I3 TEXAS
INSTRUMENTS

Using the CMSIS DSP Library in Code Composer Studio™
for TM4C MCUs

Application Report
SPMAO041G—-January 2012—-Revised October 2015

Amit Ashara

ABSTRACT

This application report describes the process required to build the ARM® CMSIS DSP library in Code
Composer Studio v6.1 with ARM Compiler version up to 5.2.5 . This document also describes how to use
Code Composer Studio v6.1 to build, run, and verify the 11 ARM DSP example projects that are included
in the CMSIS package.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/spma041.

NOTE: This document applies to both the TM4C Series and the Stellaris® Cortex®-M4 MCUs. All
screen captures reflect the TM4C version of the device.

Contents
1 1o o o 1o o 1
2 (1Y ST ES T B ST 11 o] 1 Y 1
3 Building the DSP Library in Code Composer StUTIO VB. 1uuiuuuesiiiiiesiainnsiaaissessaansssssannsessaannnesas 3
4 ARM EXAMPIE PrOJECES . utiutiiuatiaterse st et rae s s e s e s e e s s s s s s st ra et e s s r e 14
5 [0 T3 113 T o IS 32
6 RS (] 1] 0T 33
Trademarks

Code Composer Studio, TivaWare are trademarks of Texas Instruments.
Stellaris is a registered trademark of Texas Instruments.

ARM, Cortex are registered trademarks of ARM Limited.

All other trademarks are the property of their respective owners.

1 Introduction

Many microcontroller-based applications can benefit from the use of an efficient digital signal processing
(DSP) library. To that end, ARM has developed a set of functions called the CMSIS DSP library that is
compatible with all Cortex M3 and M4 processors and that is specifically designed to use ARM assembly
instructions to quickly and easily handle various complex DSP functions. Currently, ARM supplies example
projects for use in their Keil uVision IDE that are meant to show how to build their CMSIS DSP libraries
and run them on an M3 or M4. This application report details the steps that are necessary to build these
DSP libraries inside Code Composer Studio version 6 and run these example applications on a TM4C
Series TM4C129 Connected LaunchPad.

2 CMSIS DSP Library

To build the CMSIS DSP library, download and extract the source code from the ARM CMSIS website:
http://cmsis.arm.com. The source code for the DSP library and example projects are in this directory:

CMSIS-<version>/CMSIS/DSP_Lib

A full description of the DSP libraries, including a description of examples, the data structures used, and
an API for each available function, is in the ARM-provided documentation at this location:

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 1

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G
http://www.ti.com/lit/zip/spma041
http://cmsis.arm.com

13 TEXAS

INSTRUMENTS

CMSIS DSP Library www.ti.com
CMSIS-<version>/CMSIS/Documentation/DSP/html/index.html

2 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs SPMA041G—January 2012—Revised October 2015

) Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com Building the DSP Library in Code Composer Studio v6.1

3.1

3.2

If ARM releases a future update to CMSIS, you might need to download and install a patch to the DSP
library in order to provide support for new functionality and to fix any bugs that ARM discovers in the
CMSIS source code. After you download the patch files from the ARM web site, follow these instructions
to install:

1. Unzip the patch file.

2. Navigate to the patch directory and copy any files found in that directory to the corresponding location
of the CMSIS DSP library.

3. Overwrite existing files when prompted.
For example, if the patch directory contains a file named arm_common_tables.c in the
CMSIS/DSP_Lib/Source/CommonTables directory, copy this file into the same directory

(CMSIS/DSP_Lib/Source/CommonTables) of your original CMSIS installation, overwriting the
arm_common_tables.c that already exists in the original installation directory.

After the CMSIS source code has been downloaded, you must download and unzip the CCS CMSIS
Patch Files. This CCS CMSIS zip package is located on the Texas Instruments’ website at
http://www.ti.com/lit/zip/spma041. The zip package contains a set of support files that are needed for
building and running the CMSIS DSP library in Code Composer Studio. After you download the zip
package, run the unzip application and select a location in which to extract the files.

Building the DSP Library in Code Composer Studio v6.1

This section details the steps required to build the ARM CMSIS DSP library from source. It is possible to
skip this section by using a precompiled .lib (such as one of those found in CMSIS-
<version>/CMSIS/Lib/ARM or CMSIS-<version>/CMSIS/Lib/GCC), but doing so requires changing the
Code Composer Studio compiler settings to call floating-point functions in a way that is different from the
default Code Composer Studio settings. This requires rebuilding all .lib files that are used in a project with
the DSP libraries, most notably the TivawWare™ for C Series Software driverlib, grlib, and usblib libraries.
This method is not recommended and the process is not described in this application report. Also this
application report has been updated for the support of CMSIS release r4p2 onwards.

Adding the CCS-Required Header Files to the DSP Libraries

To compile the CMSIS DSP libraries using Code Composer Studio, you must modify the DSP library
include files, add a Code Composer Studio specific include file, and add a new assembly file. The zip
package contains pre-modified versions of these files, which can be used during the build process or you
can elect to modify the files yourself by using the following steps:

1. Copy arm_math.h and cmsis_ccs.h from this application report into the CMSIS/Include directory

2. Copy arm_bitreversal2.asm from this application report into
CMSIS/DSP_Lib/Source/TransformFunctions.

Creating the dsplib Project

Before building the DSP library in Code Composer Studio, you must create a project for the library. You
can build a project by completing the following steps:

1. Launch CCSv6.1 and select an empty workspace.

2. Select File — New — CCS Project. The New Code Composer Studio Project window will be displayed.

3. Select Target as TM4C Series and then use the drop down menu to select TM4C1294NCPDT. Select
the Connection as Stellaris In-Circuit Debug Interface (see Figure 1).

4. In the Project name, type dsplib-cm4f and keep the check box ticked for the Use default location.
5. In Advanced settings, select:
e Output type: Static Library
e Output format: eabi (ELF)
» Device endianness: little
6. In Project templates and examples (see Figure 2), select Empty Project.
7. Click Finish to create the project. The dsplib-cm4f project appears in the Project Explorer.

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 3
Submit Documentation Feedback

Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G
http://www.ti.com/lit/zip/spma041

Building the DSP Library in Code Composer Studio v6.1

13 TEXAS
INSTRUMENTS

www.ti.com

BN

.
% Mew CCS Project

r Yy
&4 New CCS Project [s
€CS Project — €CS Project —i=
Create a new CC5 Project. B Create a new CCS Project. @
Target: Tiva C Series ~ | Tiva TM4C1294NCPDT 'I Target: Tiva C Series ~ | Tiva TM4C1294NCPDT v]
Connection: [Stellar\;[n-C\rcuit Debug Interface '] Verify... Connection: [SteHari;In-Circuit Debug Interface '] Verify...
L Cortex M [ARM] L Cortex M [ARM]
Project name: dsplib-cmaf Project name: dsplib-cmdf
[¥] Use default location [¥] Use default location
C:\Users\a0876236\workspace_bootloader\dsplib-cmdf Browse... C\Users\al876236\workspace_bootloaderdsplib-cmdf Browse...
| Compiler version: | TIv5.2.5 '” More...] Compiler version: | TIv5.2.5 '][More...
* Advanced settings b Advanced settings
* Project templates and examples
Output type: | Static Library VI
type filter text Creates an empty project fully initialized for +
Output format: lEEbI (ELF) vl = - the selected device.
a [=| Empty Projects
Device endianness: [ht‘tle '] |5 Empty Project|
= Forrr Dot fonst
£
[& Empty Assembly-only Project
[& Empty RTSC Project
a [[5] SYS/BIOS
> E TI Target Examples
» Project templates and examples > [Z] System Analyzer (UIA) -
@ < Back Next > [Finish J [Cancel @ < Back Next » [Einish J [Cancel
Figure 2. Creating the dsplib Project

Figure 1. Creating the dsplib Project

4

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs

SPMA041G-January 2012—Revised October 2015

Submit Documentation Feedback

Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com Building the DSP Library in Code Composer Studio v6.1
3.3 Adding the dsplib Source Code

Before adding the dsplib source code to the project, you should familiarize yourself with the CMSIS library
structure. Open your preferred file navigation tool and navigate to the directory where the CMSIS .zip file
downloaded from ARM was extracted. Then, descend to CMSIS-<version>/CMSIS/DSP_Lib/Source/. This
is the directory ARM uses to group the DSP functions into various sub-categories. The ARM directory
contains the project files necessary to build the DSP library in uVision with ARM’s compiler, and the GCC
directory contains the project files to build the DSP library in uVision using the open source GCC compiler.
All other directories contain the source code necessary to build the category of functions indicated by the
directory name.

To add the dsplib source code to the dsplib project in Code Composer Studio:

1. Right-click the dsplib-cm4f project in the Project Explorer and click Import...

Click General to expand and then click File System. Click Next.

Click the Browse button and navigate to the location of the CMSIS DSP library source code.
Select the top level Source directory and click OK.

When the Source directory appears in the Import window, click the checkbox beside the folder to select
all of the contents of that folder to be imported.

Deselect the ARM and GCC folders by clicking to the left of the checkbox.

Click the TransformFunctions folder, which causes the contents of that folder to be displayed in the
panel on the right.

8. Uncheck the box beside arm_bitreversal2.S.

9. Make sure that the Into Folder: text field contains the name of the DSP library project where you want
to import the files (for this example, dsplib-cmA4f).

10. Check the Overwrite existing resources without warning. Verify the Create top-level folder check box
is deselected.

11. Click the Advanced button, then click to select the Create links in workspace checkbox.
12. Verify the Create link locations relative to: checkbox is selected. If it is not, click to select it.

ok wn

N o

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 5

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

Building the DSP Library in Code Composer Studio v6.1

13 TEXAS
INSTRUMENTS

www.ti.com

13. Verify that the drop-down menu of environment variables is set to PROJECT_LOC (see Figure 3). If
there are no variables listed in the drop-down menu, select Edit Variables... and add a variable to
represent the location of the dsplib project file.

v« Import

EIEI==)

File system

Import resources from the local file system.

From directory: CACMSI5-5P-00300-rd p2-00rel\ CMSISWDSP_Lib'Source

lﬁ
-\
- Browse...

& [H (= Source
. [ARM
| = BasicMathFunctions
» [¥] = CommonTables
» [¥] = ComplexMathFunctions
» [¥] = ControllerFunctions
» [¥] 2= FastMathFunctions
» [¥] = FilteringFunctions
> [0 & GCC |
» [= MatrxFunctions
- [¥f] = StatisticsFunctions
» [Eb- SupportFunctions

13

[arm_bitreversal.c

[5] arm_bitreversal2.asm

|| 5] arm_bitreversal2.5 |
[arm_cfft f32.c

@ arm_cfft_gl5.c

@ arm_cfft_g3l.c

[£] arm_cfft_radin2_f32.c

€] arm_cfft_radix2_init_f32.c
[£ arm_cfft_radix_init_gl5.c
@ arm_cfft_radie?_init_g31.c
@ arm_cfft_radixZ_gl5.c

57 [£ arm_cfft_radie?_g3l.c

m

m | » I

. [@l = TrancfarmFunectinne ||
| |

| Filter Types... || SelectAll || DeselectAl
Into folder: dsplib-cmdf
Options

Owerwrite existing rescurces without warning
[7] Create top-level folder

<< Advanced

Create links in workspace
Create virtual folders

Create link locations relative to: | PROJECT _LOC

i
Browse...

Cancel

Einish | |

Figure 3. Importing the DSP_Lib Source Code

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs

Copyright © 2012-2015, Texas Instruments Incorporated

SPMA041G-January 2012—Revised October 2015

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com

Building the DSP Library in Code Composer Studio v6.1

14. Click Finish to link the DSP_Lib source code into the project.

L Project Explorer &3 — ﬂ;}
4 [dsplib-crmdf
- [a Includes

- |7y BasicMathFunctions

- [/p CommonTables

- [-p ComplexiathFunctions
- [7py ControllerFunctions

= Debug

- [FastMathFunctions
- [FilteringFunctions

- [ipy MatrixFunctions

- o StatisticsFunctions

- [p SupportFunctions

- [y TransformFunctions

v =/

m

Figure 4. The Project Explorer Window After the DSP_Lib Code has Been Imported

3.4 Editing the dsplib Project Settings

After linking in all the source files, change the following default Code Composer Studio project settings:
1. Right-click the dsplib-cm4f project in the Project Explorer and select Properties.
2. Expand the Build entry, and then expand the ARM Compiler entry.

3. Confirm that the Target_processor version (--silicon_version, -mv) entry matches your processor in the
Processor Options panel (see Figure 5). For this example, the Target processor should be 7M4 (as
opposed to 7M3 for any of the Stellaris Cortex-M3 products).

SPMA041G-January 2012—Revised October 2015

Submit Documentation Feedback

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs

Copyright © 2012-2015, Texas Instruments Incorporated

7

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

Building the DSP Library in Code Composer Studio v6.1

13 TEXAS
INSTRUMENTS

www.ti.com

F B
<+ Properties for dsplib-cmdf = =
type filter text Processor Options =T v v
» Resource
General
4 Build Configuration: [Debug [Active] '] ’Manage Configurations...l

4 ARM Compiler
Processor Options

Optimization
Include Options Target processor version (--silicon_version, -mv) ’?M4 VI
MISRA-C:2004 Designate code state, 16-bit (thumb) or 32-bit (--code_state) ’15 VI
> Advanced Options
. ARM Archiver Specify floating point support (--fleat_suppert) ’FPMSPDI& vl
Debug cabi
Little endian code [See 'General' page to edit] (--little_endian, -me)

&) :
CJ Show advanced settings

oK J [Cancel

Figure 5. The Processor Settings for a Cortex-M4 Processor With Hardware FPU Support

8

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs SPMA041G-January 2012—Revised October 2015

Copyright © 2012-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com

Building the DSP Library in Code Composer Studio v6.1

4. Click the Optimization level (--opt_level, -O) drop-down menu in the Optimization panel and select 2

(see Figure 6).

P

<+ Properties for dsplib-cmdf

type filter text

- Resource
General
4 Build
4 ARM Compiler
Processor Options
Optimization
Include Options
MISRA-C:2004
» Advanced Options
> ARM Archiver
Debug

3 -
@) Show advanced settings

Optimization

Configuration: |Debug [Active]

'] [Manage Conﬁgurations...l

Optimization level (--opt_level, -0) [,2 Global Optimizations v]
Speed vs. size trade-offs (--opt_for_speed, -mf) D
Mone 0 size 5 speed
Floating Point mode (--fp_mode) [strict -
OK] [Cancel

Figure 6. The Proper Optimization Settings for Compiling the DSP_Lib Source Code

5. Expand the Advanced Options section of the ARM Compiler pane, and select Assembler Options.

SPMA041G-January 2012—Revised October 2015

Submit Documentation Feedback

Copyright © 2012-2015, Texas Instruments Incorporated

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs

9

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

Building the DSP Library in Code Composer Studio v6.1

I

TEXAS
INSTRUMENTS

www.ti.com

6. Click the Use unified assembly language (--ual) checkbox to select that option (see Figure 7).

-

v+ Properties for dsplib-cm4f

type filter text

> Resource
General
4 Build
4 ARM Compiler
Processor Options
Optimization
Include Options
MISRA-C:2004
a Advanced Options
Advanced Debug Options
Language Options
Parser Preprocessing Opti
Predefined Symbols
Diagnostic Options
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt
Assembler Options
File Type Specifier
Directory Specifier
Default File Extensions
Command Files
> ARM Archiver
Debug

e
k\?) Show advanced settings

Assembler Options

Configuration: |Debug [Active]

'] ’ Manage Configurations...

] Keep the generated assembly language (.asm) file (--keep_asm, -k)

Source interlist

[] Generate listing file (--asm_listing, -al)
] Keep local symbols in output file (--output_all_syms, -as)

[Do not generate .clink for .const sections (--no_const_clink)

Simulate source ".copy filename' (--copy_file, -ahc)

] Symbel names are not case-significant (--syms_ignore_case, -ac)

Undefine assembly symbol NAME (--asm_undefing, -au)

Pre-define assembly symbol NAME (--asm_define, -ad)

[7] Generate first-level assembly include file list (--asm_includes, -api)

Generate assembly dependency information (--asm_dependency, -apd)

[¥]iUse unified assembly language [--ual};

Simulate source "include filename' (--include_file, -ahi)

[Generate cross reference file (--cross_reference, -ax)

&

&

8

Browse...

&

OK

|[cancel

Figure 7. Setting the Assembler to Use Unified Assembly Language

10

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs

Copyright © 2012-2015, Texas Instruments Incorporated

SPMA041G-January 2012—Revised October 2015
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com Building the DSP Library in Code Composer Studio v6.1

7. Click the Emit diagnostic identifier numbers (--display_error_number, -pden) checkbox in the
Diagnostic Options panel to deselect.

- ™y
«'+ Properties for dsplib-cmdf . Llﬂlg

type filter text Diagnostic Options e Ty
> Resource

General —
4 Build Configuration: ’Debug [Active] '] [Manage Configurations...]

4 ARM Compiler
Processor Options

Optimization)
Include Options Quiet Level v]
MISRA-C:2004 Treat diagnostic <id> as remark (--diag_remark, -pdsr) 8

4 Advanced Options
Advanced Debug Options
Language Options
Parser Preprocessing Opti Treat diagnostic <id> as error (--diag_error, -pdse) @
Predefined Symbols
Diagnostic Options
Runtime Model Options I

Advanced Optimizations
Entry/Exit Hook Options =] Treat warnings as errors (--emit_warnings_as_grrors, -pdew)

[JEmit diagnostic identifier numbers (--display_error_number, -pden);

m

Library Function Assumpt Suppress diagnostic <id> (--diag_suppress, -pds) 4=
Assembler Options
File Type Specifier
Directory Specifier

Default File Extensions [Issue remarks (--issue_remarks, -pdr)
Command Files [] Verbose diagnostics (--verbose_diagnostics, -pdv)
> ARM Archiver Treat diagnostic <id> as warning (--diag_warning, -pdsw) £ &5 38
Debug

Set error limit to <count> (--set_error_limit, -pdel)
|| Generate user information file (--gen_aux_user_info, -b)

|} Qutput diagnostic to .err file (--write_diagnostics_file, -pdf)

[] Suppress warnings (--no_warnings, -pdw)

Wrap diagnostic messages (--diag_wrap) off VI i

1 | (1 | r

@ Show advanced settings [QK J ’ Cancel]

Figure 8. Verifying That Diagnostic Identifier Numbers will not be Emitted

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 11

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

Building the DSP Library in Code Composer Studio v6.1 www.ti.com

8. Add the DSP library CMSIS-<version>/CMSIS/Include directory to the compiler’s include path in the
Include Options panel. This is done by pressing the Add button by the Add dir to #include search path
(--include_path, -1) (see Figure 9), then either typing in the path to the CMSIS Include directory or
clicking Browse and navigating to the Include directory and navigating to the Include directory (CMSIS-
<version>/CMSIS/Include).

(¥+ Properties for dsplib-cmdf - (=B8] X)
type filter text Include Options P v 7
General
4 Build

a4 ARM Compiler Configuration: ’D‘Ebug [Active] "l [Manage Configurations...]
Processor Options
Optimization
Include Options
MISRA-C:2004 Add dir to #include search path (--include_path, -T) & & 5 '§| ,@|
ULP Advisor "$H{CG_TOOL_ ROOTYinclude"

» Advanced Options
> ARM Archiver

F
«+ Add directory path ﬂ

Directory:

CACMSI5-5P-00300-r4 p2-00relVCMSIS\Include

— Workspace... ” Variables... l[Browse...]

® Show advanced settings [0K] [Cancel]

Figure 9. Adding the CMSIS Top Level Include Directory to the Compiler's #include Search Path

12 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs SPMA041G—January 2012—Revised October 2015

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com Building the DSP Library in Code Composer Studio v6.1

9. Expand the Advanced Options menu again and select the Predefined Symbols panel. Create a symbol
to tell the DSP library to use Cortex-M4 based math functions. Click the Add... button in the Pre-define
NAME (--define, -D) area. In the Enter Value dialog box, type ARM_MATH_CM4 into the Pre-define
NAME (--define, -D) field and click OK (see Figure 10). Click the Add... button again type
__FPU_PRESENT=1 into the Pre-define NAME (--define, -D) field and click OK.

'« Properties for dsplib-cméf L L ﬂ_hj

type filter text Predefined Symbols T
General
4 Build
a4 ARM Compiler Cenfiguration: |Debug [Active] v] lMﬁnageConfigurations...]
Processor Options
COptimization
Include Options
MISRA-C:2004 Pre-define MAME (--define, -D) @ 'D @ @
ULP Advisor

4 Advanced Options —FPU_PRESENT=1

Advanced Debug Options
Language Options
Parser Preprocessing Qpti
Predefined Symbols
Diagnostic Options
Runtime Medel Opticns
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt Undefine NAME (--undefine, -U) 8
Assermnbler Options =
File Type Specifier
Directory Specifier
| Default File Extensions
Comrmand Files
> ARM Archiver

€ (1 | 3

?\ Show advanced settings 0K Cancel
@

b E = —

Figure 10. Adding Project Level #defines for the Processor Characteristics

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 13

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

Building the DSP Library in Code Composer Studio v6.1 www.ti.com

10. Select the on option from the Place each function in a separate subsection (--gen_func_subsections, -
ms) drop-down menu in the Runtime Model Options panel (see Figure 11).

»+ Properties for dsplib-cmé4f l SR X
type filter text Runtime Model Options (=1 T
- Resource
General i

4 Build Configuration: |Debug [Active]
4 ARM Compiler

Default File Extensions Mo dual state support (--disable_dual_state, -md)
Command Files [] Compile for breakpoint-based profiling (--profile:breakpt)
+ ARM Archiver Generate unaligned loads and stores (--unaligned_access) Ion VI
Debug
Designate enum type (Default is packed for EABT) (--enum_type) lpacked VJ
Force alignment of structures to <bytecount> bytes (--align_structs)
Reserve as global register (--global_register, -r)
[] Compile for power profiling (--profile:power)
["] Enable 16 bit code (--thumb_state, -mt)
Use ELF common symbels (--common) on VI
4 Tl 3 r]
A
'\?J' Show advanced settings [QK l I Cancel ‘

Processor Options

Optimization I

Include Options Place each function in a separate subsection (--gen_func_subsections, -ms)

MISRA-C:2004 Use linker-generated file to remove dead functions (--use_dead_funcs_list)
a Advanced Options

Advanced Debug Options Allow reassociation of sat arithmetic (--sat_reassoc) Iof-f ,‘

Language Options Allow reassociation of FP arithmetic (--fp_reassoc) Ioff v‘
Parser Preprocessing Opti
Predefined Symbols
Diagnostic Options

"] Enums may be char/short, instead of int (--small_enum, --small-enum)

[Enable dynamic stack overflow checking (--stack_overflow_check, -mao)

Runtime Model Options Set the size (in bits) of the C/C++ type wchar_t (16,32) (--wchar_t) Ilﬁ "
Advanced Optimizations L
Entry/Exit Hook Options Specify whether constants can be embedded in code sections (--embedded_constants) Ion v‘ =

Library Function Assumpt | [C] Generates SIMD instructions targeting Neon (--neon)
Assemnbler Options
File Type Specifier
Directory Specifier

Specify length of maximum branch chain (--max_branch_chain, -ab)

[T Chars signed by default (--signed_chars, -mc)

3.5

Figure 11. The Proper Runtime Model Options for Compiling the DSP_Lib Source Code

Building the dsplib Source Code

Build the CMSIS DSP libraries by right-clicking dsplib-cm4f in the Project Explorer and selecting Build
Project. Depending on hardware, this build might take up to ten minutes to complete. After the build is
finished, the resulting dsplib-cm4f.lib file is created in the Debug folder of the project workspace.

NOTE: The CMSIS file structure currently contains a directory located at CMSIS-
<version>/CMSIS/Lib that is intended for storing compiled library files. It is recommended for
organization’s sake that this directory be used for storing the Code Composer Studio
compiled CMSIS DSP libraries. To do so, create a CCS/M4 sub-directory inside CMSIS/Lib,
then copy the .lib that was generated by the above steps into the Code Composer Studio
sub-directory.

ARM Example Projects

The ARM CMSIS download contains eleven example projects that demonstrate how to use the various
DSP library functions. This section details the steps required to create the same projects in Code
Composer Studio v6.1, compile the projects, and run them on a TM4C microcontroller. These steps are
focused on running the code on an EK-TM4C129 Connected LaunchPad, but can be easily modified to
work with any other TM4C or Stellaris MCU (see http://www.ti.com/tool/ek-tm4c1294xI).

14

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs SPMA041G-January 2012—Revised October 2015

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G
http://www.ti.com/tool/ek-tm4c1294xl

13 TEXAS
INSTRUMENTS

www.ti.com

ARM Example Projects

4.1 Creating the ARM Example Projects

The source code for all of the example projects can be found at CMSIS-
<version>/CMSIS/DSP_Lib/Examples. Projects for each of the ARM examples can be created in Code
Composer Studio via the following steps:

1.

akrwn

Launch CCSv6.1 and select either an empty workspace or the workspace used in the previous section
to build the DSP library.

Select File > New > CCS Project. The New CCS Project window will be displayed.
Type ti_cortexM4_<example name> in the Project name field.

Select Executable from the Output Advanced settings.

Make the following selections from the Target Device:

e Target: TM4C Series

TM4C1294NCPDT

e Connections: Stellaris In-Circuit Debug Interface

Select the Empty Project in the Project templates and examples field.

Click Finish to create the project (see Figure 12 and Figure 13). The project now appears in the
Project Explorer.

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 15
Submit Documentation Feedback

Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

ARM Example Projects

13 TEXAS
INSTRUMENTS

www.ti.com

~

w« MNew CCS Project

CCS Project

Create a new CCS Project.

Target: Tiva C

Ceries * | Tiva TM4C1294MCPDT

Connection: IStEIIaris In-Circuit Debug Interface - Verify...

T Cortex M [ARM]

Project name:

ti_cortexhd_arrm_matrix_example

N [¥] Use default location

Location:

Ch\Users\al876236\workspace_bootloader\ti_cortexM4_arm_rr Browse...

Cormpiler version: ['I'IvS.J_.S v] ’ Mare...

* Advanced settings

Output type: ’Executable v]
Output format: ’EE bi (ELF) v]
Device endianness: ’Iittle v]
Linker command file: <automatic» -
Runtime support librany: <automatic> -

b Project ternplates and examples

@

< Back Mext = [Finish] ’ Cancel

r

Figure 12. The New CCS Project Window With Options Set to Build the arm_dotproduct_example Project

16

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs

SPMA041G-January 2012—Revised October 2015

Submit Documentation Feedback

Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com

ARM Example Projects

=

«« Mew CCS Project

CCS Project

Create a new CC5 Project. @

Target: Tiva C Series - |Tiva TM4C1294NCPDT v]

Connection: [Stellaris In-Circuit Debug Interface v] Verify...

Project name:

type filter text

=

4 Cortex M [ARM] |

ti_cortexMd_arr_matrix_example

Uze default location

Ch\Users\alB76236 workspace_bootloader\ti_cortexM4_arm_mr Browse...

Compiler version: | TIw5.2.5 v] ’ More...

b Advanced settings

* Project ternplates and examples

4 [=| Empty Projects -
[Empty Project | |

Creates an empty project fully initialized for =«
the selected device.

|z Empty Froject twith main.c)
[Empty Assembly-only Project =
[Empty RTSC Project
4 [=] Basic Examples
[Hello World
- [=] SYS/BIOS

.i?'\

< Back Mext = [Finish] ’ Cancel

Figure 13. The New CCS Project Window With Options Set to Build the arm_dotproduct_example Project

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 17

Submit Documentation Feedback

Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

ARM Example Projects www.ti.com

]

4 ti_cortexM4_arm_matrix_example [Active - Debug]
* [njl Includes

= Debug
» == targetConfigs
- €] tmac1294ncpdt_startup_ces.c
» g7 tmdcl2894ncpdt.cmd

Figure 14. The Project Explorer After the arm_matrix_example Project has Been Created

4.2 Adding the Example Source Code

Once the project is created, it is necessary to point the project to the source files necessary for
compilation:
1. Right-click the project in the Project Explorer and select Add Files...

2. Navigate to the CMSIS-<version>/CMSIS/DSP_Lib/Examples/<example> directory. Select all of the C
source file and click Open (see Figure 15).

v+ Add files to ti_cortexM4_arm_matrix_example [ﬁ
@u'| ‘WC:\ CMSIS-5P-00300-rdp2-00rell\CMSIS\DSP_Lib\Examp | X - ‘ +y | Search ARM 0 [
Organize « Mew falder =+ ['@'

- Favorites Mame Date medified Type Size
2
Bl Desktop J RTE 28-Mov-14 3:11 PM File folder
& Downloads || Abstract.bet 23-5ep-14 11:57 AM TXT File 1KE
‘5l Recent Places & | arm_matrix_example.ini 23-5ep-14 11:57 AM Configuration sett... 1KB
|| arm_matrix_exarmple.uvophx 23-5ep-14 11:57 AM UVOPTX File 20 KB
- Libraries || arm_matrix_example.uvprojx 23-5ep-14 11:57 AM uVision5 Project 130 KB
| arm_matrix_example_f32.c 23-5ep-14 11:57 AM CFile 9KB
1™ Computer | math_helper.c 28-Nov-1411:00 P... CFile 11KE
‘Q_f 0SDisk (C:) | math_helper.h 23-5ep-14 11:57 AM H File 4 KB
wy Data (Dv)
&‘j Metwork
File name: "math_helper.c” "arm_matrix_example_f32.c" - l*-* ']
[Open |v] I Cancel]

Figure 15. Adding the Source Files for arm_matrix_example to the Project

18 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs SPMA041G—January 2012—Revised October 2015

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com ARM Example Projects

3. Select the Link to files radio button, check the Create link locations relative to: checkbox, and select
PROJECT_LOC from the drop-down menu when the File Operation dialog box appears (see
Figure 16). Press OK to add the source file(s) to the project.

r F B
v« File Operation ﬁ
Select how files should be imported into the project:
() Copy files
@ Link to files
[7] Create link locations relative to: | PROJECT LOC vJ

Configure Drag and Drop Settings...

(‘?\' [0K] I Cancel |

Figure 16. Selecting the Proper Options to Link the Source Files Into the Project

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 19

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

ARM Example Projects

13 TEXAS
INSTRUMENTS

www.ti.com

4.3 Editing the Example Project Settings

Before building the example projects, it is necessary to properly configure the project settings:

1
2.
3.

Right-click the project in the Project Explorer and select Properties.
Expand the Build entry, and then expand the ARM Compiler entry.

Confirm that the Target_processor version (--silicon_version, -mv) entry matches your processor in the
Processor Options panel (see Figure 17). For this example, the Target processor should be 7M4 (as
opposed to 7M3 for any of the Stellaris Cortex-M3 products).

-

v+ Properties for ti_cortexM4_arm_matrix_example

type filter text
General
4 Build
4 ARM Compiler
Processor Options

Optimization
Include Options
MISRA-C:2004

4 Advanced Options

Advanced Debug QOptions
Language Options

Parser Preprocessing Opti
Predefined Symbols
Diagnostic Optiens
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt
Assemnbler Options

File Type Specifier
Directory Specifier
Default File Extensions
Command Files

» ARM Linker

ARM Hex Utility [Disabled]

I 3

Show advanced settings

Processor Options

Configuration: ’DEbug [Active]

'] [Manage Configurations...]

Target processor version (--silicon_version, -mv) [?M4

Designate code state, 16-bit (thumb) or 32-bit (--code_state) [16

Specify floating point support (--float_support) [FPw‘rSPDlﬁ v]
eabi
Little endian code [See 'General’ page to edit] (--little_endian, -me)

oK

|| cancel |

b

Figure 17. The Processor Options Used for Building the Example on a Cortex-M4 Process With hardware

FPU Support

20

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs

SPMA041G-January 2012—Revised October 2015

Submit Documentation Feedback

Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com ARM Example Projects

4. Click the Optimization level (--opt_level, -O) drop-down menu and select 2 in the Optimization panel
(see Figure 18).

- _ _— —
'+ Properties for ti_cortexM4_arm_matrix_example [= -EHJ

type filter text Optimization Qo A 4

. Resource -
General

2 Build Cenfiguration: |Debug [Active] '] [Manage Conﬁgurations...l
4 ARM Compiler

Processor Options

Optimization

Include Options

MISRA-C:2004

ULP Advisor Speed vs. size trade-offs (--opt_for_speed, -mf) 0 D

4 Advanced Options none 0 size 5 speed

Advanced Debug Opti Floating Point mode (--fp_mode) [strict ']
Language Opticns
Parser Preprocessing C
Predefined Symbols
Diagnostic Options
Runtime Medel Optior
Advanced Optimizatio
Entry/Exit Hook Optior
Library Function Assur

Optimization level (--opt_level, -0) [2 Global Optimizations v]

m

Assembler Options
File Type Specifier
Directory Specifier
Default File Extensions
Comrmand Files
> ARM Linker —
ARM Hex Utility [Disabled]

Ml
4 | i 3

'fz:' Show advanced settings [OK] [Cancel

Figure 18. The Proper Optimization Settings for Compiling the Example Projects

5. Expand the Advanced Options section of the ARM Compiler pane, and select Assembler Options.

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 21

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

Al

RM Example Projects

13 TEXAS
INSTRUMENTS

www.ti.com

6. Click the Use unified assembly language (--ual) checkbox to select that option (see Figure 19).

v+ Properties for ti_cortexM4_arm_matrix_example

type filter text
General
4 Build
4 ARM Compiler

Processor Options

Optimization

Include Options

MISRA-C:2004

a Advanced Options
Advanced Debug Options
Language Options
Parser Preprocessing Opti
Predefined Symbols
Diagnostic Options
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt
Assemnbler Options
File Type Specifier
Directory Specifier
Default File Extensions
Command Files
> ARM Linker
ARM Hex Utility [Disabled]

« [1 b

®@

Show advanced settings

Assembler Options

Configuration: ’Debug [Active]

Y] ’ IManage Configurations...

= Keep the generated assembly language (.asm) file (--keep_asm, -k)
Source interlist

[7] Generate listing file (--asm_listing, -al)

0 Keep local symbols in output file (--output_all_syms, -as)

[T Do net generate .clink for .const sections (--no_const_clink)

Simulate source '.copy filename' (--copy_file, -ahc)

0 Symbol names are not case-significant (--syms_ignore_case, -ac)

Undefine assembly symbol NAME (--asm_undefing, -au)

Aliases: --asm_undefine, -au
Undefine assembly symbol NAME

Pre-define assembly symbol MAME (--asm_define, -ad)

[Generate first-level assembly include file list (--asm_includes, -api)

Generate assembly dependency information (--asm_dependency, -apd)

I [V]iUse unified assembly language (--ual}; I

Simulate source "include filename' (--include file, -ahi)

|| Generate cross reference file (--cross_reference, -ax)

e

8

Browse...

S

[oK

) {

Cancel

Figure 19. The Proper Assembler Options Needed for Compiling the Example Projects

22

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs

SPMA041G-January 2012—Revised October 2015
Submit Documentation Feedback

Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS

INSTRUMENTS

www.ti.com

ARM Example Projects

7. Expand the Advanced Options menu again and select the Predefined Symbols panel. Create a symbol
to tell the DSP library to use Cortex-M4 based math functions. Click the Add... button in the Pre-define

NAME (--define, -D) area. In the Enter Value dialog box, type ARM_MATH_CM4 into the Pre-define

NAME (--define, -D) field and click OK (see Figure 20). Click the Add... button in the Pre-define NAME
(--define, -D) area. In the Enter Value dialog box, type _ FPU_PRESENT=1 into the Pre-define NAME
(--define -D) field and click OK.

-

«+ Properties for ti_cortexM4_arm_matrix_example

=aneN X

type filker text

General
4 Build

4 ARM Compiler
Processor Options
Optimization
Include Options
MISRA-C:2004
ULP Advisor

4 Advanced Options

Advanced Debug Options
Language Opticns

Parser Preprocessing Opti
Predefined Symbols
Diagnostic Options
Runtime Medel Options
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt
Assemnbler Options

File Type Specifier
Directory Specifier
Default File Extensions
Comrnand Files

> ARM Linker
ARM Hex Utility [Disabled]

4|

il | 3

@' Show advanced settings

Predefined Symbols

<::Iv -

Configuration: |Debug [Active]

Vl [Manage Configurations...]

Pre-define NAME (--define, -D)

PART_TM4CI294NCPDT
ARM_MATH_CM4
__FPU_PRESENT=1

Undefine NAME (--undefine, -1}

€ & 8 7 &
ees='ccs” |

| »

m

oK

||

Cancel

A

Figure 20. Adding the Pre-Processor Statements Necessary for Building an Example Project on a Cortex-

M4 Part With Hardware FPU Support

SPMA041G-January 2012—Revised October 2015

Submit Documentation Feedback

Copyright © 2012-2015, Texas Instruments Incorporated

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs

23

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

ARM Example Projects www.ti.com

8. Look for the Add button to #include search path (--include_path, -I) field in the Include Options section
(see Figure 22).
[|

oy Properties for ti_cortexM4_arm_matrix_example -

type filter text Include Options @ T

> Resource

General

4 Build Cenfiguration: |Debug [Active] '] [Manage Configurations...]
4 ARM Compiler

Processor Options

Optimization

Include Options

MISRA-C:2004

ULP Adviser

4 Advanced Options

Advanced Debug Options
Language Options _ [& Edit directory path -3 |
Parser Preprocessing Opti
Predefined Symbols
Diagnostic Options
Runtime Model Options " CACMSIS-5P-00300-r4p2-00rel0NCMSIS\Include”
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt
Assembler Options
File Type Specifier . =

1 L ZEARERARY

Cancel

Add dir to #include search path (--include_path, -I) @ ID @ ﬁu ,@|

00TVinclude
M5I5-SP-00300-rd p2-00relNCMSIS\Include”

Directory:

Waorkspace... ” Variables... ” Browse...

Directory Specifier Spil [
Default File Extensions
Command Files I
> ARM Linker
ARM Hex Utility [Disabled]
Debug

oK

4| [| +

® Show advanced settings [OK] ’ Cancel]

Figure 21. Compiler's #include Search Path Modified to Contain Both the Base CMSIS Include Directory
and the Example Projects' Common Include Directory

24 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs SPMA041G—January 2012—Revised October 2015

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com ARM Example Projects

9. Click the Add... button again, then the Browse button and browse to the Include directory located in
the CMSIS directory, then click OK (see Figure 21).

Select a folder from file system:

4 | CMSIS-SP-00300-r3p2-00rell
4 | CMSIS
. Documentation
. DSP_Lib
. Include
. Lib
, RTOS
, SVD

. Device

Folder: Include

Figure 22. Using the File System Option to Add the Base CMSIS Include Directory to the Compiler's
#include Search Path

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 25

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

ARM Example Projects

I

TEXAS
INSTRUMENTS

www.ti.com

10. Select the on option from the Place each function in a separate subsection (--gen_func_subsections, -
ms) drop-down menu (see Figure 23), in the Runtime Model Options panel.

P

'+ Properties for ti_cortexM4_arm_matrix_example

type filter text

General
4 Build
4 ARM Compiler

Precessor Qptions

Optimization

Include Qptions

MISRA-C:2004

ULP Advisar

4 Advanced Options
Advanced Debug Options
Language Options
Parser Preprocessing Opti
Predefined Symbols
Diagnostic Options
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt
Assembler Options
File Type Specifier
Directory Specifier
Default File Extensions
Comrnand Files
> ARM Linker
ARM Hex Utility [Disabled]

4 (L 2

oy .
';3,' Show advanced settings

Runtime Model Options

ir
q
(o]
1
4

Configuration: [Debug [Active]

VJ IManage Configurations...l

Place each function in a separate subsection (--gen_func_subsections, -ms) on -
Use linker-generated file to remove dead functions (--use_dead_funcs_list)

Allow reassociation of sat arithmetic (--sat_reassoc) off -
Allow reassociation of FP arithmetic (--fp_reassoc) off -

[T Enums may be char/short, instead of int (--small_enum, --small-enum)

["] Enable dynarnic stack overflow checking (--stack_overflow_check, -mo)

Set the size (in bits) of the C/C++ type wchar_t (16,32) (--wchar_t)

Specify whether constants can be embedded in code sections (--embedded_constants)
[7] Generates SIMD instructions targeting MNeon (--neon)
Specify length of maximum branch chain (--max_branch_chain, -ab)

[F] Chars signed by default (--signed_chars, -mc)
No dual state support (--disable_dual_state, -md)
[T Compile for breakpoint-based profiling (--profile:breakpt)

Generate unaligned leads and stores (--unaligned_access)
Designate enum type (Default is packed for EABI) (--enum_type)
Force alignment of structures to <bytecount> bytes (--align_structs)

Reserve as global register (--global_register, -r)
[T Compile for power profiling (--profile:power)
|| Enable 16 bit code (--thumb_state, -mt)

Use ELF commen symbels (--common)

Specify how to treat plain chars (signed/unsigned) (--plain_char)

[T] Prevent generation of branch chains in Thumb mode (--disable_branch_chaining)

=
=Y

II

Q
=]
4

packed

unsigned

Q
=]

[ok

|| cance |

Figure 23. The Runtime Model Options Set Up for Compiling the Example Projects

11. Open the File Search Path panel in the ARM Linker section.

12. Create an entry for the precompiled CMSIS DSP binary (.lib) that will be used in the Include library file
or command file as input (--library, -I) area (see Figure 24). For this example, the library file created in
section three will be used, so click on the Add... button, then the File system... button and navigate to
the location of the .lib you want to use. If you built the precompiled binary from scratch as detailed in
section 3 without changing the default project location, the .lib will be found at
C:\Users\<user_name>\CCS workspaces\<your workspace>\dsplib-cm4f\Debug\dsplib-cm4f.lib. When
you have found the binary, click Open, then OK.

26 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs

SPMA041G-January 2012—Revised October 2015

Submit Documentation Feedback

Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com

ARM Example Projects

-

we Properties for ti_cortexM4_arm_matrix_example

HEI=~

type filter text

General
4 Build
4 ARM Compiler
Processor Options
Optimization
Include Options
MISRA-C:2004
4 Advanced Options
Advanced Debug Options
Language Options
Parser Preprocessing Opti
Predefined Symbols
Diagnostic Options
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt
Assembler Options
File Type Specifier
Directory Specifier
Default File Extensions
Command Files
4 ARM Linker
Basic Options
File Search Path
> Advanced Options
ARM Hex Utility [Disabled]

< I | b

File Search Path

v v ow

Configuration: |Debug [Active]

'] [Manage Configurations...]

Include library file or command file as input (--library, -1)

Add <dir> to library search path (--search_path, -i)
"$CG_TOOL_ROOT}lib"

"${CG_TOOL_ROOT}include"

Reread libraries; resolve backward references (--reread_libs, -x)
[] Search libraries in priority order (--pricrity, -priority)
[Disable automatic RTS selection (--disable_auto_rts)

£ & 8 i L

£ & 8 il ¢

@ Show advanced settings

ok || cancel |

Figure 24. The Linker's File Search Path Modified to Include the dsplib Binary Compiled in Section 3

SPMA041G-January 2012—Revised October 2015

Submit Documentation Feedback

Copyright © 2012-2015, Texas Instruments Incorporated

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 27

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

ARM Example Projects

13 TEXAS
INSTRUMENTS

www.ti.com

4.4 Building, Running, and Verifying the Project

Once the project has been created, the source code has been added to the work space, and the project
properties have been properly configured, the project can be built by right clicking on it in the Project

Explorer and selecting Build Project.
If this is the first time that Code Composer Studio is being used to connect to a

target via the Stellaris In-

Circuit Debug Interface, it might be necessary to install the proper drivers before it is possible to connect
to the target to run code. Instructions for doing this can be found in the Code Composer Studiov6.1 Quick
Start Guide, available at http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v6.

Once the code has been built and the proper drivers have been installed, you can run your code by using

the following steps:
1. Press the Debug icon in the Code Composer Studio toolbar (see Figure 25).

'+ CCS Edit - ti_cortexMd4_arm_matrix_example/arm_matrix_example_f32.c - Code Composer Studio =] S|
File Edit View Navigate Project Scripts Run Window Help
LRS- ®| v :‘ PR = Quick Access | B9 | [Eccsedn]) % CCsDebug
[Project Explorer 52 A% Y = O [§ am_matieample f32.c 53 = B g Outline 52 = 8
s I
> = dsplib-cméf ettt - SRR e ¥ T
2 yright (- ARM Limited. All rights reserved.
4 'E;ti_cortexMtl_arm_matrhﬁ_mmple [Active - Debug] Copyright (C) 2010-2612 AR imited 11 righ sserved = arm_math.h -
> 3, Binaries SDate: 17. January 2813 2 math_helperh
> [l Includes $Revision: V1.4.8 # SNR_THRESHOLD
» (= Debug cons 32

i

s
=

Project: CMSIS DSP Library

> targetConfigs
& targ 9 Title: arm_motrix_example_f32.c

> [§ arm_matrix_example_f32.c
> [§; math_helper.c Description: Example code demonstrating least square it to dats
> [€ tm4c1294ncpdt_startup_ccs.c 11 using matrix functions
+ [tmécl294ncpdt.cmd 12

13* Target Processor: Cortex-M4/Cortex-M3

<

B Console 52 &@‘ .EI-_\E[:] ulfa'fj":
CDT Build Consele [ti_cortexM4_arm_matrix_example]
--preproc_dependency="tméc1294ncpdt_startup_ccs.pp” ../ UW4c1Z9ancpdt_startup_ccs.c

'Finished building: ../tm4c1294ncpdt_startup_ccs.c'

‘Building target: ti_cortext4_arm_matrix_example.out’

‘Inveoking: ARM Linker®

"c:/ti/ccsv6/tools/compiler/arm_5.1.8/bin/armcl” -my7M4 --code_state=16 --float_support=FPv4SPD16
--abi=eabi -me -02 -g --gcc --define=ccs="ccs" --define=PART_TMAC1294NCPDT --define=ARM_MATH_CM4
--define=_ FPU_PRESENT=1 --display_error_number --diag_warning=225 --diag_wrap=off

--gen_func_subsections—on --ual -z -m"ti_cortextd_arm_matrix_sxample.map” --heap_sizeg
--stack size=512 -i"c:/ti/ccsv6/tools/compiler/arm 5.1.8/1ib"
-i"e¢:/ti/cesve/tools/compiler/arm 5.1.8/include” --reread libs --warn_sections
--display_error_number --diag wrap=off
-—xml_link_info="ti_cortexM4_arm_matrix_example_linkInfo.xml" --rom model -o
"ti_cortexi_arm_matrix_example.out” "./arm_matrix_example_f32.0bj" "./math_helper.obj"
"./tmdc1294ncpdt_startup_ces.obi” "../tmac1294ncpdt.cmd” -1"1libc.a"
-1"C:\Users\a@876236\workspace_v6_@\dsplib-cmdf\Debughdsplib-cmaf.1ib"™

<Linking>

"Finished building target: £1_cortes_arm_matrix_example.out’

#=%% Bujld Finished ****

m b

ti_cortexM4_arm_matrix_example &

B ERM-"CE2 8l 9

®
L]
®
@

X f32: float32]
- @ xRef_f32: const float32_t[]
b @ snr:floatan s -

[} o Advice 52 [I Probl.. =3 Progr.. = O
“ Jitems

Description

. 1 Optimization Advice (3 items)

m

- [. r
 Full License :

132pm | |

S 14

Figure 25. The Debug Context Being Displayed After the arm_matrix_example Project has Been Set Up

for Debugging

28

Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs SPMA041G-January 2012—Revised October 2015

Copyright © 2012-2015, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v6

i3 TEXAS
INSTRUMENTS

www.ti.com ARM Example Projects

2. It takes a moment for Code Composer Studio to connect to the MCU and download the code. Once
the connection has been established and the flash programmed with the compiled project code, the
MCU will run until it reaches the project’s main() function (see Figure 26). Press the Resume button (or
F8) to cause the program to start executing.

%5 Debug &2 ¥ =8
4 We ti_cortexbd_arm_matrix_example [Code Composer Studio - Device Debugging]
4 g Stellarlsln Circuit Debug Interface/CORTEX_M4_0 (Suspended - HW Breakpoint)
= main() at arm_matrix_example_f32.c:162 0:00000CES
_c_intd0() at boot.asmi217 000001142 (_c_intd) does not contain frame information)

@ arm_matrix_sxample_f32.c &3

146 int32_t main(void)

71
0

149 arm_matrix_instance_f32 A; ., Instance */

158 arm_matrix_instance_f32 AT; AT(A transpose) instance */

151 arm_matrix_instance 32 ATMA; MA(AT multiply with A) instance */

152 arm_matrix_instance 32 ATMAI; MAI({Inverse of ATMA) instance */

153 arm_matrix_instance f32 B; 'nstance */

154 arm_matrix_instance_f32 X; nknown Matrix) instance */

155

156 wint32_t srcRows, srcColumns; /* Temporary variables */

157 arm_status status;

158

159 /* Initialise A Matrix Instance with numRows, numCols and data array(a_f32) */

1z8 srcRows = 4;

161 srcColumns = 4;

152 arm mat_init f32(&8A, srcRows, srcColumns, (flocat32 t *)A £32);

163

4

& Console &3 =™ Eﬁ| e Bl v = B [Problems
ti_cortexM4d_arm_matrix_example 0 items
CORTEX_M4 @: GEL Output: “ Description

Memory Map Initialization Complete

- Fi |

Figure 26. The arm_matrix_example Project, After it has Been Loaded Into Flash and the Startup Code
has run to the main() Function

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 29

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

ARM Example Projects www.ti.com

3. After a few seconds have passed, the program will run to completion (see Figure 27). Press the
suspend button, which will halt the processor and show you what line of code is being executed.

ﬁi Debug &3
a we ti_cortexM4_arm_matrix_example [Code Composer Studio - Device Debugging]
4 i Stellaris In-Circuit Debug Interface/CORTEX_M4_0 (Suspended)
= main() at arm_matrix_esxample_f32.c:230 000000082
_c_int00() at boot.asm:217 000001142 (_c_int00 does not contain frame information)

@ arm_matrix_example_f32.c 3
status = ARM_MATH TEST_FAILURE;

b

I =
oo
et

]

*s Loop here if the signals fail the PASS check.

2
2
21
22
221
222
223 “* Thisz denotes a test failure
g
225 if(status != ARM MATH SUCCESS)
226
227 while(1};
228}
229
230| while(1); /* main function does not return */
231}
232
233 * ‘endlink
234
4
El Console 33 IIQE|=‘5'E'L=?':E
ti_cortexMd_arm_matrix_sxample
CORTEX_M4 @: GEL Output: -

Memory Map Initialization Complete

Writable Smart Insert

Figure 27. The arm_matrix_example Project Having Run to Successful Completion

4. For every function other than the class marks example, the program will have halted in one of two
while loops. If the program did not successfully execute, it will be caught in a while loop surrounded by
an if statement with a test condition of (status |= ARM_MATH_SUCCESS). If the program did
successfully execute, it is caught in a while loop found immediately after the previously mentioned if
statement. For the class marks example, there is no built in method by which the microcontroller’s
execution state can be verified.

30 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs SPMA041G—January 2012—Revised October 2015

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com ARM Example Projects

45 Source Code Modifications

For almost all of the ARM example projects, the above steps can be followed in a similar manner to build
and run the ARM-provided source code. There is one project, though, that require modifications to the
source code to properly build and run on the TM4C123G Launchpad.

The linear interpolation example contains a table of values meant to represent a waveform of sin(x) as x
goes from negative pi to 2*pi by increments of 0.00005. This granularity causes the resulting compiled
binary to be too large in size for the TM4C series launchpad. An alternate data file,
ti_linear_interp_data_37968.c, has been provided along with this application report that represents the
same array given increments of 0.00025 instead. This causes the compiled binary to be small enough to
fit into a part with a flash size of 256 kB and an SRAM size of 32 kB for the TM4C123 Platform devices.
This necessitates a change in the linear interpolation example code as well (as the size and name of the
statically allocated array has been changed), so when adding the source code for this example, it is
necessary to use the ti_linear_interp_example_f32.c file included with this application report

The linear interpolation example also contains a bug that might cause it to give the appearance of failing
when executing. The purpose of the example is to show the difference in accuracy that can be achieved
by using the CMSIS DSP library’s linear interpolation sin function, which uses both cubic interpolation and
linear interpolation to derive its return values, and the library’s standard sin function, which uses only cubic
interpolation. The method that is used to compare the accuracy of these two functions is to calculate the
signal-to-noise ratio of both signals with respect to a pre-calculated signal that is known to be correct.
Unfortunately, the method of using linear interpolation gives a result that almost exactly matches the pre-
calculated signal, which causes the SNR function to attempt to take the log of a value divided by 0. As
such, the function’s self-test method cannot be assumed trustworthy. The user should instead use the
debugger to verify that the 10-element-long arrays representing the sin values are indeed more accurate
when using the linear interpolation functions than when using the standard functions. This can be done
using the following steps:

1. Select the Expression view in the Code Composer Studio debugger context

2. Click Add new expression, and type in testRefSinOutput32_f32. This will add the array containing the
pre-calculated reference sin output to the expressions list.

3. Click the arrow to the left of testRefSinOutput32_f32 to display all elements of the array.

4. Click Add new expressions, and type testOutput. This will add the array containing the sin values as
calculated by the CMSIS DSP_Lib sin function that uses cubic interpolation to the expression list.

5. Click the arrow to the left of testOutput to display all elements of the array.

6. Click Add new expressions, and type testLinIntOutput. This will add the array containing the sin values
as calculated by the CMSIS DSPIib that uses both cubic and linear interpolation sin function to the
expression list.

7. Click the arrow to the left of testLinIntOutput to display all elements of the array (see Figure 28).

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 31

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS

INSTRUMENTS
Conclusion www.ti.com
()= Variables | & Expressions £3 | ifi} Registers S A= R Ay =0
Expression Type Value Address
4 [testRefSinOutput32_f32 float[10] 0x200001C0 0x200001C0
9= [0] float -0.6049607 0x200001C0
()= [1] float -0.5970903 0x200001C4
)= [2] float 01871404 0x200001C8
()= [3] float 04187721 0x200001CC
()= [4] float -0.9885888 0x200001D0
(9= [5] float 0.9763384 0x200001D4
)= [6] float 0.9769039 0x200001D8
)= [7] float -0.05649545 0x200001DC
()= [8] float 0.4720337 0x200001E0
(9= [9] float 0.2593119 0x200001E4
4 (* testLinIntOutput float[10] 0x20000408 0x20000408
()= [0] float -0.6049607 0x20000408
()= [1] float -0.5970903 0x2000040C
9= [2] float 01871404 0x20000410
(9= [3] float 0.418772 0x20000414
()= [4] float -0.9885888 0x20000418
()= [5] float 0.9763384 0x2000041C
()= [6] float 0.9769039 0x20000420
9= [7] float -0.05649542 0x20000424
()= [8] float 0.4720336 0x20000428
()= [9] float 0.2593119 0x2000042C
4 ([testOutput float[10] 0x20000430 0x20000430
(9= [0] float -0.6049607 0x20000430
(9= [1] float -0.5970906 0x20000434
)= [2] float 0.1871404 0x20000438
)= [3] float 04187721 0x2000043C
()= [4] float -0.9885888 0x20000440
9= [5] float 0.9763384 0x20000444
()= [6] float 0.9769038 0x20000448
)= [7] float -0.05649538 0x2000044C
()= [8] float 0.4720337 0x20000450
(9= [9] float 0.2593119 0x20000454
= Add new expression
£ mn »

Figure 28. Using the Debugger to Examine the Results of the linear_interp_example Project

8. If you manually examine the values stored at each element, you will see that for the most part, the sin
values calculated using both cubic and linear interpolation are closer to the reference values than
those calculated using only cubic interpolation. In the example above, this is especially noticeable on
element 7 of the output arrays.

5 Conclusion

Using the information provided in this document, combined with the resources available from ARM'’s
CMSIS website, it is possible to easily and quickly implement various complex DSP algorithms. While it is
possible to code a number of these functions independently, the result would likely lead to a much greater
development time and produce less efficient code. It is highly recommended that anytime a Texas
Instruments’ TM4C or Stellaris microcontroller is being used for an application that requires complex DSP
functionality, the procedure listed here should be followed to ensure accurate, reliable, efficient code.

32 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs SPMA041G—January 2012—Revised October 2015

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

13 TEXAS
INSTRUMENTS

www.ti.com References

6 References

The following related documents and software are available on the TM4C Series web site at:
http://www.ti.com/product/tm4c1294ncpdt

e Tiva TM4C1294NCPDT Microcontroller Data Sheet (SPMS433)

» Tiva C Series TM4C129x Microcontrollers Silicon Revisions 1, 2, and 3 Silicon Errata (SPMZ850)

» The source code for the CMSIS DSP Library and example code can be downloaded from ARM’s
CMSIS website: cmsis.arm.com.

» A quick start guide for using Texas Instruments’ Code Composer Studio v6.1 can be found on the TI
processor wiki at: http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v6.

SPMA041G-January 2012—Revised October 2015 Using the CMSIS DSP Library in Code Composer Studio™ for TM4C MCUs 33

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G
http://www.ti.com/product/tm4c1294ncpdt
http://www.ti.com/lit/pdf/SPMS433
http://www.ti.com/lit/pdf/SPMZ850
http://www.cmsis.arm.com
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v6

I3 TEXAS

INSTRUMENTS

Revision History www.ti.com
Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from F Revision (May 2015) to G Revision Page
e Updates were made iN the ADSITACT. st err et s it e s saan e e ssant e s aaann e e aaannneaanns 1
e Information was updated iN SECHON 3. L. .uuuuuesiieteiriie st s s s aaas et saat et saaaa s st sanressaannessaannnssnnns 3
e Information was updated iN SECHON 3.2, . .uuuiiueiiiiria e r s s e s e st e s an e e e s s e r e rneaas 3
e Information was updated iN SECHON 3.4 ... uiiiiiie i r e ra et s e e s traaae et saaate s saann e st sanresaaannesaaanneernnns 7
e Information was updated iN SECHON 4. 6.ueeiiiiet ittt a e st r st e s s s s s s s aa s s s s aaan e s asannesannnnesss 15
e Information was updated iN SECHON 4.3,u ittt e r et s e n et 20
34 Revision History SPMA041G—January 2012—Revised October 2015

Submit Documentation Feedback
Copyright © 2012-2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA041G

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “Tl Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.

TI's provision of Tl Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for Tl
products, and no additional obligations or liabilities arise from TI providing such Tl Resources. Tl reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such Tl products as used in such applications. Tl has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the Tl product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TlI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS I1S” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, Tl products and services.
These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Using the CMSIS DSP Library in Code Composer Studio for TM4C MCUs
	1 Introduction
	2 CMSIS DSP Library
	3 Building the DSP Library in Code Composer Studio v6.1
	3.1 Adding the CCS-Required Header Files to the DSP Libraries
	3.2 Creating the dsplib Project
	3.3 Adding the dsplib Source Code
	3.4 Editing the dsplib Project Settings
	3.5 Building the dsplib Source Code

	4 ARM Example Projects
	4.1 Creating the ARM Example Projects
	4.2 Adding the Example Source Code
	4.3 Editing the Example Project Settings
	4.4 Building, Running, and Verifying the Project
	4.5 Source Code Modifications

	5 Conclusion
	6 References

	Revision History
	Important Notice

