signed halfwords. This
instruction:

m Optionally rotates the halfwords of the second operand.

116 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

m Performs two signed 16 x 16-bit halfword multiplications.

m Subtracts the result of the upper halfword multiplication from the result of the lower halfword
multiplication.

m Adds the 64-bit value in RdH and RdLo to the result of the subtraction.

m Writes the 64-bit result of the addition to the RdHi and RdLo.

453 Restrictions

In these instructions:

m Do not use SP and do not use PC.

4.5.4 Condition flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during
the multiplications or subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.

4.5.5 Examples

SMLSD RO, R4, R5, R6 ; Multiplies bottom halfword of R4 with bottom

; halfword of R5, multiplies top halfword of R4

; with top halfword of R5, subtracts second from

; First, adds R6, writes to RO

SMLSDX R1, R3, R2, RO ; Multiplies bottom halfword of R3 with top

; halfword of R2, multiplies top halfword of R3

; with bottom halfword of R2, subtracts second from

; First, adds RO, writes to R1

SMLSLD R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with bottom

; halfword of R2, multiplies top halfword of R6

; with top halfword of R2, subtracts second from

; First, adds R6:R3, writes to R6:R3

November 04, 2011 117
Texas Instruments Incorporated

Multiply and Divide Instructions

SMLSLDX R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with top

; halfword of R2, multiplies top halfword of R6

; with bottom halfword of R2, subtracts second from

; First, adds R6:R3, writes to R6:R3

118 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

4.6

4.6.1

4.6.2

SMMLA and SMMLS

Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply
Subtract.

M3 | M4 | M4F
Applies to...

Syntax

op{R}{cond} Rd, Rn, Rm, Ra
where:

op
is one of:

SMMLA
Signed Most Significant Word Multiply Accumulate.

SMMLS
Signed Most Significant Word Multiply Subtract.

is a rounding error flag. If Ris specified, the result is rounded instead of being truncated. In this
case the constant 0x80000000 is added to the product before the high word is extracted.

cond
is an optional condition code, see Table 1-2 on page 33.

Rd
is the destination register.

Rn, Rm
are registers holding the first and second multiply operands.

Ra
is the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLA instruction:

Multiplies the values in Rn and Rm

Optionally rounds the result by adding 0x80000000.

Extracts the most significant 32 bits of the result.

Adds the value of Ra to the signed extracted value.
Writes the result of the addition in Rd.

The SMMLS instruction interprets the values from Rn and Rmas signed 32-bit words.
The SMMLS instruction:

November 04, 2011 119

Texas Instruments Incorporated

Multiply and Divide Instructions

4.6.3 Restrictions

In these instructions

m Do not use SP and do not use PC.

4.6.4 Condition flags

Multiplies the values in Rn and Rm

Optionally rounds the result by adding 0x80000000.

Extracts the most significant 32 bits of the result.

Subtracts the extracted value of the result from the value in Ra.
Writes the result of the subtraction in Rd.

These instructions do not affect the condition code flags.

4.6.5 Examples

SMMLA RO,
SMMLAR R6,
SMMLSR R3,
SMMLS R4,

R4,

R2,

R6,

R5,

R5,

R1,

R2,

R3,

R6

R4

R7

R8

; Multiplies R4 and R5, extracts top

; R6, truncates and writes to RO

; Multiplies R2 and R1, extracts top

; R4, rounds and writes to R6

; Multiplies R6 and R2, extracts top

; subtracts R7, rounds and writes to

; Multiplies R5 and R3, extracts top

; subtracts R8, truncates and writes

32

32

32

R3

32

to

bits, adds
bits, adds
bits,
bits,

R4

120

November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

4.7 SMMUL
Signed Most Significant Word Multiply.
Anpies M3 | M4 | M4F
|
pplies to v v
471 Syntax
op{R}{cond} Rd, Rn, Rm
where:
op
is one of:
SMMUL
Signed Most Significant Word Multiply
R
is a rounding error flag. If Ris specified, the result is rounded instead of being truncated. In this
case the constant 0x80000000 is added to the product before the high word is extracted.
cond
is an optional condition code, see Table 1-2 on page 33.
Rd
is the destination register.
Rn, Rm
are registers holding the first and second operands.
4.7.2 Operation
The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed
integers. The SMMUL instruction:
m Multiplies the values from Rn and Rm.
m Optionally rounds the result, otherwise truncates the result.
m Writes the most significant signed 32 bits of the result in Rd.
4.7.3 Restrictions
In this instruction:
m do not use SP and do not use PC.
4.7.4 Condition flags
This instruction does not affect the condition code flags.
November 04, 2011 121

Texas Instruments Incorporated

Multiply and Divide Instructions

4.7.5 Examples

SMULL RO, R4, R5 ; Multiplies R4 and R5, truncates top 32 bits

; and writes to RO

SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
; and writes to R6

122 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

4.8 SMUAD and SMUSD
Signed Dual Multiply Add and Signed Dual Multiply Subtract.

M3 | M4 | M4F
v v

Applies to...

481 Syntax

op{X}{cond} Rd, Rn, Rm
where:

op
is one of:

SMUAD
Signed Dual Multiply Add.

SMUSD
Signed Dual Multiply Subtract.

If X is present, the multiplications are bottom x top and top x bottom. If the X is omitted, the
multiplications are bottom x bottom and top x top.

cond
is an optional condition code, see Table 1-2 on page 33.

Rd
is the destination register.

Rn, Rm
are registers holding the first and the second operands.

4.8.2 Operation

The SMUAD instruction interprets the values from the first and second operands as two signed
halfwords in each operand. This instruction:

Optionally rotates the halfwords of the second operand.
Performs two signed 16 x 16-bit multiplications.

Adds the two multiplication results together.

Writes the result of the addition to the destination register.

The SMUSD instruction interprets the values from the first and second operands as two’s complement
signed integers. This instruction:

m Optionally rotates the halfwords of the second operand.

m Performs two signed 16 x 16-bit multiplications.

m Subtracts the result of the top halfword multiplication from the result of the bottom halfword
multiplication.

m Writes the result of the subtraction to the destination register.

November 04, 2011 123
Texas Instruments Incorporated

Multiply and Divide Instructions

4.8.3 Restrictions

In these instructions:

m Do not use SP and do not use PC.

4.8.4 Condition flags

Sets the Q flag if the addition overflows. The multiplications cannot overflow.

4.8.5 Examples

SMUAD

SMUADX

SMUSD

SMUSDX

RO,

R3,

R3,

R4,

R4,

R7,

R6,

R5,

R5

R4

R2

R3

; Multiplies bottom halfword of R4 with the bottom

; halfword of R5, adds multiplication of top halfword

; of R4 with top halfword of R5, writes to RO

; Multiplies bottom halfword of R7 with top halfword

; of R4, adds multiplication of top halfword of R7

; with bottom halfword of R4, writes to R3

; Multiplies bottom halfword of R4 with bottom halfword

; of R6, subtracts multiplication of top halfword of R6

; with top halfword of R3, writes to R3

; Multiplies bottom halfword of R5 with top halfword of

; R3, subtracts multiplication of top halfword of R5

; with bottom halfword of R3, writes to R4

124

November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

4.9 SMUL and SMULW
Signed Multiply (halfwords) and Signed Multiply (word by halfword).
Anpies M3 | M4 | M4F
pplies to... % %
491 Syntax
SMUL{X}{Y}{cond} Rd,Rn, Rm
SMULW{Y}{cond} Rd. Rn, Rm
For SMULXY only:
op
is one of:
SMUL{X} Y} Signed Multiply (halfwords)
Xand Y specify which halfword of the source registers Rn and Rmis used as the first and second
multiply operand. If X is B, then the bottom halfword, bits [15:0] of Rn is used. If Xis T, then the
top halfword, bits [31:16] of Rn is used.If Y is B, then the bottom halfword, bits [15:0], of Rmis
used. If Yis T, then the top halfword, bits [31:16], of Rmis used.
SMULW({Y?} Signed Multiply (word by halfword)
Y specifies which halfword of the source register Rmis used as the second multiply operand. If
Y is B, then the bottom halfword (bits [15:0]) of Rmis used. If Y is T, then the top halfword (bits
[31:16]) of Rmis used.
cond
is an optional condition code, see Table 1-2 on page 33.
Rd
is the destination register.
Rn, Rm
are registers holding the first and second operands.
4.9.2 Operation
The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as
four signed 16-bit integers. These instructions:
m Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
m Writes the 32-bit result of the multiplication in Rd.
The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and
Rm as two halfword 16-bit signed integers. These instructions:
m Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second
operand.
November 04, 2011 125

Texas Instruments Incorporated

Multiply and Divide Instructions

m Writes the signed most significant 32 bits of the 48-bit result in the destination register.

4.9.3 Restrictions
In these instructions:
m Do not use SP and do not use PC.
m RdHi and RdLo must be different registers.
494 Examples
SMULBT RO, R4, R5 ; Multiplies the bottom halfword of R4 with the
; top halfword of R5, multiplies results and
; writes to RO
SMULBB RO, R4, R5 ; Multiplies the bottom halfword of R4 with the
; bottom halfword of R5, multiplies results and
; writes to RO
SMULTT RO, R4, R5 ; Multiplies the top halfword of R4 with the top
; halfword of R5, multiplies results and writes
; to RO
SMULTB RO, R4, R5 ; Multiplies the top halfword of R4 with the
; bottom halfword of R5, multiplies results and
; and writes to RO
SMULWT R4, R5, R3 ; Multiplies R5 with the top halfword of R3,
; extracts top 32 bits and writes to R4
SMULWB R4, R5, R3 ; Multiplies R5 with the bottom halfword of R3,
126 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

; extracts top 32 bits and writes to R4

November 04, 2011 127
Texas Instruments Incorporated

Multiply and Divide Instructions

410 UMULL, UMAAL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing
a 64-bit result.
UMULL, UMLAL, UMAAL
_ SMULL, SMLAL
Applies 0. VT Vi TMaF | M3 | M4 | MaF
v v v v v
4101 Syntax
{cond} RdLo, RdHi , Rn, Rm
where:
op
is one of:
UMULL
Unsigned Long Multiply.
UMAAL
Unsigned Long Multiply with Accumulate Accumulate.
UMLAL
Unsigned Long Multiply, with Accumulate.
SMULL
Signed Long Multiply.
SMLAL
Signed Long Multiply, with Accumulate.
cond
is an optional condition code, see Table 1-2 on page 33.
RdHi, RdLo
are the destination registers. For UMLAL and SMLAL they also hold the accumulating value.
Rn, Rm
are registers holding the operands.
4.10.2 Operation
The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo, and the most significant 32
bits of the result in RdHi.
The UMAAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies the
two unsigned integers in the first and second operands and adds the unsigned 32-bit integer in RdHi
to the 64-bit result of the multiplication. It adds the unsigned 32-bit integer in RdLo to the 64-bit
result of the addition, writes the top 32-bits of the result to RdHi , and writes the lower 32-bits of the
result to RdLo.
128 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers, adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and
writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers.
It multiplies these integers and places the least significant 32 bits of the result in RdLo, and the most
significant 32 bits of the result in RdHI.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers.
It multiplies these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and
RdLo, and writes the result back to RdHi and RdLo.

410.3 Restrictions

In these instructions:

m do not use SP and do not use PC
m RdHiand RdLo must be different registers.

4.10.4 Condition flags

These instructions do not affect the condition code flags.

410.5 Examples

UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8
UMAAL R3, R6, R2, R7 ; Multiplies R2 and R7, adds R6, adds R3, writes f

; top 32 bits to R6, and the bottom 32 bits to R3.

November 04, 2011 129
Texas Instruments Incorporated

Multiply and Divide Instructions

4.11

4111

4.11.2

411.3

411.4

411.5

SDIV and UDIV
Signed Divide and Unsigned Divide.

M3 | M4 | M4F
v v v

Applies to...

Syntax

SDIV{cond} {Rd,} Rn, Rm
UDIV{cond} {Rd,} Rn, Rm
where:

cond
Is an optional condition code. See Table 1-2 on page 33.

Rd

Is the destination register. If Rd is omitted, the destination register is Rn.

Rn
Is the register holding the value to be divided.

Rm
Is a register holding the divisor.

Operation

SD1V performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded

towards zero.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SDIV RO, R2, R4 ; Signed divide, RO = R2/R4.
UbDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1.

130

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

5 Saturating Instructions

Table 5-1 on page 131 shows the saturating instructions:

Table 5-1. Saturating Instructions

Mnemonic Brief Description See Page
SSAT Signed saturate 132
SSAT16 Signed saturate halfword 134
USAT Unsigned saturate 132
USAT16 Unsigned saturate halfword 134
QADD Saturating add 136
QADD8 Saturating add 8 136
QADD16 Saturating add 16 136
QsuB Saturating subtract 136
QsuBs Saturating subtract 8 136
QsSuB16 Saturating subtract 16 136
QASX Saturating add and subtract with exchange 138
QSAX Saturating subtract and add with exchange 138
QDADD Saturating double and add 140
QDSuUB Saturating double and subtract 140
UQADD16 Unsigned saturating add 16 144
UQADD8 Unsigned saturating add 8 144
UQASX Unsigned saturating add and subtract with exchange 142
UQSAX Unsigned saturating subtract and add with exchange 142
UQSUB16 Unsigned saturating subtract 16 144
uQsuB8 Unsigned saturating subtract 8 144
November 04, 2011 131

Texas Instruments Incorporated

Saturating Instructions

5.1

511

5.1.2

SSAT and USAT

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

M3 | M4 | M4F
v v v

Applies to...

Syntax
op{cond} Rd, #n, Rm {, shift #s}
where:

op
Is one of:

SSAT
Saturates a signed value to a signed range.

USAT
Saturates a signed value to an unsigned range.

cond
Is an optional condition code. See Table 1-2 on page 33.

Rd
Is the destination register.

Specifies the bit position to saturate to:
m nranges from 1 to 32 for SSAT
m nranges from 0 to 31 for USAT

Rm
Is the register containing the value to saturate.

shift #s
Is an optional shift applied to Rm before saturating. It must be one of the following:

ASR #s
Where s is in the range 1 to 31.

LSL #s
Where s is in the range 0 to 31.

Operation

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -2"1 < x < 21-1.
The USAT instruction applies the specified shift, then saturates to the unsigned range 0 < x < 2"-1.

For signed n-bit saturation using SSAT, this means that:

m [f the value to be saturated is less than =27, the result returned is =27,

132

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

m If the value to be saturated is greater than 27~7-1, the result returned is 27-1.
m Otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation using USAT, this means that:

m [f the value to be saturated is less than 0, the result returned is 0.

m [f the value to be saturated is greater than 2"-1, the result returned is 2"-1.

m Otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If saturation
occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged.
To clear the Q flag to 0, you must use the MSR instruction. See “MSR” on page 215.

To read the state of the Q flag, use the MRS instruction. See “MRS” on page 214.

51.3 Restrictions
Do not use SP and do not use PC.
514 Condition Flags
These instructions do not affect the condition code flags.
If saturation occurs, these instructions set the Q flag to 1.
5.1.5 Examples
SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit value and
; write it back to R7.
USATNE RO, #7, R5 ; Conditionally saturate value In R5 as an
; unsigned 7 bit value and write it to RO.
November 04, 2011 133

Texas Instruments Incorporated

Saturating Instructions

5.2

5.21

5.2.2

5.2.3

SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

M3 | M4 | M4F
v v

Applies to...

Syntax

op{cond} Rd, #n, Rm
where:

op
is one of:

SSAT16
Saturates a signed halfword value to a signed range.

USAT16
Saturates a signed halfword value to an unsigned range.

cond
is an optional condition code, see Table 1-2 on page 33.

Rd
is the destination register.

specifies the bit position to saturate to:
m nranges from 1 to 16 for SSAT.
m nranges from 0 to 15 for USAT.

Rm
is the register containing the value to saturate.

Operation
The SSAT16 instruction:

1. Saturates two signed 16-bit halfword values of the register with the value to saturate from
selected by the bit position in n.
2. Writes the results as two signed 16-bit halfwords to the destination register.

The USAT16 instruction:

1. Saturates two unsigned 16-bit halfword values of the register with the value to saturate from
selected by the bit position in n.
2. Writes the results as two unsigned halfwords in the destination register.

Restrictions

Do not use SP and do not use PC.

134

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

5.24 Condition flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

5.2.5 Examples

SSAT16 R7, #9, R2 ; Saturates the top and bottom highwords of R2

; as 9-bit values, writes to corresponding halfword

; of R7

USAT16NE RO, #13, R5 ; Conditionally saturates the top and bottom

; halfwords of R5 as 13-bit values, writes to

; corresponding halfword of RO

November 04, 2011 135
Texas Instruments Incorporated

Saturating Instructions

5.3

5.3.1

5.3.2

QADD and QSUB
Saturating Add and Saturating Subtract, signed.

M3 | M4 | M4F
v v

Applies to...

Syntax

op{cond} {Rd}, Rn, Rm

op{cond} {Rd}, Rn, Rm
where:

op
is one of:

QADD
Saturating 32-bit add.

QADDS8
Saturating four 8-bit integer additions.

QADD16
Saturating two 16-bit integer additions.

QsuB
Saturating 32-bit subtraction.

QSuB8
Saturating four 8-bit integer subtraction.

QSuUB16
Saturating two 16-bit integer subtraction.

cond
is an optional condition code, see Table 1-2 on page 33.

Rd
is the destination register.

Rn, Rm
are registers holding the first and second operands.

Operation

These instructions add or subtract two, four or eight values from the first and second operands and
then writes a signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result
to the signed range —2"' < x < 2"-1-1, where x is given by the number of bits applied in the
instruction, 32, 16 or 8.

136

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

If the returned result is different from the value to be saturated, it is called saturation. If saturation
occurs, the QADD and QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves the Q
flag unchanged. The 8-bit and 16-bit QADD and QSUB instructions always leave the Q flag unchanged.

To clear the Q flag to 0, you must use the MSR instruction, see 215.

To read the state of the Q flag, use the MRS instruction, see 214.

5.3.3 Restrictions

Do not use SP and do not use PC.

5.34 Condition flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

5.3.5 Examples

QADD16 R7, R4, R2 ; Adds halfwords of R4 with corresponding halfword of

; R2, saturates to 16 bits and writes to corresponding

;: halfword of R7

QADD8 R3, R1, R6 ; Adds bytes of R1 to the corresponding bytes of R6,

; saturates to 8 bits and writes to corresponding byte of

: R3

QSuUB16 R4, R2, R3 ; Subtracts halfwords of R3 from corresponding halfword

; of R2, saturates to 16 bits, writes to corresponding

: halfword of R4

QSuB8 R4, R2, R5 ; Subtracts bytes of R5 from the corresponding byte in

; R2, saturates to 8 bits, writes to corresponding byte of

; R4

November 04, 2011 137
Texas Instruments Incorporated

Saturating Instructions

5.4 QASX and QSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.
Anpies M3 | M4 | M4F
pplies to... % %
54.1 Syntax
op{cond} {Rd}, Rm, Rn
where:
op
is one of:
QASX
Add and Subtract with Exchange and Saturate.
QSAX
Subtract and Add with Exchange and Saturate.
cond
is an optional condition code, see Table 1-2 on page 33.
Rd
is the destination register.
Rn, Rm
are registers holding the first and second operands.
5.4.2 Operation
The QASX instruction:
1. Adds the top halfword of the source operand with the bottom halfword of the second operand.
2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —215 < x
<215 -1, where x equals 16, to the bottom halfword of the destination register.
4. Saturates the results of the sum and writes a 16-bit signed integer in the range —215 < x <215
— 1, where x equals 16, to the top halfword of the destination register.
The QSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the source operand with the top halfword of the second operand.
3. Saturates the results of the sum and writes a 16-bit signed integer in the range —215 < x <215
— 1, where x equals 16, to the bottom halfword of the destination register.
4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —215 < x
<215 -1, where x equals 16, to the top halfword of the destination register.
5.4.3 Restrictions
Do not use SP and do not use PC.
138 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

544 Condition flags

These instructions do not affect the condition code flags.

5.4.5 Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2,

; saturates to 16 bits, writes to top halfword of R7

; Subtracts top highword of R2 from bottom halfword of

; R4, saturates to 16 bits and writes to bottom halfword

; of R7

QSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of

; R3, saturates to 16 bits, writes to top halfword of RO

; Adds bottom halfword of R3 to top halfword of R5,

; saturates to 16 bits, writes to bottom halfword of RO

November 04, 2011 139
Texas Instruments Incorporated

Saturating Instructions

5.5

5.5.1

5.5.2

5.5.3

QDADD and QDSUB
Saturating Double and Add and Saturating Double and Subtract, signed.

M3 | M4 | M4F

Applies to...
pp! v v

Syntax

op{cond} {Rd}, Rm, Rn
where:

op
is one of:

QDADD
Saturating Double and Add.

QDSUB
Saturating Double and Subtract.

cond
is an optional condition code, see Table 1-2 on page 33.

Rd
is the destination register.

Rm, Rn
are registers holding the first and second operands.

Operation
The QDADD instruction:

m Doubles the second operand value.
m Adds the result of the doubling to the signed saturated value in the first operand.
m Writes the result to the destination register.

The QDSUB instruction:

m Doubles the second operand value.
m Subtracts the doubled value from the signed saturated value in the first operand.
m Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed
integer range —231 < x < 231- 1. If saturation occurs in either operation, it sets the Q flag in the
APSR.

Restrictions

Do not use SP and do not use PC.

140

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

554 Condition flags

If saturation occurs, these instructions set the Q flag to 1.

5.5.5 Examples

QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,

; saturates to 32 bits, writes to R7.

QDSuB RO, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits

; from R5, saturates to 32 bits, writes to RO.

November 04, 2011 141
Texas Instruments Incorporated

Saturating Instructions

5.6 UQASX and UQSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange,
unsigned.
Anpies M3 | M4 | M4F
pplies to... % %
5.6.1 Syntax
op{cond} {Rd}, Rm, Rn
where:
type
is one of:
UQASX
Add and Subtract with Exchange and Saturate.
UQSAX
Subtract and Add with Exchange and Saturate.
cond
is an optional condition code, see Table 1-2 on page 33.
Rd
is the destination register.
Rn, Rm
are registers holding the first and second operands.
5.6.2 Operation
The UQASX instruction:
1. Adds the bottom halfword of the source operand with the top halfword of the second operand.
2. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range 0 < x < 216
— 1, where x equals 16, to the top halfword of the destination register.
4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x <
216 — 1, where x equals 16, to the bottom halfword of the destination register.
The UQSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the first operand with the top halfword of the second operand.
3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x <
216 — 1, where x equals 16, to the top halfword of the destination register.
4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0 < x <
216 — 1, where x equals 16, to the bottom halfword of the destination register.
142 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

5.6.3 Restrictions

Do not use SP and do not use PC.

5.6.4 Condition flags

These instructions do not affect the condition code flags.

5.6.5 Examples

UQASX R7, R4, R2 ;

UQSAX RO, R3, R5 ;

Adds top halfword of R4 with bottom halfword of R2,

saturates to 16 bits, writes to top halfword of R7

Subtracts top halfword of R2 from bottom halfword of

R4, saturates to 16 bits, writes to bottom halfword of R7

Subtracts bottom halfword of R5 from top halfword of R3,

saturates to 16 bits, writes to top halfword of RO

Adds bottom halfword of R4 to top halfword of R5

saturates to 16 bits, writes to bottom halfword of RO.

November 04, 2011

143

Texas Instruments Incorporated

Saturating Instructions

5.7

5.71

5.7.2

UQADD and UQSUB
Saturating Add and Saturating Subtract Unsigned.

M3 | M4 | M4F

Applies to...
pp! v v

Syntax

op{cond} {Rd}, Rn, Rm

op{cond} {Rd}, Rn, Rm
where:

op
is one of:

UQADDS
Saturating four unsigned 8-bit integer additions.

UQADD16
Saturating two unsigned 16-bit integer additions.

UDSUBS8
Saturating four unsigned 8-bit integer subtractions.

UQSUB16
Saturating two unsigned 16-bit integer subtractions.

cond
is an optional condition code, see Table 1-2 on page 33.

Rd
is the destination register.

Rn, Rm
are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value

in the destination register.
The UQADD16 instruction:

m Adds the respective top and bottom halfwords of the first and second operands.
m Saturates the result of the additions for each halfword in the destination register to the unsigned

range 0 < x < 2'6-1, where x is 16.

The UQADDS instruction:

m Adds each respective byte of the first and second operands.

144

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

m Saturates the result of the addition for each byte in the destination register to the unsigned range

0 < x < 28-1, where x is 8.

The UQSUB16 instruction:

m Subtracts both halfwords of the second operand from the respective halfwords of the first operand.
m Saturates the result of the differences in the destination register to the unsigned range

0 < x<2'%-1, where xis 16

The UQSUBS instructions:

m Subtracts the respective bytes of the second operand from the respective bytes of the first

operand.

m Saturates the results of the differences for each byte in the destination register to the unsigned
range 0 < x < 28-1, where x is 8.

5.7.3 Restrictions

Do not use SP and do not use PC.

5.74 Condition flags

These instructions do not affect the condition code flags.

5.7.5 Examples

UQADD16 R7, R4,

UQADDS R4, R2,

UQSUB16 R6, R3,

UQSUBS R1, RS,

R2

R5

RO

R6

; Adds halfwords in R4 to corresponding halfword in R2,

; saturates to 16 bits, writes to corresponding halfword

; of R7

; Adds bytes of R2 to corresponding byte of R5, saturates

; to 8 bits, writes to corresponding bytes of R4

; Subtracts halfwords in RO from corresponding halfword

in R3, saturates to 16 bits, writes to corresponding

; halfword in R6

; Subtracts bytes in R6 from corresponding byte of R5,

; saturates to 8 bits, writes to corresponding byte of R1

November 04, 2011

145

Texas Instruments Incorporated

Saturating Instructions

146 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

6 Packing and Unpacking Instructions

Table 6-1 on page 147 shows the packing and unpacking instructions:

Table 6-1. Packing and Unpacking Instructions

Mnemonic Brief Description See Page
PKH Pack halfword 148
SXTAB Extend 8 bits to 32 and add 154
SXTAB16 Dual extend 8 bits to 16 and add 154
SXTAH Extend 16 bits to 32 and add 154
SXTB Sign extend a byte 150
SXTB16 Dual extend 8 bits to 16 and add 150
SXTH Sign extend a halfword 150
UXTAB Extend 8 bits to 32 and add 154
UXTAB16 Dual extend 8 bits to 16 and add 154
UXTAH Extend 16 bits to 32 and add 154
UXTB Zero extend a byte 150
UXTB16 Dual zero extend 8 bits to 16 and add 150
UXTH Zero extend a halfword 150
November 04, 2011 147

Texas Instruments Incorporated

Packing and Unpacking Instructions

6.1 PKHBT and PKHTB
Pack Halfword.

M3 | M4 | M4F
v v v

Applies to...

6.1.1 Syntax

op{cond} {Rd}, Rn, Rm {, LSL # mm}

op{cond} {Rd}, Rn, Rm {, ASR #i mm}
where:

op
is one of:

PKHBT
Pack Halfword, bottom and top with shift.

PKHTB
Pack Halfword, top and bottom with shift.

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rn
is the first operand register.

Rm
is the second operand register holding the value to be optionally shifted.

imm
is the shift length. The type of shift length depends on the instruction:For PKHBT

LSL
a left shift with a shift length from 1 to 31, 0 means no shift.
For PKHTB:

ASR
an arithmetic shift right with a shift length from 1 to 32, a shift of 32-bits is encoded as
0b00000.
6.1.2 Operation

The PKHBT instruction:

148 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the
destination register.

2. If shifted, the shifted value of the second operand is written to the top halfword of the destination
register.

The PKHTB instruction:

1. Writes the value of the top halfword of the first operand to the top halfword of the destination
register.

2. If shifted, the shifted value of the second operand is written to the bottom halfword of the
destination register.

6.1.3 Restrictions
Rd must not be SP and must not be PC.

6.1.4 Condition flags

This instruction does not change the flags.

6.1.5 Examples

PKHBT R3, R4, R5 LSL #0 ; Writes bottom halfword of R4 to bottom halfword of

; R3, writes top halfword of R5, unshifted, to top
; halfword of R3

PKHTB R4, RO, R2 ASR #1 ; Writes R2 shifted right by 1 bit to bottom halfword
; of R4, and writes top halfword of RO to top

; halfword of R4

November 04, 2011 149
Texas Instruments Incorporated

Packing and Unpacking Instructions

6.2 SXT and UXT

Sign extend and Zero extend.

M3 | M4 | M4F
v v v

Applies to...

6.2.1 Syntax

op{cond} {Rd,} Rm {, ROR #n}

op{cond} {Rd}, Rm {, ROR #n}

where:
op
is one of:
SXTB
Sign extends an 8-bit value to a 32-bit value.
SXTH
Sign extends a 16-bit value to a 32-bit value.
SXTB16
Sign extends two 8-bit values to two 16-bit values.
UXTB
Zero extends an 8-bit value to a 32-bit value.
UXTH
Zero extends a 16-bit value to a 32-bit value.
UXTB16
Zero extends two 8-bit values to two 16-bit values.
cond

is an optional condition code, see 33.

Rd
is the destination register.

Rm
is the register holding the value to extend.

ROR #n
is one of:

ROR #8
Value from Rmis rotated right 8 bits.

ROR #16
Value from Rmis rotated right 16 bits.

150 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

ROR #24
Value from Rmis rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

6.2.2 Operation

These instructions do the following:
1. Rotate the value from Rmright by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:

SXTB extracts bits[7:0] and sign extends to 32 bits.

UXTB extracts bits[7:0] and zero extends to 32 bits.

SXTH extracts bits[15:0] and sign extends to 32 bits.

UXTH extracts bits[15:0] and zero extends to 32 bits.

SXTB16 extracts bits[7:0] and sign extends to 16 bits, and extracts bits [23:16] and sign
extends to 16 bits.

UXTB16 extracts bits[7:0] and zero extends to 16 bits, and extracts bits [23:16] and zero
extends to 16 bits.

6.2.3 Restrictions

Do not use SP and do not use PC.

6.24 Condition flags

These instructions do not affect the flags.

6.2.5 Examples

SXTH R4, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom halfword of
; of result, sign extends to 32 bits and writes to R4

UXTB R3, R10 ; Extracts lowest byte of value in R10, zero extends, and
; writes to R3

November 04, 2011 151
Texas Instruments Incorporated

Packing and Unpacking Instructions

6.3 SXTB16 and UXTB16
Sign extend and Zero extend byte 16.

M3 | M4 | M4F
v v

Applies to...

6.3.1 Syntax

op{cond} {Rd,} Rm {, ROR #n}

op{cond} {Rd}, Rm {, ROR #n}
where:

op
is one of:

SXTB16
Sign extends two 8-bit values to two 16-bit values.

UXTB16
Zero extends two 8-bit values to two 16-bit values.

cond
is an optional condition code, see 33.

Rd
is the destination register.

Rm
is the register holding the value to extend.

ROR #n
is one of:

ROR #8
Value from Rmis rotated right 8 bits.

ROR #16
Value from Rmis rotated right 16 bits.

ROR #24
Value from Rmis rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.
6.3.2 Operation
These instructions do the following:

1. Rotate the value from Rmright by 0, 8, 16 or 24 bits.

152 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

2. Extract bits from the resulting value:

m SXTB16 extracts bits[7:0] and sign extends to 16 bits, and extracts bits [23:16] and sign

extends to 16 bits.

m UXTB16 extracts bits[7:0] and zero extends to 16 bits, and extracts bits [23:16] and zero

extends to 16 bits.

6.3.3 Restrictions

Do not use SP and do not use PC.

6.3.4 Condition flags

These instructions do not affect the flags.

6.3.5 Examples

SXTH R4, R6, ROR #16 ;

UXTB R3, R10 ;

Rotates R6 right by 16 bits, obtains bottom halfword of
of result, sign extends to 32 bits and writes to R4
Extracts lowest byte of value in R10, zero extends, and
writes to R3

November 04, 2011

153

Texas Instruments Incorporated

Packing and Unpacking Instructions

6.4 SXTA and UXTA
Signed and Unsigned Extend and Add.

M3 | M4 | M4F
v v

Applies to...

6.4.1 Syntax

op{cond} {Rd,} Rn, Rm {, ROR #n}

op{cond} {Rd,} Rn, Rm{, ROR #n}

where:
op
is one of:
SXTAB
Sign extends an 8-bit value to a 32-bit value and add.
SXTAH
Sign extends a 16-bit value to a 32-bit value and add.
SXTAB16
Sign extends two 8-bit values to two 16-bit values and add.
UXTAB
Zero extends an 8-bit value to a 32-bit value and add.
UXTAH
Zero extends a 16-bit value to a 32-bit value and add.
UXTAB16
Zero extends two 8-bit values to two 16-bit values and add.
cond

is an optional condition code, see 33.

Rd
is the destination register.

Rn
is the first operand register.

Rm
is the register holding the value to rotate and extend.

ROR #n
is one of:

ROR #8
Value from Rmis rotated right 8 bits.

154
Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

ROR #16
Value from Rmis rotated right 16 bits.

ROR #24
Value from Rmis rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

6.4.2 Operation

These instructions do the following:
1. Rotate the value from Rmright by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:

SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.

UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.

SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.

UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.

SXTAB16 extracts bits[7:0] from Rm and sign extends to 16 bits, and extracts bits [23:16]
from Rm and sign extends to 16 bits.

UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits, and extracts bits [23:16]
from Rm and zero extends to 16 bits.

3. Adds the signed or zero extended value to the word or corresponding halfword of Rn and writes
the result in Rd.

6.4.3 Restrictions

Do not use SP and do not use PC.

6.4.4 Condition flags

These instructions do not affect the flags.

6.4.5 Examples

SXTAH R4, R8, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
; halfword, sign extends to 32 bits, adds R8,and
; writes to R4

UXTAB R3, R4, R10 ; Extracts bottom byte of R10 and zero extends to 32
; bits, adds R4, and writes to R3

November 04, 2011 155
Texas Instruments Incorporated

Bitfield Instructions

Bitfield Instructions

Table 7-1 on page 156 shows the instructions that operate on adjacent sets of bits in registers or

bitfields:

Table 7-1. Bitfield Instructions

Mnemonic Brief Description See Page
BFC Bit field clear 157
BF1 Bit field insert 157
SBFX Signed bit field extract 158
UBFX Unsigned bit field extract 158

156

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

71

711

7.1.2

713

71.4

71.5

BFC and BFlI
Bit Field Clear and Bit Field Insert.

M3 | M4 | M4F
v v v

Applies to...

Syntax

BFC{cond} Rd, #l sb, #w dth
BFI{cond} Rd, Rn, # sb, #wi dth
where:

cond
Is an optional condition code. See Table 1-2 on page 33.

Rd
Is the destination register.

Rn
Is the source register.

Isb
Is the position of the least-significant bit of the bitfield. /sb must be in the range 0 to 31.

width
Is the width of the bitfield and must be in the range 1 to 32[1/sb.

Operation

BFC clears a bitfield in a register. It clears wi dt h bits in Rd, starting at the low bit position | sb.
Other bits in Rd are unchanged.

BF I copies a bitfield into one register from another register. It replaces wi dt h bits in Rd starting at
the low bit position | sb, with wi dt h bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the flags.
Examples

BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to O.
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
; bit O to bit 11 from R2.

November 04, 2011 157

Texas Instruments Incorporated

Bitfield Instructions

7.2 SBFXand UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.
M3 | M4 | M4F
Applies to...
v v v
7.21 Syntax
SBFX{cond} Rd, Rn, #l sb, #w dth
UBFX{cond} Rd, Rn, #l sb, #wi dth
where:
cond
Is an optional condition code. See Table 1-2 on page 33.
Rd
Is the destination register.
Rn
Is the source register.
Isb
Is the position of the least-significant bit of the bitfield. /sb must be in the range 0 to 31.
width
Is the width of the bitfield and must be in the range 1 to 321l sb.
7.2.2 Operation
SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the
destination register.
UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the
destination register.
7.2.3 Restrictions
Do not use SP and do not use PC.
7.24 Condition Flags
These instructions do not affect the flags.
7.2.5 Examples
SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and sign
; extend to 32 bits and then write the result to RO.
UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and zero
; extend to 32 bits and then write the result to R8.
158 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8 Floating-Point

Table 8-1 on page 159 shows the floating-point instructions:”

Table 8-1. Floating-Point Instructions

Mnemonic Brief Description See Page
VABS Floating-point absolute 161
VADD Floating-point add 162
VCMP Compare two floating-point registers, or one floating-point 163
register and zero
VCMPE Compare two floating-point registers, or one floating-point 163
register and zero with Invalid Operation check
VCVT Convert between floating-point and integer 167
VCVT Convert between floating-point and fixed point 167
VCVTR Convert between floating-point and integer with rounding 167
VCVTB Converts half-precision value to single-precision 169
VCVTT Converts single-precision register to half-precision 169
VDIV Floating-point divide 171
VFMA Floating-point fused multiply accumulate 172
VFNMA Floating-point fused negate multiply accumulate 173
VFMS Floating-point fused multiply subtract 172
VFNMS Floating-point fused negate multiply subtract 173
VLDM Load multiple extension registers 174
VLDR Loads an extension register from memory 176
VLMA Floating-point multiply accumulate 178
VLMS Floating-point multiply subtract 178
VMOV Floating-point move immediate 179
VMOV Floating-point move register 180
VMOV Copy ARM core register to single precision 182
VMOV Copy 2 ARM core registers to 2 single precision 183
VMOV Copies between ARM core register to scalar 182
VMOV Copies between scalar to ARM core register 182
VMRS Move to ARM core register from floating-point system register 185
VMSR Move to floating-point system register from ARM Core register 186
VMUL Multiply floating-point 187
VNEG Floating-point negate 188
VNMLA Floating-point multiply and add 189
VNMLS Floating-point multiply and subtract 189
VNMUL Floating-point multiply 189
VPOP Pop extension registers 191
VPUSH Push extension registers 192
VSQRT Floating-point square root 193

"These instructions are only available if the FPU is included, and enabled, in the system.

November 04, 2011 159
Texas Instruments Incorporated

Floating-Point

Table 8-1. Floating-Point Instructions (continued)

Mnemonic Brief Description See Page
VSTM Store multiple extension registers 194
VSTR Stores an extension register to memory 196
VSUB Floating-point subtract 197
160 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.1 VABS
Floating-point Absolute.

M3 | M4 | M4F
Applies to...

8.1.1 Syntax

VABS{cond}.F32 Sd, Sm
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Sd, Sm
are the destination floating-point value and the operand floating-point value.

8.1.2 Operation

This instruction:
1. Takes the absolute value of the operand floating-point register.
2. Places the results in the destination floating-point register.

8.1.3 Restrictions

There are no restrictions.

8.1.4 Condition flags

The floating-point instruction clears the sign bit.

8.1.5 Examples

VABS.F32 S4, S6

November 04, 2011 161
Texas Instruments Incorporated

Floating-Point

8.2 VADD
Floating-point Add.
M3 | M4 | M4F
Applies to...
v
8.2.1 Syntax
VADD{cond}.F32 {Sd,} Sn, Sm
where:
cond
is an optional condition code, see “Conditional Execution” on page 32.
Sd
is the destination floating-point value.
Sn, Sm
are the operand floating-point values.
8.2.2 Operation
This instruction:
1. Adds the values in the two floating-point operand registers.
2. Places the results in the destination floating-point register.
8.2.3 Restrictions
There are no restrictions.
8.24 Condition flags
This instruction does not change the flags.
8.2.5 Examples
VADD.F32 S4, S6, S7
162 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.3 VCMP, VCMPE

Compares two floating-point registers, or one floating-point register and zero.

M3 | M4 | M4F
Applies to...

8.3.1 Syntax
VCMP{E}{cond}.F32 Sd, Sm

VCMP{E}{cond}.F32 sd, #0.0
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

E
If present, any NaN operand causes an Invalid Operation exception. Otherwise, only a
signaling NaN causes the exception.

Sd
is the floating-point operand to compare.

Sm
is the floating-point operand that is compared with.

8.3.2 Operation

This instruction:
1. Compares:

m Two floating-point registers.

m One floating-point register and zero.
2. Writes the result to the FPSCR flags.

8.3.3 Restrictions

This instruction can optionally raise an Invalid Operation exception if either operand is any
type of NaN. It always raises an Invalid Operation exception if either operand is a signaling
NaN.

8.34 Condition flags

When this instruction writes the result to the FPSCR flags, the values are normally transferred to the
ARM flags by a subsequent VMRS instruction, see “VMRS” on page 185.

November 04, 2011 163
Texas Instruments Incorporated

Floating-Point

8.3.5 Examples

VCMP.F32 S4, #0.0VCMP.F32 S4, S2

164 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.4

8.4.1

8.4.2

8.4.3

VCVT, VCVTR between floating-point and integer

Converts a value in a register from floating-point to a 32-bit integer.

M3 | M4 | M4F
v

Applies to...

Syntax

VCVT{R}{cond}.Tm.F32 Sd, Sm

VCVT{cond}.F32.Tm Sd, Sm
where:

R
If Ris specified, the operation uses the rounding mode specified by the FPSCR. If Ris omitted.
the operation uses the Round towards Zero rounding mode.

cond
is an optional condition code, see “Conditional Execution” on page 32.

Tm
is the data type for the operand. It must be one of:

m S32 signed 32-bit value.
m U32 unsigned 32-bit value.

Sd, Sm
are the destination register and the operand register.

Operation

These instructions:

1. Either
m Converts a value in a register from floating-point value to a 32-bit integer.
m Converts from a 32-bit integer to floating-point value.

2. Places the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding mode,
but can optionally use the rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.

Restrictions

There are no restrictions.

November 04, 2011 165

Texas Instruments Incorporated

Floating-Point

8.44 Condition flags

These instructions do not change the flags.

166 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.5 VCVT between floating-point and fixed-point

Converts a value in a register from floating-point to and from fixed-point.

M3 | M4 | M4F

Applies to...
pp! v

8.5.1 Syntax

VCVT{cond}.Td.F32 Sd, Sd, #fbits

VCVT{cond}.F32.Td Sd, Sd, #fbits
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Td
is the data type for the fixed-point number. It must be one of:

m S16 signed 16-bit value.
m U16 unsigned 16-bit value.
m S32 signed 32-bit value.
m U32 unsigned 32-bit value.

Sd
is the destination register and the operand register.

fbits
is the number of fraction bits in the fixed-point number:

m If Td is S16 or U16, f bi t s must be in the range 0-16.

m |fTdis S32 or U32, f bi t s must be in the range 1-32.

8.5.2 Operation

These instructions:
1. Either
m Converts a value in a register from floating-point to fixed-point.
m Converts a value in a register from fixed-point to floating-point.
2. Places the result in a second register.

The floating-point values are single-precision.

November 04, 2011 167
Texas Instruments Incorporated

Floating-Point

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand
from the low-order bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register
width.

Unsigned conversions to fixed-point values zero-extend the result value to the destination register
width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The
fixed-point to floating-point operation uses the Round to Nearest rounding mode.

8.5.3 Restrictions

There are no restrictions.

8.54 Condition flags

These instructions do not change the flags.

168 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.6 VCVTB, VCVTT

Converts between a half-precision value and a single-precision value.

M3 | M4 | M4F
v

Applies to...

8.6.1 Syntax

VCVT{yHcond}.F32.F16 Sd, Sm

VCVT{y}{cond}.F16.F32 Sd, Sm

where:

y
Specifies which half of the operand register Smor destination register Sd is used for the operand

or destination:
m [fyis B, then the bottom half, bits [15:0], of Smor Sd is used.
m Ify is T, then the top half, bits [31:16], of Smor Sd is used.

cond
is an optional condition code, see “Conditional Execution” on page 32.

Sd
is the destination register.

Sm
is the operand register.

8.6.2 Operation
This instruction with the .F16 .32 suffix:

1. Converts the half-precision value in the top or bottom half of a single-precision. register to
single-precision.

2. Writes the result to a single-precision register.
This instruction with the .F32_F16 suffix:
1. Converts the value in a single-precision register to half-precision.

2. Writes the result into the top or bottom half of a single-precision register, preserving the other
half of the target register.

8.6.3 Restrictions

There are no restrictions.

November 04, 2011 169
Texas Instruments Incorporated

Floating-Point

8.6.4 Condition flags

These instructions do not change the flags.

170 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.7 VDIV

Divides floating-point values.

M3 | M4 | M4F
Applies to...

8.71 Syntax

VDIV{cond}.F32 {Sd,} Sn, Sm
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Sd
is the destination register.

Sn, Sm
are the operand registers.

8.7.2 Operation

This instruction:
1. Divides one floating-point value by another floating-point value.
2. Writes the result to the floating-point destination register.

8.7.3 Restrictions

There are no restrictions.

8.74 Condition flags

These instructions do not change the flags.

November 04, 2011 171
Texas Instruments Incorporated

Floating-Point

8.8 VFMA, VFMS
Floating-point Fused Multiply Accumulate and Subtract.

M3 | M4 | M4F
Applies to...

8.8.1 Syntax
VFMA{cond}.F32 {Sd, } Sn, Sm

VFMS{cond}.F32 {Sd, } Sn, Sm
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Sd
is the destination register.

Sn, Sm
are the operand registers.

8.8.2 Operation
The VFMA instruction:

1. Multiplies the floating-point values in the operand registers.
2. Accumulates the results into the destination register.

The result of the multiply is not rounded before the accumulation.
The VFMS instruction:

1. Negates the first operand register.

2. Multiplies the floating-point values of the first and second operand registers.
3. Adds the products to the destination register.

4. Places the results in the destination register.

The result of the multiply is not rounded before the addition.

8.8.3 Restrictions

There are no restrictions.

8.8.4 Condition flags

These instructions do not change the flags.

172 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.9 VFNMA, VFNMS
Floating-point Fused Negate Multiply Accumulate and Subtract.

M3 | M4 | M4F

Applies to...
pp! v

8.9.1 Syntax
VFNMA{cond}.F32 {Sd, } Sn, Sm

VFNMS{cond}.F32 {Sd, } Sn, Sm
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Sd
is the destination register.

Sn, Sm
are the operand registers.

8.9.2 Operation
The VFNMA instruction:

1. Negates the first floating-point operand register.

2. Multiplies the first floating-point operand with second floating-point operand.
3. Adds the negation of the floating -point destination register to the product
4. Places the result into the destination register.

The result of the multiply is not rounded before the addition.
The VENMS instruction:

1. Multiplies the first floating-point operand with second floating-point operand.

2. Adds the negation of the floating-point value in the destination register to the product.
3. Places the result in the destination register.

The result of the multiply is not rounded before the addition.

8.9.3 Restrictions

There are no restrictions.

8.94 Condition flags

These instructions do not change the flags.

November 04, 2011 173
Texas Instruments Incorporated

Floating-Point

8.10 VLDM
Floating-point Load Multiple.
M3 | M4 | M4F
Applies to...
v
8.10.1 Syntax
VLDM{rode}{cond}{.si ze} Rn{! }, |ist
where:
mode
is the addressing mode:
m /A Increment After. The consecutive addresses start at the address specified in Rn.
m DB Decrement Before. The consecutive addresses end just before
the address specified in Rn.
cond
is an optional condition code, see “Conditional Execution” on page 32.
size
is an optional data size specifier.
Rn
is the base register. The SP can be used.
!
is the command to the instruction to write a modified value back to Rn. This is required if mode
== DB, and is optional if node == 1A.
list
is the list of extension registers to be loaded, as a list of consecutively numbered doubleword
or singleword registers, separated by commas and surrounded by brackets.
8.10.2 Operation
This instruction loads:
m Multiple extension registers from consecutive memory locations using an address from an ARM
core register as the base address.
8.10.3 Restrictions
The restrictions are:
m If si ze is present, it must be equal to the size in bits, 32 or 64, of the registersin | i st .
m For the base address, the SP can be used. In the ARM instruction set, if ! is not specified the
PC can be used.
174 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

m | i st must contain at least one register. If it contains doubleword registers, it must not contain
more than 16 registers.

m [f using the Decrement Before addressing mode, the write back flag, ! , must be appended
to the base register specification.

8.10.4 Condition flags

These instructions do not change the flags.

November 04, 2011 175
Texas Instruments Incorporated

Floating-Point

8.11 VLDR

Loads a single extension register from memory.

M3 | M4 | M4F
Applies to...

8.11.1 Syntax
VLDR{cond}{.64} Dd, [Rn{# mi]
VLDR{cond}{.64} Dd, | abel
VLDR{cond}{.64} Dd, [PC, # nmi}]
VLDR{cond}{.32} sd, [Rn {. # mi]
VLDR{cond}{.32} Sd, | abel

VLDR{cond}{-32} Sd, [PC, #i mm]
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

64, 32
are the optional data size specifiers.

Dd
is the destination register for a doubleword load.

Sd
is the destination register for a singleword load.

Rn
is the base register. The SP can be used.

imm
is the + or - immediate offset used to form the address. Permitted address values are multiples
of 4 in the range 0 to 1020.

label
is the label of the literal data item to be loaded.

8.11.2 Operation

This instruction:

176 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

m Loads a single extension register from memory, using a base address from an ARM core register,
with an optional offset.

8.11.3 Restrictions

There are no restrictions.

8.11.4 Condition flags

These instructions do not change the flags.

November 04, 2011 177
Texas Instruments Incorporated

Floating-Point

8.12

8.12.1

8.12.2

8.12.3

8.124

VLMA, VLMS

Multiplies two floating-point values, and accumulates or subtracts the results.

M3 | M4 | M4F
Applies to...

Syntax

VLMA{cond}.F32 Sd, Sn, Sm

VLMS{cond}.F32 Sd, Sn, Sm
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Sd
is the destination floating-point value.

Sn, Sm
are the operand floating-point values.

Operation

The floating-point Multiply Accumulate instruction:

1. Multiplies two floating-point values.

2. Adds the results to the destination floating-point value.

The floating-point Multiply Subtract instruction:

1. Multiplies two floating-point values.

2. Subtracts the products from the destination floating-point value.
3. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

178

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

8.13 VMOV Immediate

Move floating-point Immediate.

M3 | M4 | M4F

Applies to...
pp! v

8.13.1 Syntax

VMOV{cond}.F32 Sd, # mm
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Sd
is the branch destination.

imm
is a floating-point constant.

8.13.2 Operation

This instruction copies a constant value to a floating-point register.

8.13.3 Restrictions

There are no restrictions.

8.13.4 Condition flags

These instructions do not change the flags.

November 04, 2011 179
Texas Instruments Incorporated

Floating-Point

8.14 VMOV Register

Copies the contents of one register to another.

M3 | M4 | M4F

Applies to...
pp! v

8.141 Syntax
VMOV{cond}.F64 Dd, Dm

VMOV{cond}.F32 Sd, Sm
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Dd
is the destination register, for a doubleword operation.

Dm
is the source register, for a doubleword operation.

Sd
is the destination register, for a singleword operation.

Sm
is the source register, for a singleword operation.

8.14.2 Operation

This instruction copies the contents of one floating-point register to another.

8.14.3 Restrictions

There are no restrictions

8.14.4 Condition flags

These instructions do not change the flags.

180 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.15 VMOV Scalar to ARM Core register

Transfers one word of a doubleword floating-point register to an ARM core register.

M3 | M4 | M4F

Applies to...
pp! v

8.15.1 Syntax

VMOV{cond} Rt , Dn[x]
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Rt
is the destination ARM core register.

Dn
is the 64-bit doubleword register.

Specifies which half of the doubleword register to use:
m If xis 0, use lower half of doubleword register
m If xis 1, use upper half of doubleword register.

8.15.2 Operation

This instruction transfers:

m one word from the upper or lower half of a doubleword floating-point register to an ARM core
register.

8.15.3 Restrictions
Rt cannot be PC or SP.

8.15.4 Condition flags

These instructions do not change the flags.

November 04, 2011 181
Texas Instruments Incorporated

Floating-Point

8.16

8.16.1

8.16.2

8.16.3

8.16.4

VMOV ARM Core register to single precision

Transfers a single-precision register to and from an ARM core register.

M3 | M4 | M4F

Applies to...
pp! v

Syntax

VMOV{cond} Sn, Rt

VMOV{cond} Rt , Sn
where:

cond

is an optional condition code, see “Conditional Execution” on page 32.

Sn
is the single-precision floating-point register.

Rt
is the ARM core register.

Operation

This instruction transfers:
m The contents of a single-precision register to an ARM core register.
m The contents of an ARM core register to a single-precision register.

Restrictions
Rt cannot be PC or SP.

Condition flags

These instructions do not change the flags.

182

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

8.17 VMOV Two ARM Core registers to two single precision
Transfers two consecutively numbered single-precision registers to and from two ARM core registers.
Applies to... MS Ma | MeF
v
8.17.1 Syntax
VMOV{cond} Sm, Sm., R, R 2
VMOV{cond} Rt , Rt2, Sm, Sm
where:
cond
is an optional condition code, see “Conditional Execution” on page 32.
Sm
is the first single-precision register.
Sm1
is the second single-precision register. This is the next single-precision register after Sm
Rt
is the ARM core register that Smis transferred to or from.
Rt2
is the The ARM core register that Simil is transferred to or from.
8.17.2 Operation
This instruction transfers:
m The contents of two consecutively numbered single-precision registers to two ARM core registers.
m The contents of two ARM core registers to a pair of single-precision registers.
8.17.3 Restrictions
The restrictions are:
m The floating-point registers must be contiguous, one after the other.
m The ARM core registers do not have to be contiguous.
m Rt cannot be PC or SP.
8.17.4 Condition flags
These instructions do not change the flags.
November 04, 2011 183

Texas Instruments Incorporated

Floating-Point

8.18 VMOV ARM Core register to scalar

Transfers one word to a floating-point register from an ARM core register.

M3 | M4 | M4F

Applies to...
pp! v

8.18.1 Syntax

VMOV{cond}{.32} Dd[x] , Rt
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

32
is an optional data size specifier.

Dd[x]
is the destination, where [x] defines which half of the doubleword is transferred, as follows:

m If xis O, the lower half is extracted
m If xis 1, the upper half is extracted.

Rt
is the source ARM core register.

8.18.2 Operation

This instruction transfers one word to the upper or lower half of a doubleword floating-point register
from an ARM core register.

8.18.3 Restrictions
Rt cannot be PC or SP.

8.18.4 Condition flags

These instructions do not change the flags.

184 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.19 VMRS

Move to ARM Core register from floating-point System Register.

M3 | M4 | M4F
Applies to...

8.19.1 Syntax
VMRS{cond} Rt, FPSCR

VMRS{cond} APSR nzcv, FPSCR
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Rt
is the destination ARM core register. This register can be R0-R14.

APSR_nzcv
Transfer floating-point flags to the APSR flags.

8.19.2 Operation

This instruction performs one of the following actions:
m Copies the value of the FPSCR to a general-purpose register.
m Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags..

8.19.3 Restrictions
Rt cannot be PC or SP.

8.19.4 Condition flags

These instructions optionally change the flags: N, Z, C, V

November 04, 2011 185
Texas Instruments Incorporated

Floating-Point

8.20 VMSR

Move to floating-point System Register from ARM Core register.

M3 | M4 | M4F
Applies to...

8.20.1 Syntax

VMSR{cond} FPSCR, Rt
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Rt
is the general-purpose register to be transferred to the FPSCR.

8.20.2 Operation

This instruction moves the value of a general-purpose register to the FPSCR. See the Floating Point
Status Control Register for more information.

8.20.3 Restrictions

The restrictions are:
m Rt cannot be PC or SP.

8.20.4 Condition flags
This instruction updates the FPSCR.

186 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.21 VMUL
Floating-point Multiply.

M3 | M4 | M4F
Applies to...

8.21.1 Syntax

VMUL{cond}.F32 {Sd,} Sn, Sm
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Sd
is the destination floating-point value.

Sn, Sm
are the operand floating-point values.

8.21.2 Operation

This instruction:
1. Multiplies two floating-point values.
2. Places the results in the destination register.

8.21.3 Restrictions

There are no restrictions.

8.21.4 Condition flags

These instructions do not change the flags.

November 04, 2011 187
Texas Instruments Incorporated

Floating-Point

8.22 VNEG
Floating-point Negate.

M3 | M4 | M4F
Applies to...

8.22.1 Syntax

VNEG{cond}.F32 Sd, Sm
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Sd
is the destination floating-point value.

Sm
is the operand floating-point value.

8.22.2 Operation

This instruction:

1. Negates a floating-point value.

2. Places the results in a second floating-point register.
The floating-point instruction inverts the sign bit.

8.22.3 Restrictions

There are no restrictions.

8.22.4 Condition flags

These instructions do not change the flags.

188 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.23 VNMLA, VNMLS, VNMUL

Floating-point multiply with negation followed by add or subtract.

M3 | M4 | M4F

Applies to...
pp! v

8.23.1 Syntax

VNMLA{cond}.F32 Sd, Sn, Sm

VNMLS{cond}.F32 Sd, Sn, Sm

VNMUL{cond}.F32 {Sd,} Sn, Sm
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Sd
is the destination floating-point register.

Sn, Sm
are the operand floating-point registers.

8.23.2 Operation
The VNMLA instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the negation of the
product.

3. Writes the result back to the destination register.

The VNMLS instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the product.
3. writes the result back to the destination register.

The VNMUL instruction:

1. Multiplies together two floating-point register values.

2. Writes the negation of the result to the destination register.

November 04, 2011 189
Texas Instruments Incorporated

Floating-Point

8.23.3 Restrictions

There are no restrictions.

8.23.4 Condition flags

These instructions do not change the flags.

190 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.24 VPOP

Floating-point extension register Pop.

M3 | M4 | M4F
Applies to...

8.24.1 Syntax

VPOP{cond}{.si ze} |ist
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

size
is an optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the
registersinl i st.

list

is a list of extension registers to be loaded, as a list of consecutively numbered doubleword or
singleword registers, separated by commas and

surrounded by brackets.

8.24.2 Operation

This instruction loads multiple consecutive extension registers from the stack.

8.24.3 Restrictions

The list must contain at least one register, and not more than sixteen registers.

8.24.4 Condition flags

These instructions do not change the flags.

November 04, 2011 191
Texas Instruments Incorporated

Floating-Point

8.25

8.25.1

8.25.2

8.25.3

8.25.4

VPUSH

Floating-point extension register Push.

M3 | M4 | M4F
Applies to...

Syntax

VPUSH{cond}{.si ze} li st
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

size
is an optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the
registersinl i st.

list
is a list of the extension registers to be stored, as a list of consecutively numbered doubleword
or singleword registers, separated by commas and surrounded by brackets.

Operation

This instruction:
m Stores multiple consecutive extension registers to the stack.

Restrictions

The restrictions are:

m | i st must contain at least one register, and not more than sixteen.

Condition flags

These instructions do not change the flags.

192

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.26 VSQRT
Floating-point Square Root.

M3 | M4 | M4F
Applies to...

8.26.1 Syntax

VSQRT{cond}.F32 Sd, Sm
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Sd
is the destination floating-point value.

Sm
is the operand floating-point value.

8.26.2 Operation

This instruction:
m Calculates the square root of the value in a floating-point register.
m Writes the result to another floating-point register.

8.26.3 Restrictions

There are no restrictions.

8.26.4 Condition flags

These instructions do not change the flags.

November 04, 2011 193
Texas Instruments Incorporated

Floating-Point

8.27 VSTM
Floating-point Store Multiple.
M3 | M4 | M4F
Applies to...
v
8.27.1 Syntax
VSTM{rnode}{cond}{.si ze} Rn{! }, |ist
where:
mode
is the addressing mode:
m |A Increment After. The consecutive addresses start at the address specified in Rn. This is
the default and can be omitted.
m DB Decrement Before. The consecutive addresses end just before the address specified in
Rn.
cond
is an optional condition code, see “Conditional Execution” on page 32.
size
is an optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of
theregistersin | i st .
Rn
is the base register. The SP can be used.
!
is the function that causes the instruction to write a modified value back to Rn. Required if mode
== DB.
list
is a list of the extension registers to be stored, as a list of consecutively numbered doubleword
or singleword registers, separated by commas and surrounded by brackets.
8.27.2 Operation
This instruction:
m Stores multiple extension registers to consecutive memory locations using a base address from
an ARM core register.
8.27.3 Restrictions
The restrictions are:
m | i st must contain at least one register. If it contains doubleword registers it must not contain
more than 16 registers.
194 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

m Use of the PC as Rn is deprecated.
8.27.4 Condition flags

These instructions do not change the flags.

November 04, 2011 195
Texas Instruments Incorporated

Floating-Point

8.28

8.28.1

8.28.2

8.28.3

8.28.4

VSTR

Floating-point Store.

M3 | M4 | M4F
Applies to...

Syntax

VSTR{cond}{.32} Sd, [Rn{, #i mi]

VSTR{cond}{.64} Dd, [Rn{, # mi}]
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

32, 64
are the optional data size specifiers.

Sd
is the source register for a singleword store.

Dd
is the source register for a doubleword store.

Rn
is the base register. The SP can be used.

imm
is the + or - immediate offset used to form the address. Values are multiples of 4 in the range
0-1020. i mmcan be omitted, meaning an offset of +0.

Operation

This instruction:

m Stores a single extension register to memory, using an address from an ARM core register, with
an optional offset, defined in i nm

Restrictions

The restrictions are:

m The use of PC for Rn is deprecated.

Condition flags

These instructions do not change the flags.

196

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

8.29

8.29.1

8.29.2

8.29.3

8.29.4

8.29.5

8.29.6

VSuB
Floating-point Subtract.

M3 | M4 | M4F
Applies to...

Syntax

VSUB{cond}.F32 {Sd,} Sn, Sm
where:

cond
is an optional condition code, see “Conditional Execution” on page 32.

Sd
is the destination floating-point value.

Sn, Sm
are the operand floating-point value.

Operation

This instruction:
1. Subtracts one floating-point value from another floating-point value.

2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

Operation

WF1 is a hint instruction that suspends execution until one of the following events occurs:
m a non-masked interrupt occurs and is taken
m an interrupt masked by PRIMASK becomes pending

m a Debug Entry request.

Condition flags

This instruction does not change the flags.

November 04, 2011 197

Texas Instruments Incorporated

Floating-Point

8.29.7 Examples

WFI ; Wait for interrupt

198 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

9 Branch and Control Instructions

Table 9-1 on page 199 shows the branch and control instructions:

Table 9-1. Branch and Control Instructions

Mnemonic Brief Description See Page
B Branch 200
BL Branch with link 200
BLX Branch indirect with link 200
BX Branch indirect 200
CBNz Compare and branch if non-zero 202
CBz Compare and branch if zero 202
1T If-Then 203
TBB Table branch byte 206
TBH Table branch halfword 206
November 04, 2011 199

Texas Instruments Incorporated

Branch and Control Instructions

9.1

9.1.1

9.1.2

B, BL, BX, and BLX

Branch instructions.

M3 | M4 | M4F
v v v

Applies to...

Syntax
B{cond} | abel
BL{cond} | abel
BX{cond} Rm
BLX{cond} Rm
where:

B
Is branch (immediate).

BL
Is branch with link (immediate).

BX
Is branch indirect (register).

BLX
Is branch indirect with link (register).

cond
Is an optional condition code. See Table 1-2 on page 33.

label
Is a PC-relative expression. See “PC-Relative Expressions” on page 32.

Rm
Is a register that indicates an address to branch to. Bit[0] of the value in Rm must be 1, but the
address to branch to is created by changing bit[0] to 0.

Operation

All these instructions cause a branch to label, or to the address indicated in Rm In addition:

m The BL and BLX instructions write the address of the next instruction to the Link Register (LR),
register R14. See the Stellaris® Data Sheet for more on LR.

m The BX and BLX instructions cause a UsageFault exception if bit[0] of Rm is 0.

B cond label is the only conditional instruction that can be either inside or outside an 1T block. All
other branch instructions must be conditional inside an 1T block, and must be unconditional outside
the IT block. See 203.

Table 9-2 on page 201 shows the ranges for the various branch instructions.

200

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

Table 9-2. Branch Ranges

Instruction Branch Range®

B label -16 MB to +16 MB
Bcond label (outside IT block) -1 MB to +1 MB
Bcond label (inside 1T block) -16 MB to +16 MB
BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

a. You might have to use the W suffix to get the maximum branch range. See “Instruction Width Selection” on page 34.
9.1.3 Restrictions

The restrictions are:

m Do not use PC in the BLX instruction.

m For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target
address created by changing bit[0] to 0.

m When any of these instructions is inside an 1T block, it must be the last instruction of the IT
block.

Note: B cond is the only conditional instruction that is not required to be inside an IT block.
However, it has a longer branch range when it is inside an 1T block.

9.1.4 Condition Flags

These instructions do not change the flags.

9.1.5 Examples

B loopA ; Branch to loopA.

BLE ng ; Conditionally branch to label ng.

B.W target ; Branch to target within 16MB range.

BEQ target ; Conditionally branch to target.

BEQ.W target ; Conditionally branch to target within 1MB.

BL funC ; Branch with link (Call) to function funC, return address
; stored in LR.
BX LR ; Return from function call.
BXNE RO ; Conditionally branch to address stored in RO.
BLX RO ; Branch with link and exchange (Call) to a address stored
; In RO.
November 04, 2011 201

Texas Instruments Incorporated

Branch and Control Instructions

9.2 CBZ and CBNZ

Compare and Branch if Zero, Compare and Branch if Non-Zero.

M3 | M4 | M4F
v v v

Applies to...

9.21 Syntax
CBZ Rn, | abel
CBNZ Rn, | abel
where:

Rn
Is the register holding the operand.

label
Is the branch destination.

9.2.2 Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the
number of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BNE label

9.2.3 Restrictions

The restrictions are:
m Rn must be in the range of RO to R7.
m The branch destination must be within 4 to 130 bytes after the instruction.

m These instructions must not be used inside an 1T block.

9.24 Condition Flags

These instructions do not change the flags.

9.2.5 Examples

IS zero.
is not zero.

CBz R5, target ; Forward branch

if R5
CBNZ RO, target ; Forward branch if RO

202 November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

9.3 IT

If-Then.

M3 | M4 | M4F

Applies to...

v v v
9.31 Syntax

IT{x{y{z}}} cond

where:

X

Specifies the condition switch for the second instruction in the I T block.

y

Specifies the condition switch for the third instruction in the I T block.
z
Specifies the condition switch for the fourth instruction in the 1T block.
cond
Specifies the condition for the first instruction in the 1T block.
The condition switch for the second, third and fourth instruction in the 1T block can be either:
T
Then. Applies the condition cond to the instruction.
E
Else. Applies the inverse condition of cond to the instruction.

Note: Itis possible to use AL (the always condition) for cond in an IT instruction. If this is done,
all of the instructions in the IT block must be unconditional, and each of x, y, and z must
be T or omitted but not E.

9.3.2 Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the

same, or some of them can be the logical inverse of the others. The conditional instructions following

the 1T instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond}

part of their syntax.

Note: Your assembler might be able to generate the required IT instructions for conditional
instructions automatically, so that you do not need to write them yourself. See your assembler
documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an

IT block. Such an exception results in entry to the appropriate exception handler, with suitable

return information in LR and stacked PSR. See the PSR register in the Stellaris® Data Sheet for

more information.
November 04, 2011 203

Texas Instruments Incorporated

Branch and Control Instructions

Instructions designed for use for exception returns can be used as normal to return from the exception,
and execution of the 1T block resumes correctly. This is the only way that a PC-modifying instruction
is permitted to branch to an instruction in an 1T block.

9.3.3 Restrictions
The following instructions are not permitted in an IT block:
m IT
m CBZ and CBNZ
m CPSID and CPSIE
Other restrictions when using an IT block are:
m A branch or any instruction that modifies the PC must either be outside an 1T block or must be
the last instruction inside the IT block. These are:
— ADD PC, PC, Rm
— MOV PC, Rm
— B, BL, BX, BLX
— any LDM, LDR, or POP instruction that writes to the PC
— TBB and TBH
m Do not branch to any instruction inside an 1T block, except when returning from an exception
handler.
m All conditional instructions except Bcond must be inside an I T block. Bcond can be either outside
or inside an IT block but has a larger branch range if it is inside one.
m Each instruction inside the IT block must specify a condition code suffix that is either the same
or the logical inverse.
Note: Your assembler might place extra restrictions on the use of I T blocks, such as prohibiting
the use of assembler directives within them.
9.34 Condition Flags
This instruction does not change the flags.
9.3.5 Example
ITTE NE ; Next 3 instructions are conditional.
ANDNE RO, RO, R1 ; ANDNE does not update condition flags.
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags.
MOVEQ R2, R3 ; Conditional move.
CmMP RO, #9 ; Convert RO hex value (0 to 15) into ASCII
; (F0F-79%, TAT-TFT).
ITE GT ; Next 2 instructions are conditional.
ADDGT R1, RO, #55 ; Convert OxA -> "A".
ADDLE R1, RO, #48 ; Convert OxO0 -> "0-.
204 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

IT
ADDGT

ITTEE
MOVEQ
ADDEQ
ANDNE
BNE. W

IT
ADD

GT

R1, R1,
EQ

RO, R1
R2, R2,
R3, R3,
dloop
NE

RO, RO,

#1

#10
#1

R1

IT block with only one conditional instruction.
Increment R1 conditionally.

; Next 4 instructions are conditional.
; Conditional move.

; Conditional add.

; Conditional AND.

Branch instruction can only be used in the last
instruction of an IT block.

; Next instruction is conditional.
; Syntax error: no condition code used in IT block.

November 04, 2011

205

Texas Instruments Incorporated

Branch and Control Instructions

9.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.
M3 | M4 | M4F
Applies to...
v v v
941 Syntax
TBB [Rn, Rm]
TBH [Rn, Rm, LSL #1]
where:
Rn
Is the register containing the address of the table of branch lengths.
If Rn is the Program Counter (PC) register, R15, then the address of the table is the address
of the byte immediately following the TBB or TBH instruction.
Rm
Is the index register. This contains an index into the table. For halfword tables, LSL #1 doubles
the value in Rmto form the right offset into the table.
9.4.2 Operation
These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB,
or halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into the
table. For TBB the branch offset is twice the unsigned value of the byte returned from the table. For
TBH, the branch offset is twice the unsigned value of the halfword returned from the table. The
branch occurs to the address at that offset from the address of the byte immediately after the TBB
or TBH instruction.
9.4.3 Restrictions
The restrictions are:
m Rn must not be SP.
m Rmmust not be SP and must not be PC.
m When any of these instructions is used inside an IT block, it must be the last instruction of the
IT block.
944 Condition Flags
These instructions do not change the flags.
9.4.5 Examples
ADR.W RO, BranchTable Byte
TBB [RO, R1] ; R1 is the index, RO is the base address of the
; branch table.
206 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

Casel

; an instruction sequence follows
Case2

; an instruction sequence follows
Case3

; an instruction sequence follows
BranchTable_ Byte

DCB 0 ; Casel offset calculation.

DCB ((Case2-Casel)/2) ; Case2 offset calculation.
DCB ((Case3-Casel)/2) ; Case3 offset calculation.

TBH [PC, R1, LSL #1] ; R1 is the index, PC is used as base of the
; branch table.

BranchTable H

DCI ((CaseA - BranchTable_H)/2) ; CaseA offset calculation.
DCI ((CaseB - BranchTable_H)/2) ; CaseB offset calculation.
DCI ((CaseC - BranchTable_H)/2) ; CaseC offset calculation.
CaseA

; an instruction sequence follows

CaseB

; an instruction sequence follows

CaseC

; an instruction sequence follows

November 04, 2011 207
Texas Instruments Incorporated

Miscellaneous Instructions

10

Miscellaneous Instructions

Table 10-1 on page 208 shows the remaining Cortex-M3/M4F instructions:

Table 10-1. Miscellaneous Instructions

Mnemonic Brief Description See Page
BKPT Breakpoint 209
CPSID Change processor state, disable interrupts 210
CPSIE Change processor state, enable interrupts 210
DMB Data memory barrier 211
DSB Data synchronization barrier 212
1SB Instruction synchronization barrier 213
MRS Move from special register to register 214
MSR Move from register to special register 215
NOP No operation 216
SEV Send event 217
SVC Supervisor call 218
WFE Wait for event 219
WFI1 Wait for interrupt 220

208

Texas Instruments Incorporated

November 04, 2011

Cortex-M3/M4F Instruction Set

10.1 BKPT
Breakpoint.
M3 | M4 | M4F
Applies to...
v v v
10.1.1 Syntax
BKPT #i mm
where:
imm
Is an expression evaluating to an integer in the range 0-255 (8-bit value).
10.1.2 Operation
The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to
investigate system state when the instruction at a particular address is reached.
i mmis ignored by the processor. If required, a debugger can use it to store additional information
about the breakpoint.
The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected
by the condition specified by the IT instruction.
10.1.3 Condition Flags
This instruction does not change the flags.
10.1.4 Examples
BKPT OxAB ; Breakpoint with immediate value set to OxAB (debugger can
; extract the immediate value by locating it using the PC).
November 04, 2011 209

Texas Instruments Incorporated

Miscellaneous Instructions

10.2

10.2.1

10.2.2

10.2.3

10.2.4

10.2.5

CPS

Change Processor State.

M3 | M4 | M4F

Applies to...

Syntax

CPSeffect iflags
where:

effect
Is one of:

IE
Clears the special-purpose register.

ID
Sets the special-purpose register.

iflags
Is a sequence of one or more flags:

i
Set or clear the Priority Mask Register (PRIMASK).

f
Set or clear the Fault Mask Register (FAULTMASK).

Operation

CPS changes the PRIMASK and FAULTMASK special register values. See the Stellaris® Data
Sheet for more information about these registers.

Restrictions

The restrictions are:
m Use CPS only from privileged software; it has no effect if used in unprivileged software.

m CPS cannot be conditional and so must not be used inside an 1T block.

Condition Flags

This instruction does not change the flags.

Examples

CPSID
CPSID
CPSIE
CPSIE

; Disable interrupts and configurable fault handlers (set PRIMASK).
; Disable interrupts and all fault handlers (set FAULTMASK).

; Enable interrupts and configurable fault handlers (clear PRIMASK).
; Enable interrupts and fault handlers (clear FAULTMASK).

e et Bl

210

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

10.3 DMB
Data Memory Barrier.
M3 | M4 | M4F
Applies to...
v v v
10.3.1 Syntax
DMB{cond}
where:
cond
Is an optional condition code. See Table 1-2 on page 33.
10.3.2 Operation
DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear before
the DMB instruction (in program order) are completed before any explicit memory accesses that
appear after the DMB instruction (in program order). DMB does not affect the ordering or execution
of instructions that do not access memory.
10.3.3 Condition Flags
This instruction does not change the flags.
10.3.4 Examples
DMB ; Data Memory Barrier
November 04, 2011 211

Texas Instruments Incorporated

Miscellaneous Instructions

10.4 DSB
Data Synchronization Barrier.
M3 | M4 | M4F
Applies to...
v v v
10.4.1 Syntax
DSB{cond}
where:
cond
Is an optional condition code. See Table 1-2 on page 33.
10.4.2 Operation
DSB acts as a special data synchronization memory barrier. Instructions that come after DSB (in
program order) do not execute until the DSB instruction completes. The DSB instruction completes
when all explicit memory accesses before it complete.
10.4.3 Condition Flags
This instruction does not change the flags.
10.4.4 Examples
DSB ; Data Synchronization Barrier
212 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

10.5 ISB
Instruction Synchronization Barrier.
M3 | M4 | M4F
Applies to...
v v v
10.5.1 Syntax
I1SB{cond}
where:
cond
Is an optional condition code. See Table 1-2 on page 33.
10.5.2 Operation
ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that
all instructions following the 1SB are fetched from cache or memory again, after the 1SB instruction
has been completed.
10.5.3 Condition Flags
This instruction does not change the flags.
10.5.4 Examples
ISB ; Instruction Synchronization Barrier
November 04, 2011 213

Texas Instruments Incorporated

Miscellaneous Instructions

10.6

10.6.1

10.6.2

10.6.3

10.6.4

10.6.5

MRS

Move the contents of a special register to a general-purpose register.

M3 | M4 | M4F

Applies to...

Syntax
MRS{cond} Rd, spec_reg
where:

cond
Is an optional condition code. See Table 1-2 on page 33.

Rd
Is the destination register.

spec_reg
Can be any of the following special registers: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR,
PSR, MSP, PSP, PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.
Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for
example to clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be
saved, including relevant PSR contents. Similarly, the state of the process being swapped in must
also be restored. These operations use MRS in the state-saving instruction sequence and MSR in
the state-restoring instruction sequence.

Note: BASEPRI MAXis an alias of BASEPRI when used with the MRS instruction.
See also “MSR” on page 215.

Restrictions
Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

MRS RO, PRIMASK ; Read PRIMASK value and write it to RO.

214

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

10.7

10.7.1

10.7.2

10.7.3

10.7.4

10.7.5

MSR

Move the contents of a general-purpose register to a special register.

M3 | M4 | M4F

Applies to...

Syntax
MSR{cond} spec_reg, Rn
where:

cond
Is an optional condition code. See Table 1-2 on page 33.

Rn
Is the source register.

spec_reg

Can be any of: APSR, | PSR, EPSR, | EPSR, | APSR, EAPSR, PSR, M5P, PSP, PRI MASK, BASEPRI ,
BASEPRI _MAX, FAULTMASK, or CONTROL.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only
access the Application Program Status Register (APSR) (see APSR in the Stellaris® Data Sheet).
Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.
Note: When you write to BASEPRI _ MAX, the instruction writes to BASEPRI only if either:

m Rnis non-zero and the current BASEPRI value is 0.

m Rnis non-zero and less than the current BASEPRI value.

See also “MRS” on page 214.

Restrictions

Rn must not be SP and must not be PC.

Condition Flags

This instruction updates the flags explicitly based on the value in Rn.

Examples

MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register.

November 04, 2011 215

Texas Instruments Incorporated

Miscellaneous Instructions

10.8 NOP
No Operation.
M3 | M4 | M4F
Applies to...
v v v
10.8.1 Syntax
NOP{cond}
where:
cond
Is an optional condition code. See Table 1-2 on page 33.
10.8.2 Operation
NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it
from the pipeline before it reaches the execution stage.
Use NOP for padding, for example to place the following instruction on a 64-bit boundary.
10.8.3 Condition Flags
This instruction does not change the flags.
10.8.4 Examples
NOP ; No Operation
216 November 04, 2011

Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

10.9

10.9.1

10.9.2

10.9.3

10.9.4

SEV
Send Event.

M3

M4

M4F

Applies to...

Syntax
SEV{cond}
where:

cond

Is an optional condition code. See Table 1-2 on page 33.

Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor
system. It also sets the one-bit event register to 1. See "Power Management" in the Stellaris® Data

Sheet.

Condition Flags

This instruction does not change the flags.

Examples

SEV ; Send Event

November 04, 2011

Texas Instruments Incorporated

217

Miscellaneous Instructions

10.10

10.10.1

10.10.2

10.10.3

10.10.4

SVC

Supervisor Call.

M3 | M4 | M4F

Applies to...

Syntax
SVC{cond} #i mm
where:

cond
Is an optional condition code. See Table 1-2 on page 33.

imm
Is an expression evaluating to an integer in the range 0-255 (8-bit value).

Operation
The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine
what service is being requested.

Condition Flags

This instruction does not change the flags.

Examples

SVC 0x32 ; Supervisor Call (SVC handler can extract the immediate value
; by locating it via the stacked PC).

218

November 04, 2011
Texas Instruments Incorporated

Cortex-M3/M4F Instruction Set

10.11 WFE
Wait For Event.

M3 | M4 | M4F

Applies to...

10.11.1 Syntax
WFE{cond}
where:

cond
Is an optional condition code. See Table 1-2 on page 33.

10.11.2 Operation
WFE is a hint instruction.

If the one-bit event register is 0, WFE suspends execution until one of the following events occurs:

m An exception, unless masked by the exception mask registers (PRIMASK, FAULTMASK, and
BASEPRI) or the current priority level.

m An exception enters the Pending state, if SEVONPEND in the System Control Register (SCR)
is set.

m A Debug Entry request, if Debug is enabled.

m An event signaled by a peripheral or another processor in a multiprocessor system using the
SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information, see "Power Management" in the Stellaris® Data Sheet.

10.11.3 Condition Flags

This instruction does not change the flags.

10.11.4 Examples

WFE ; Wait for Event

November 04, 2011 219
Texas Instruments Incorporated

Miscellaneous Instructions

10.12 WFI
Wait for Interrupt.

M3 | M4 | M4F
Applies to...

10.12.1 Syntax
WFI1{cond}
where:

cond
Is an optional condition code. See Table 1-2 on page 33.

10.12.2 Operation

WF1 is a hint instruction that suspends execution until one of the following events occurs:
m An exception.
m A Debug Entry request, regardless of whether Debug is enabled.

10.12.3 Condition Flags

This instruction does not change the flags.

10.12.4 Examples

WFI ; Wait for Interrupt

220 November 04, 2011
Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work right,
or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from Tl to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Audio www.ti.com/audio Communications and Telecom www.ti.com/communications
Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers
Data Converters dataconverter.ti.com Consumer Electronics Www.ti.com/consumer-apps
DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy
DSP dsp.ti.com Industrial www.ti.com/industrial
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Security www.ti.com/security
Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

	Cortex-M3/M4F Instruction Set
	Table of Contents
	List of Figures
	List of Tables
	List of Examples

	1. Introduction
	1.1. Instruction Set Summary
	1.2. About the Instruction Descriptions
	1.2.1. Operands
	1.2.2. Restrictions When Using the PC or SP
	1.2.3. Flexible Second Operand
	1.2.3.1. Constant
	1.2.3.2. Register With Optional Shift

	1.2.4. Shift Operations
	1.2.4.1. ASR
	1.2.4.2. LSR
	1.2.4.3. LSL
	1.2.4.4. ROR
	1.2.4.5. RRX

	1.2.5. Address Alignment
	1.2.6. PC‑Relative Expressions
	1.2.7. Conditional Execution
	1.2.7.1. Condition Flags
	1.2.7.2. Condition Code Suffixes

	1.2.8. Instruction Width Selection

	2. Memory Access Instructions
	2.1. ADR
	2.1.1. Syntax
	2.1.2. Operation
	2.1.3. Restrictions
	2.1.4. Condition Flags
	2.1.5. Examples

	2.2. LDR and STR (Immediate Offset)
	2.2.1. Syntax
	2.2.2. Operation
	2.2.3. Restrictions
	2.2.4. Condition Flags
	2.2.5. Examples

	2.3. LDR and STR (Register Offset)
	2.3.1. Syntax
	2.3.2. Operation
	2.3.3. Restrictions
	2.3.4. Condition Flags
	2.3.5. Examples

	2.4. LDR and STR (Unprivileged Access)
	2.4.1. Syntax
	2.4.2. Operation
	2.4.3. Restrictions
	2.4.4. Condition Flags
	2.4.5. Examples

	2.5. LDR (PC‑Relative)
	2.5.1. Syntax
	2.5.2. Operation
	2.5.3. Restrictions
	2.5.4. Condition Flags
	2.5.5. Examples

	2.6. LDM and STM
	2.6.1. Syntax
	2.6.2. Operation
	2.6.3. Restrictions
	2.6.4. Condition Flags
	2.6.5. Examples
	2.6.6. Incorrect Examples

	2.7. PUSH and POP
	2.7.1. Syntax
	2.7.2. Operation
	2.7.3. Restrictions
	2.7.4. Condition Flags
	2.7.5. Examples

	2.8. LDREX and STREX
	2.8.1. Syntax
	2.8.2. Operation
	2.8.3. Restrictions
	2.8.4. Condition Flags
	2.8.5. Examples

	2.9. CLREX
	2.9.1. Syntax
	2.9.2. Operation
	2.9.3. Condition Flags
	2.9.4. Examples

	3. General Data Processing Instructions
	3.1. ADD, ADC, SUB, SBC, and RSB
	3.1.1. Syntax
	3.1.2. Operation
	3.1.3. Restrictions
	3.1.4. Condition Flags
	3.1.5. Examples
	3.1.6. Multiword Arithmetic Examples

	3.2. AND, ORR, EOR, BIC, and ORN
	3.2.1. Syntax
	3.2.2. Operation
	3.2.3. Restrictions
	3.2.4. Condition Flags
	3.2.5. Examples

	3.3. ASR, LSL, LSR, ROR, and RRX
	3.3.1. Syntax
	3.3.2. Operation
	3.3.3. Restrictions
	3.3.4. Condition Flags
	3.3.5. Examples

	3.4. CLZ
	3.4.1. Syntax
	3.4.2. Operation
	3.4.3. Restrictions
	3.4.4. Condition Flags
	3.4.5. Examples

	3.5. CMP and CMN
	3.5.1. Syntax
	3.5.2. Operation
	3.5.3. Restrictions
	3.5.4. Condition Flags
	3.5.5. Examples

	3.6. MOV and MVN
	3.6.1. Syntax
	3.6.2. Operation
	3.6.3. Restrictions
	3.6.4. Condition Flags
	3.6.5. Example

	3.7. MOVT
	3.7.1. Syntax
	3.7.2. Operation
	3.7.3. Restrictions
	3.7.4. Condition Flags
	3.7.5. Examples

	3.8. REV, REV16, REVSH, and RBIT
	3.8.1. Syntax
	3.8.2. Operation
	3.8.3. Restrictions
	3.8.4. Condition Flags
	3.8.5. Examples

	3.9. SADD16 and SADD8
	3.9.1. Syntax
	3.9.2. Operation
	3.9.3. Restrictions
	3.9.4. Condition flags
	3.9.5. Examples

	3.10. SHADD16 and SHADD8
	3.10.1. Syntax
	3.10.2. Operation
	3.10.3. Restrictions
	3.10.4. Condition flags
	3.10.5. Examples

	3.11. SHASX and SHSAX
	3.11.1. Syntax
	3.11.2. Operation
	3.11.3. Restrictions
	3.11.4. Condition flags
	3.11.5. Examples

	3.12. SHSUB16 and SHSUB8
	3.12.1. Syntax
	3.12.2. Operation
	3.12.3. Restrictions
	3.12.4. Condition flags
	3.12.5. Examples

	3.13. SSUB16 and SSUB8
	3.13.1. Syntax
	3.13.2. Operation
	3.13.3. Restrictions
	3.13.4. Condition flags
	3.13.5. Examples

	3.14. SASX and SSAX
	3.14.1. Syntax
	3.14.2. Operation
	3.14.3. Restrictions
	3.14.4. Condition flags
	3.14.5. Examples

	3.15. TST and TEQ
	3.15.1. Syntax
	3.15.2. Operation
	3.15.3. Restrictions
	3.15.4. Condition Flags
	3.15.5. Examples

	3.16. UADD16 and UADD8
	3.16.1. Syntax
	3.16.2. Operation
	3.16.3. Restrictions
	3.16.4. Condition flags
	3.16.5. Examples

	3.17. UASX and USAX
	3.17.1. Syntax
	3.17.2. Operation
	3.17.3. Restrictions
	3.17.4. Condition flags
	3.17.5. Examples

	3.18. UHADD16 and UHADD8
	3.18.1. Syntax
	3.18.2. Operation
	3.18.3. Restrictions
	3.18.4. Condition flags
	3.18.5. Examples

	3.19. UHASX and UHSAX
	3.19.1. Syntax
	3.19.2. Operation
	3.19.3. Restrictions
	3.19.4. Condition flags
	3.19.5. Examples

	3.20. UHSUB16 and UHSUB8
	3.20.1. Syntax
	3.20.2. Operation
	3.20.3. Restrictions
	3.20.4. Condition flags
	3.20.5. Examples

	3.21. SEL
	3.21.1. Syntax
	3.21.2. Operation
	3.21.3. Restrictions
	3.21.4. Condition flags
	3.21.5. Examples

	3.22. USAD8
	3.22.1. Syntax
	3.22.2. Operation
	3.22.3. Restrictions
	3.22.4. Condition flags
	3.22.5. Examples

	3.23. USADA8
	3.23.1. Syntax
	3.23.2. Operation
	3.23.3. Restrictions
	3.23.4. Condition flags
	3.23.5. Examples

	3.24. USUB16 and USUB8
	3.24.1. Syntax
	3.24.2. Operation
	3.24.3. Restrictions
	3.24.4. Condition flags
	3.24.5. Examples

	4. Multiply and Divide Instructions
	4.1. MUL, MLA, and MLS
	4.1.1. Syntax
	4.1.2. Operation
	4.1.3. Restrictions
	4.1.4. Condition Flags
	4.1.5. Examples

	4.2. SMLA and SMLAW
	4.2.1. Syntax
	4.2.2. Operation
	4.2.3. Restrictions
	4.2.4. Condition flags
	4.2.5. Examples

	4.3. SMLAD
	4.3.1. Syntax
	4.3.2. Operation
	4.3.3. Restrictions
	4.3.4. Condition flags
	4.3.5. Examples

	4.4. SMLAL and SMLALD
	4.4.1. Syntax
	4.4.2. Operation
	4.4.3. Restrictions
	4.4.4. Condition flags
	4.4.5. Examples

	4.5. SMLSD and SMLSLD
	4.5.1. Syntax
	4.5.2. Operation
	4.5.3. Restrictions
	4.5.4. Condition flags
	4.5.5. Examples

	4.6. SMMLA and SMMLS
	4.6.1. Syntax
	4.6.2. Operation
	4.6.3. Restrictions
	4.6.4. Condition flags
	4.6.5. Examples

	4.7. SMMUL
	4.7.1. Syntax
	4.7.2. Operation
	4.7.3. Restrictions
	4.7.4. Condition flags
	4.7.5. Examples

	4.8. SMUAD and SMUSD
	4.8.1. Syntax
	4.8.2. Operation
	4.8.3. Restrictions
	4.8.4. Condition flags
	4.8.5. Examples

	4.9. SMUL and SMULW
	4.9.1. Syntax
	4.9.2. Operation
	4.9.3. Restrictions
	4.9.4. Examples

	4.10. UMULL, UMAAL, UMLAL, SMULL, and SMLAL
	4.10.1. Syntax
	4.10.2. Operation
	4.10.3. Restrictions
	4.10.4. Condition flags
	4.10.5. Examples

	4.11. SDIV and UDIV
	4.11.1. Syntax
	4.11.2. Operation
	4.11.3. Restrictions
	4.11.4. Condition Flags
	4.11.5. Examples

	5. Saturating Instructions
	5.1. SSAT and USAT
	5.1.1. Syntax
	5.1.2. Operation
	5.1.3. Restrictions
	5.1.4. Condition Flags
	5.1.5. Examples

	5.2. SSAT16 and USAT16
	5.2.1. Syntax
	5.2.2. Operation
	5.2.3. Restrictions
	5.2.4. Condition flags
	5.2.5. Examples

	5.3. QADD and QSUB
	5.3.1. Syntax
	5.3.2. Operation
	5.3.3. Restrictions
	5.3.4. Condition flags
	5.3.5. Examples

	5.4. QASX and QSAX
	5.4.1. Syntax
	5.4.2. Operation
	5.4.3. Restrictions
	5.4.4. Condition flags
	5.4.5. Examples

	5.5. QDADD and QDSUB
	5.5.1. Syntax
	5.5.2. Operation
	5.5.3. Restrictions
	5.5.4. Condition flags
	5.5.5. Examples

	5.6. UQASX and UQSAX
	5.6.1. Syntax
	5.6.2. Operation
	5.6.3. Restrictions
	5.6.4. Condition flags
	5.6.5. Examples

	5.7. UQADD and UQSUB
	5.7.1. Syntax
	5.7.2. Operation
	5.7.3. Restrictions
	5.7.4. Condition flags
	5.7.5. Examples

	6. Packing and Unpacking Instructions
	6.1. PKHBT and PKHTB
	6.1.1. Syntax
	6.1.2. Operation
	6.1.3. Restrictions
	6.1.4. Condition flags
	6.1.5. Examples

	6.2. SXT and UXT
	6.2.1. Syntax
	6.2.2. Operation
	6.2.3. Restrictions
	6.2.4. Condition flags
	6.2.5. Examples

	6.3. SXTB16 and UXTB16
	6.3.1. Syntax
	6.3.2. Operation
	6.3.3. Restrictions
	6.3.4. Condition flags
	6.3.5. Examples

	6.4. SXTA and UXTA
	6.4.1. Syntax
	6.4.2. Operation
	6.4.3. Restrictions
	6.4.4. Condition flags
	6.4.5. Examples

	7. Bitfield Instructions
	7.1. BFC and BFI
	7.1.1. Syntax
	7.1.2. Operation
	7.1.3. Restrictions
	7.1.4. Condition Flags
	7.1.5. Examples

	7.2. SBFX and UBFX
	7.2.1. Syntax
	7.2.2. Operation
	7.2.3. Restrictions
	7.2.4. Condition Flags
	7.2.5. Examples

	8. Floating-Point
	8.1. VABS
	8.1.1. Syntax
	8.1.2. Operation
	8.1.3. Restrictions
	8.1.4. Condition flags
	8.1.5. Examples

	8.2. VADD
	8.2.1. Syntax
	8.2.2. Operation
	8.2.3. Restrictions
	8.2.4. Condition flags
	8.2.5. Examples

	8.3. VCMP, VCMPE
	8.3.1. Syntax
	8.3.2. Operation
	8.3.3. Restrictions
	8.3.4. Condition flags
	8.3.5. Examples

	8.4. VCVT, VCVTR between floating-point and integer
	8.4.1. Syntax
	8.4.2. Operation
	8.4.3. Restrictions
	8.4.4. Condition flags

	8.5. VCVT between floating-point and fixed-point
	8.5.1. Syntax
	8.5.2. Operation
	8.5.3. Restrictions
	8.5.4. Condition flags

	8.6. VCVTB, VCVTT
	8.6.1. Syntax
	8.6.2. Operation
	8.6.3. Restrictions
	8.6.4. Condition flags

	8.7. VDIV
	8.7.1. Syntax
	8.7.2. Operation
	8.7.3. Restrictions
	8.7.4. Condition flags

	8.8. VFMA, VFMS
	8.8.1. Syntax
	8.8.2. Operation
	8.8.3. Restrictions
	8.8.4. Condition flags

	8.9. VFNMA, VFNMS
	8.9.1. Syntax
	8.9.2. Operation
	8.9.3. Restrictions
	8.9.4. Condition flags

	8.10. VLDM
	8.10.1. Syntax
	8.10.2. Operation
	8.10.3. Restrictions
	8.10.4. Condition flags

	8.11. VLDR
	8.11.1. Syntax
	8.11.2. Operation
	8.11.3. Restrictions
	8.11.4. Condition flags

	8.12. VLMA, VLMS
	8.12.1. Syntax
	8.12.2. Operation
	8.12.3. Restrictions
	8.12.4. Condition flags

	8.13. VMOV Immediate
	8.13.1. Syntax
	8.13.2. Operation
	8.13.3. Restrictions
	8.13.4. Condition flags

	8.14. VMOV Register
	8.14.1. Syntax
	8.14.2. Operation
	8.14.3. Restrictions
	8.14.4. Condition flags

	8.15. VMOV Scalar to ARM Core register
	8.15.1. Syntax
	8.15.2. Operation
	8.15.3. Restrictions
	8.15.4. Condition flags

	8.16. VMOV ARM Core register to single precision
	8.16.1. Syntax
	8.16.2. Operation
	8.16.3. Restrictions
	8.16.4. Condition flags

	8.17. VMOV Two ARM Core registers to two single precision
	8.17.1. Syntax
	8.17.2. Operation
	8.17.3. Restrictions
	8.17.4. Condition flags

	8.18. VMOV ARM Core register to scalar
	8.18.1. Syntax
	8.18.2. Operation
	8.18.3. Restrictions
	8.18.4. Condition flags

	8.19. VMRS
	8.19.1. Syntax
	8.19.2. Operation
	8.19.3. Restrictions
	8.19.4. Condition flags

	8.20. VMSR
	8.20.1. Syntax
	8.20.2. Operation
	8.20.3. Restrictions
	8.20.4. Condition flags

	8.21. VMUL
	8.21.1. Syntax
	8.21.2. Operation
	8.21.3. Restrictions
	8.21.4. Condition flags

	8.22. VNEG
	8.22.1. Syntax
	8.22.2. Operation
	8.22.3. Restrictions
	8.22.4. Condition flags

	8.23. VNMLA, VNMLS, VNMUL
	8.23.1. Syntax
	8.23.2. Operation
	8.23.3. Restrictions
	8.23.4. Condition flags

	8.24. VPOP
	8.24.1. Syntax
	8.24.2. Operation
	8.24.3. Restrictions
	8.24.4. Condition flags

	8.25. VPUSH
	8.25.1. Syntax
	8.25.2. Operation
	8.25.3. Restrictions
	8.25.4. Condition flags

	8.26. VSQRT
	8.26.1. Syntax
	8.26.2. Operation
	8.26.3. Restrictions
	8.26.4. Condition flags

	8.27. VSTM
	8.27.1. Syntax
	8.27.2. Operation
	8.27.3. Restrictions
	8.27.4. Condition flags

	8.28. VSTR
	8.28.1. Syntax
	8.28.2. Operation
	8.28.3. Restrictions
	8.28.4. Condition flags

	8.29. VSUB
	8.29.1. Syntax
	8.29.2. Operation
	8.29.3. Restrictions
	8.29.4. Condition flags
	8.29.5. Operation
	8.29.6. Condition flags
	8.29.7. Examples

	9. Branch and Control Instructions
	9.1. B, BL, BX, and BLX
	9.1.1. Syntax
	9.1.2. Operation
	9.1.3. Restrictions
	9.1.4. Condition Flags
	9.1.5. Examples

	9.2. CBZ and CBNZ
	9.2.1. Syntax
	9.2.2. Operation
	9.2.3. Restrictions
	9.2.4. Condition Flags
	9.2.5. Examples

	9.3. IT
	9.3.1. Syntax
	9.3.2. Operation
	9.3.3. Restrictions
	9.3.4. Condition Flags
	9.3.5. Example

	9.4. TBB and TBH
	9.4.1. Syntax
	9.4.2. Operation
	9.4.3. Restrictions
	9.4.4. Condition Flags
	9.4.5. Examples

	10. Miscellaneous Instructions
	10.1. BKPT
	10.1.1. Syntax
	10.1.2. Operation
	10.1.3. Condition Flags
	10.1.4. Examples

	10.2. CPS
	10.2.1. Syntax
	10.2.2. Operation
	10.2.3. Restrictions
	10.2.4. Condition Flags
	10.2.5. Examples

	10.3. DMB
	10.3.1. Syntax
	10.3.2. Operation
	10.3.3. Condition Flags
	10.3.4. Examples

	10.4. DSB
	10.4.1. Syntax
	10.4.2. Operation
	10.4.3. Condition Flags
	10.4.4. Examples

	10.5. ISB
	10.5.1. Syntax
	10.5.2. Operation
	10.5.3. Condition Flags
	10.5.4. Examples

	10.6. MRS
	10.6.1. Syntax
	10.6.2. Operation
	10.6.3. Restrictions
	10.6.4. Condition Flags
	10.6.5. Examples

	10.7. MSR
	10.7.1. Syntax
	10.7.2. Operation
	10.7.3. Restrictions
	10.7.4. Condition Flags
	10.7.5. Examples

	10.8. NOP
	10.8.1. Syntax
	10.8.2. Operation
	10.8.3. Condition Flags
	10.8.4. Examples

	10.9. SEV
	10.9.1. Syntax
	10.9.2. Operation
	10.9.3. Condition Flags
	10.9.4. Examples

	10.10. SVC
	10.10.1. Syntax
	10.10.2. Operation
	10.10.3. Condition Flags
	10.10.4. Examples

	10.11. WFE
	10.11.1. Syntax
	10.11.2. Operation
	10.11.3. Condition Flags
	10.11.4. Examples

	10.12. WFI
	10.12.1. Syntax
	10.12.2. Operation
	10.12.3. Condition Flags
	10.12.4. Examples

