I3 TEXAS

INSTRUMENTS

MSP432® Peripheral Driver Library

USER’S GUIDE

Copyright © 2019 Texas Instruments Incorporated.

Copyright

Copyright © 2019 Texas Instruments Incorporated. All rights reserved. MSP430/MSP432 and MSPWare are trademarks of Texas Instruments Instru-
ments. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property

of others.

APlease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

®
Texas Instruments "

13532 N. Central Expressway MS3810 l TEXAS

Dallas, TX 75243

www.ti.com/ INSTRUMENTS FN\:{Y

ortex

Intelligent Processors by ARM”

B POWERED

Revision Information

This is version 4.40.00.03 of this document, last updated on Wed Aug 14 17:01:15 -05 2019.

Wed Aug 14 17:01:15 -05 2019 1

www.ti.com/

Table of Contents

Table of Contents

Copyright e e e e e e e
Revision Information o 000 o e,
1 DriverLib Introduction
1.1 WhatDriverLibis.
1.2 What DriverLibisnot
1.3 Cross Module Considerations
1.4 DriverLibin ROM
1.5 MSP430Legacy APIs
1.6 QuickStart e
2 14-Bit Analog-to-Digital Converter (ADC14)
2.1 Module Operation e
2.2 ConversionModes
23 RepeatModes e
24 ConversionofResults
2.5 Programming Example oo
2.6 Definitions
3 Advanced Encryption Standard 256 Module (AES256)
3.1 Module Operation
3.2 KeyFeatures
3.3 Encryption/Decryption Cycle Times
3.4 Programming Example oo
3.5 Definitions
4 Analog Comparator (COMP_E),
41 Module Operation e
4.2 Programming Example o
4.3 Definitions
5 Cyclic Redundancy Check32(CRC32)
5.1 Module Operation
5.2 Programming Example
5.3 Definitions
6 ClockSystem (CS) i i i i e e e e e e
6.1 Module Operation
6.2 Timeout Parameters
6.3 CustomDCO Frequency
6.4 Specifying External Crystal Frequencies
6.5 Programming Example oL
6.6 Definitions
7 Direct Memory Access Controller(DMA)
7.1 Module Operation e
7.2 Programming Example
7.3 Definitions
8 Flash Memory Controller (FlashCtl)
8.1 Module Operation
8.2 Flash Controller Limitations
8.3 Wait State Considerations
8.4 Programming Example

OO0 NOOORrAPWW = =

Wed Aug 14 17:01:15 -05 2019

Table of Contents

8.5

9.1
9.2
9.3
9.4
9.5

10

10.1
10.2
10.3

11

11.1
11.2
11.3
11.4

12

12.1
12.2
12.3
12.4
12.5
12.6

13

13.1
13.2
13.3
13.4

14
14.1
14.2

15

15.1
15.2
15.3
15.4

16

16.1
16.2
16.3
16.4
16.5
16.6
16.7

17

17.1
17.2
17.3

18

Definitions 102
Flash Memory Controller (FlashCtl,) o oottt e e e e e n s 121
Module Operation e e e e 121
Flash Controller Limitations e 121
Wait State Considerations e 121
Programming Example 122
Definitions e e 123
Floating Point Unit (FPU) o o i i e e e e e e e e e e e e e e e e 138
Module Operation e 138
Programming Example e 139
Definitions L e 140
General Purpose Input/Output (GPIO) i ittt e e e e e e e e e e 145
Module Operation e e e e 145
Key Features L 145
Programming Example e 146
Definitions 147
Inter-Integrated Circuit (I2C) i i it i e e e e e e e e e 178
2C Module Operation o e e 178
Master Operation e e e e 178
Slave Operation e 179
Timeout Parameters e e e e 180
Programming Example e 180
Definitions L e 181
Nested Vector Interrupt Controller (NVIC) i ittt e e n s 213
Module Operation e e e 213
Basic Operation Modes 214
Programming Example e e 214
Definitions 215
LCD Module (LCD_F) i ittt ettt e e e e e e e e et e e e e e e e a e e 225
Module Operation e e e 225
Definitions 226
Memory Protection Unit (MPU) i e e e e e 245
Module Operation e e e 245
Module Operation e e e e e 245
Programming Example e 246
Definitions e e e e 247
Power Control Module (PCM) i i it e e e e e e e e e e e e e e 254
Module Operation e e e 254
Switching States 254
Switching Modes/Levels 254
Low Power Mode and State Retention 255
Enabling/Disabling Rude Mode e 255
Programming Example e 256
Definitions e e e e e e 257
Port Mapper (PMAP) i e e e e e e e e e e e e 272
Module Operation e e e 272
Programming Example e 272
Definitions e e s 273
Power Supply System (PSS) i i e e e e e e e e 275

Wed Aug 14 17:01:15 -05 2019 3

Table of Contents

18.1
18.2
18.3

19

19.1
19.2
19.3

20

20.1
20.2
20.3
20.4

21

21.1
21.2
21.3

22

22.1
222
22.3
224

23

23.1
23.2
23.3

24

241
24.2
24.3

25

251
252
25.3

26

26.1
26.2
26.3
26.4

27

271
27.2
27.3
27.4

28

28.1
28.2
28.3

29
29.1

Module Operation e 275
Programming Example e 275
Definitions e e s 276
Reference Module (REF_A) o o i i i i e e e e e e e e e e e e e 282
Module Operation e e e 282
Programming Example 282
Definitions 283
Reset Controller (ResetCtl) o i i i i i e e e e e e e e e 288
Module Operation e 288
Reset Sources e 288
Programming Example e 288
Definitions e 290
Real TIMe CIock (RTC_C) ¢ i i f e 298
Module Operation e e e 298
Programming Example e 299
Definitions 300
Serial Peripheral Interface (SPI) o i i i i e e e e e e e e e e 313
Module Operation e e e 313
Basic Operation Modes e 313
Programming Example e 314
Definitions L 315
System Control Module (SysCtl) o i i e 349
Module Operation e e 349
Programming Example e 349
Definitions 350
System Control Module (SysCtl4) o o o i i i e e e 361
Module Operation 361
Programming Example e 361
Definitions L e 362
System Tick (SySTiCK)« .« o i it s e e e e e e e e e e e 373
Module Operation e 373
Programming Example e 373
Definitions L e 374
32-bit ARM Timer (Timer32) o i i i et i et e e e e e e e s e e e e e e e e e e 378
Module Operation e e e 378
Basic Operation Modes e 378
Programming Example e 379
Definitions e 380
16-Bit Timer with Precision PWM (Timer_A) i o i it e e e e e e e e s 388
Module Operation e e e e 388
Basic Operation Modes e e 388
Programming Example e 389
Definitions e e 390
Universal Asynchronous Receiver/Transmitter (UART) 420
Module Operation e e e 420
Programming Example 421
Definitions e e 422
Watchdog Timer (WDT _A) o i ittt e et e e e e e e e e e e n e 437
Module Operation e 437

Wed Aug 14 17:01:15 -05 2019 4

Table of Contents

29.2 Watchdog Mode e e 437
29.3 Interval Mode e e 437
29.4 Setting Reset Type e 438
29.5 Programming Example 438
29.6 Definitions 439
IMPORTANT NOTICE e e e e et e e e e e e e et e e e e e e 444

Wed Aug 14 17:01:15 -05 2019 5

DriverLib Introduction

1 DriverLib Introduction

What DriverLibD IS ..o e e 3
What DriverLib I8 MOt ..o e e 4
Cross Module ConSIderationsuiuiti e e e e e e e 4
DrVErLiD N ROM .. e e 5
MSPAB0 Legacy AP IS ..o 5
QUICK STart . 7

1.1 What DriverLib is

The Texas Instruments MSP432 Driver Library (DriverLib) is a set of fully functional APIs used to
configure, control, and manipulate the hardware peripherals of the MSP432 platform. In addition
to being able to control the MSP432 peripherals, DriverLib also gives the user the ability to use
common ARM peripherals such as the Interrupt (NVIC) and Memory Protection Unit (MPU) as well
as MSP430 peripherals such as the eUSCI Serial peripherals and Watchdog Timer (WDT).

DriverLib for MSP432 Series has been tested and compiled under a variety of different toolchains.
Subsequently, for each toolchain a specific debugger was used for testing validation. Below is a
list that contains the supported toolchain and corresponding hardware debugger used.

m Texas Instruments Code Composer Studio 6.1 (XDS100v3)

= |AR Embedded Workbench for ARM 7.30 (SEGGER J-LINK)

m GNU C Compiler 4.8 (gcc) (SEGGER J-LINK)

m Keil Embedded Development Tools for ARM 5.13 (KEIL U-LINK Pro)

The DriverLib is meant to provide a "software" layer to the programmer in order to facilitate higher
level of programming compared to direct register accesses. Nearly every aspect of a MSP432
device can be configured and driven using the DriverLib APIs. By using the high level software
APIs provided by DriverLib, users can create powerful and intuitive code which is highly portable
between not only devices within the MSP432 platform, but between different families in the
MSP430/MSP432 platforms.

Writing code in DriverLib will make user code more legible and easier to share among a group. For
example, examine the following pair of code snippets. Both sets of code set MCLK to be sourced
from VLO with a divider of four:

Traditional Register Access

CSKEY = 0x6954;
CSCTL1 |= SELM_1 | DIVM_2;
CSKEY = 0;

DriverLib Equivalent

CS_initClockSignal (CS_MCLK, CS_VLOCLK_SELECT, CS_CLOCK_DIVIDER_32);

As can be seen, the DriverLib API is readable, sensible, and easy to program for the software
engineer. Additionally, DriverLib APlIs for other platforms such as MSP430 will use very similar (if
not identical) APls giving code written with DriverLib APls a boost in portability.

Wed Aug 14 17:01:15 -05 2019 6

DriverLib Introduction

1.2 What DriverLib is not

The Driver Library is not meant to provide a layer of intelligence on the level of a user application.
It is meant to be an aid to the programmer to be part of the larger solution- not the solution itself.

Interrupt handlers are also not included with the DriverLib APIs. APIs to manage/enable/disable
interrupts are included, however the actual authoring of the interrupt service routine is left up to
the programmer. For reference, A typical interrupt handler that takes advantage of DriverLib APIs
can be seen in the following code snippet:

void port6_isr (void)
{
uint32_t status = GPIO_getEnabledInterruptStatus (GPIO_PORT_P6) ;

GPIO_clearInterruptFlag (GPIO_PORT_P6, status) ;
(status & GPIO_PIN7)

(powerStates[curPowerState] == PCM_LPM3)
{

curPowerState = 0;
}

stateChange = true;

1.3 Cross Module Considerations

Each DriverLib module will, for the most part, only interact and configure the module that it is
designed for. Any cross-module interaction is left up to the user. For example, when changing
power modes to a low frequency mode with the PCM module, the user will have to ensure that the
proper frequency requirements are configured with the CS module (low frequency requires that
the system frequency be no greater that 128Khz).

Calling the following API alone while MCLK is greater that 128Khz will result in a system error:

PCM_setPowerState (PCM_AM_LF_VCORE1L) ;

This is because the DriverLib module will not account for the overall system frequency of the
system. Instead, similar APls to the following must be called in conjunction:

CS_setReferenceOscillatorFrequency (CS_REFO_128KHZ) ;
CS_initClockSignal (CS_MCLK, CS_REFOCLK_SELECT, CS_CLOCK_DIVIDER_1);
PCM_setPowerState (PCM_AM_LF_VCOREL) ;

Cross-module considerations such as these must be taken when programming with DriverLib APls
as DriverLib was not designed to account for high level system requirements.

Wed Aug 14 17:01:15 -05 2019 7

DriverLib Introduction

1.4 DriverLib in ROM

With all MSP432 devices, a copy of DriverLib is included within the device’s ROM space. This
allows programmers to take advantage of using high level APls without having to worry about
additional memory overhead of a flash library. In addition to a more optimized execution, the user
can drastically cut down the memory footprint requirement of their application when using the
software Driver Libraries available in ROM.

Accessing Driver Library APIs in ROM is as easy as including the rom.h header file, and then
replacing normal API calls with a ROM_ prefix. For example, take the following API from the pcm.c
module that changes the power state to PCM_AM_DCDC_VCORE1:

PCM_setPowerState (PCM_AM_DCDC_VCOREL) ;

After including the rom.h file, all that would have to be done to switch to the ROM equivalent of the
APl would be add the ROM__ prefix to the API:

ROM_PCM_setPowerState (PCM_AM_DCDC_VCOREL) ;

While the majority of DriverLib APIs are available in ROM, due to architectural limitations some
APls are omitted from being included in ROM. In addition, if any bug fixes were added to the API
after the device ROM was programmed, it is desirable to use the flash version of the API. An
"intelligence" has been created to account for this problem. If the user includes the rom_map.h
header file and uses the MAP_ prefix in front of the API, the header file will automatically use
preprocessor macros to decide whether to use a ROM or flash version of the API.

MAP_PCM_setPowerState (PCM_AM_DCDC_VCOREL) ;

1.5 MSP430 Legacy APIs

Since the MSP432 platform is built with many modules from Texas Instruments’ MSP430 platform,
many shared modules exist between MSP430 and MSP432. For this reason, a "compatibility"
layer is provided to provide between the MSP430 Driver Library and the MSP430 Driver Library.
The following modules are shared between MSP432 and MSP430:

m AES256

m COMP_E

m CRC32

m GPIO

m EUSCI_A_SPI (SPI)
m EUSCI_A_UART (UART)
m EUSCI_B_I2C (12C)
m EUSCI_B_SPI (SPI)
= PMAP

m REF_A

m RTC C

Wed Aug 14 17:01:15 -05 2019 8

DriverLib Introduction

= TIMER_A
s WDT_A

To use these legacy APIs, no additional work is needed. All that is needed is to include the header
file of the module you want to use and both the old and the new APIs will be available. For
example, for WDT_A:

#include <wdt_a.h>

By including this header file, the user is granted access to all of the legacy DriverLib APIs from
MSP430 Driver Library verbatim. For additional documentation on the MSP430 implementation of
DriverLib, please refer to the MSP430Ware Website.

Many of the APls were simplified and refactored for the MSP432 version of Driver Library. For
example, to halt the watchdog module for a 5xx MSP430 device, the following API is used:

WDT_A_hold (WDT_A_BASE) ;

Wed Aug 14 17:01:15 -05 2019 9

http://www.ti.com/tool/msp430ware

DriverLib Introduction

For MSP432 Driver Library, this same API has been simplified to the following API:

WDT_A_holdTimer () ;

Note that while many Driver Library APIs are shared between MSP430 and MSP432, there are a
few underlying differences between the two architectures. Interrupts, for example, are a bit
difference on MSP432 compared to MSP430 due to integration with ARM’s interrupt controller (the
NVIC). While each module will still have individual status (IFG), enable/disable, and clear bits,
interrupt service routines now have to be associated with the ARM NVIC before usage.

1.6 Quick Start

Getting started using DriverLib for MSP432 Series is very simple regardless of the chosen
development environment.

An empty "skeleton" project is provided in the examples directory of the SDK release. This project
includes links to the DriverLib library as well as everything that is needed for the programmer to
immediately start writing a DriverLib application. A user can import this project in CCS using the Tl
Resource Explorer, or open the workspace with IAR Embedded Workbench for ARM or KEIL
uVision 5. All of the include paths and compiler options are set up to allow the user to seamlessly
start development on their MSP432 DriverLib application.

The GNU compiler tools for ARM are fully supported by the MSP432 Series DriverLib. While no
IDE in specific is supported, Makefiles are provided for both the library and all of the code
examples. Vector table definitions that are compatible with the GCC compiler are also provided for
code examples in the startup_gcc.c file for each individual code example. For the GNU tools,
separate header files are included in the inc directory of the root installation of DriverLib. These
header files are the latest that are available at the time of DriverLib release, however newer
header files may be downloaded as a part of the CCS installation.

Wed Aug 14 17:01:15 -05 2019 10

14-Bit Analog-to-Digital Converter (ADC14)

2.1

2.2

14-Bit Analog-to-Digital Converter (ADC14)

MOAUIE OPEIAtIONttt et e e e e e e e e e 8
(0707 0177= 2] T 1Y/ o T [T 8
REPEAt MOOES ...t e e e 9
CoNVErSioN Of RESUILS . ..ot e e e 10
Programming EXamiple 10
Dl ONS . 11

Module Operation

The ADC14 module for Driver Library is designed to allow the user to make simple analog to
digital conversions as well make complex and simultaneous conversions across multiple channels.

Conversion Modes

With Single Conversion Mode, the user will sample only a single ADC channel which will be stored
in a single ADC memory location. This is the most basic ADC sample/convert mode and allows for
very simple measurements on a single channel. To configure single sample mode, only a single
destination is configured for the sample/conversion result. The following is a code snippet for
configuring/initializing the ADC module in single conversion mode as well as kicking off the start of
conversion/sampling.

Wed Aug 14 17:01:15 -05 2019 11

14-Bit Analog-to-Digital Converter (ADC14)

2.3

When using single sample mode, only one memory location will be written for a
conversion/sample cycle. To access the result of this conversion, the ADC14_getResult APl is
used with the corresponding memory location specified. This is usually done within the interrupt
service routine of the ADC module.

The ADC14 APlIs also support the setup/configuration of multiple conversion mode. With multiple
conversion mode, multiple ADC channels are sampled and stored in multiple ADC memory
addresses in a single sweep. This is particularly useful when the user wants to take a sample of
multiple channels over a period of time (also known as scan mode). The
ADC14_getMultiSequenceResult function is used to populate the given array pointer with the
result over a wide memory arrange (setup with ADC14_configureMultiSequenceMode).

Repeat Modes

When configuring the ADC module to use multiple or single sample/conversion mode, a boolean
argument is provided to signal whether the DriverLib ADC module should work in "repeat” mode.
With repeat mode, once a conversion/sample is completed and read by the API, a new conversion
happens until the user manually stops conversion using the ADC14_toggleConversionTrigger
command. Repeat mode is useful when the user wants to continuously sample an ADC channel
over an extended period of time.

When repeat mode is specified to be false, whenever a conversion/sample is finished and read
from the result register, the module will stop conversion until called by the
ADC14_toggleConversionTrigger function.

Wed Aug 14 17:01:15 -05 2019 12

14-Bit Analog-to-Digital Converter (ADC14)

24

2.5

Conversion of Results

When reading a result of an ADC14 conversion, it is important to note that the result will be
relevant to the current resolution of the ADC14 device. For example, say the ADC14 module is
setup with a 14-bit resolution and a positive reference of 2.5v (and a negative of Ov). In this case, if
the conversion result of 16383 would signify a value of 2.5v (if in unsigned) mode. A snippet of
code that converts the conversion result in the ADC register to a real life value can be seen in the
following:

It is important to note that when using floating point arithmetic, it is important to enable the devices
FPU (if available) to save CPU cycles and energy consumption.

Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the ADC14 module. These code examples are accessible under the examples/ folder of the
SDK release as well as through Tl Resource Explorer if using Code Composer Studio. These
code examples provide a comprehensive list of use cases as well as practical applications
involving each module.

Below is a very brief code example showing how to configure the ADC14 module in single sample
mode. For a set of more detailed code examples, please refer to the code examples in the
examples/ directory of the SDK release:

Wed Aug 14 17:01:15 -05 2019 13

14-Bit Analog-to-Digital Converter (ADC14)

2.6 Definitions

Functions

void ADC14_clearInterruptFlag (uint_fast64_t mask)

bool ADC14_configureConversionMemory (uint32_t memorySelect, uint32_t refSelect,
uint32_t channelSelect, bool differntialMode)

bool ADC14_configureMultiSequenceMode (uint32_t memoryStart, uint32_t memoryEnd,
bool repeatMode)

bool ADC14_configureSingleSampleMode (uint32_t memoryDestination, bool repeatMode)
bool ADC14_disableComparatorWindow (uint32_t memorySelect)

void ADC14_disableConversion (void)

void ADC14_disablelnterrupt (uint_fast64_t mask)

bool ADC14_disableModule (void)

bool ADC14_disableReferenceBurst (void)

bool ADC14_disableSampleTimer (void)

bool ADC14_enableComparatorWindow (uint32_t memorySelect, uint32_t windowSelect)
bool ADC14_enableConversion (void)

void ADC14_enablelnterrupt (uint_fast64_t mask)

void ADC14_enableModule (void)

bool ADC14_enableReferenceBurst (void)

bool ADC14_enableSampleTimer (uint32_t multiSampleConvert)

uint_fast64_t ADC14_getEnabledInterruptStatus (void)

uint_fast64_t ADC14_getInterruptStatus (void)

void ADC14_getMultiSequenceResult (uint16_t xres)

uint_fast32_t ADC14_getResolution (void)

uint_fast16_t ADC14_getResult (uint32_t memorySelect)

void ADC14_getResultArray (uint32_t memoryStart, uint32_t memoryEnd, uint16_t xres)
bool ADC14_initModule (uint32_t clockSource, uint32_t clockPredivider, uint32_t
clockDivider, uint32_t internalChannelMask)

bool ADC14_isBusy (void)

void ADC14_registerinterrupt (void(xintHandler)(void))

bool ADC14_setComparatorWindowValue (uint32_t window, int16_t low, int16_t high)
bool ADC14_setPowerMode (uint32_t powerMode)

void ADC14_setResolution (uint32_t resolution)

bool ADC14_setResultFormat (uint32_t resultFormat)

bool ADC14_setSampleHoldTime (uint32_t firstPulseWidth, uint32_t secondPulseWidth)
bool ADC14_setSampleHoldTrigger (uint32_t source, bool invertSignal)

bool ADC14_toggleConversionTrigger (void)

void ADC14_unregisterinterrupt (void)

2.6.1 Detailed Description

The code for this module is contained in driverlib/adcl4.c, with driverlib/adcl4.h
containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 14

14-Bit Analog-to-Digital Converter (ADC14)

2.6.2 Function Documentation

2.6.2.1 void ADC14_clearInterruptFlag (uint_fast64 t mask)

Clears the indicated ADCC interrupt sources.

Parameters
mask | is the bit mask of interrupts to clear. The ADC_INTO through ADC_INT31 parameters
correspond to a completion event of the corresponding memory location. For example,
when the ADC_MEMO location finishes a conversion cycle, the ADC_INTO interrupt will
be set. Valid values are a bitwise OR of the following values:
m ADC_INTO through ADC_INT31
m ADC_IN_INT - Interrupt enable for a conversion in the result register is either greater
than the ADCLO or lower than the ADCHI threshold.
m ADC_LO_INT - Interrupt enable for the falling short of the lower limit interrupt of the
window comparator for the result register.
m ADC_HI_INT - Interrupt enable for the exceeding the upper limit of the window com-
parator for the result register.
m ADC_OV_INT - Interrupt enable for a conversion that is about to save to a memory
buffer that has not been read out yet.
m ADC_TOV_INT -Interrupt enable for a conversion that is about to start before the
previous conversion has been completed.
m ADC_RDY_INT -Interrupt enable for the local buffered reference ready signal.
Returns
NONE

2.6.2.2 bool ADC14_configureConversionMemory (uint32_t memorySelect, uint32_t
refSelect, uint32_t channelSelect, bool differntialMode)

Configures an individual memory location for the ADC module.

Wed Aug 14 17:01:15 -05 2019

15

14-Bit Analog-to-Digital Converter (ADC14)

Parameters
memorySelect | is the individual ADC memory location to configure. If multiple memory locations want to
be configured with the same configuration, this value can be logically ORed together with
other values.
= ADC_MEMO through ADC_MEM31
refSelect | is the voltage reference to use for the selected memory spot. Possible values include:
= ADC_VREFPOS_AVCC_VREFNEG_VSS [DEFAULT]
m ADC_VREFPOS_INTBUF_VREFNEG_VSS
m ADC_VREFPOS_EXTPOS_VREFNEG_EXTNEG
m ADC_VREFPOS_EXTBUF_VREFNEG_EXTNEG
channelSelect | selects the channel to be used for ADC sampling. Note if differential mode is enabled,
the value sampled will be equal to the difference between the corresponding even/odd
memory locations. Possible values are:
m ADC_INPUT_AO through ADC_INPUT_A31
differntialMode | selects if the channel selected by the channelSelect will be configured in differential mode.
If this parameter is given as true, the configured channel will be paired with its neighbor in
differential mode. for example, if channel A0 or A1 is selected, the channel configured will
be the difference between A0 and A1. If A2 or A3 are selected, the channel configured
will be the difference between A2 and A3 (and so on). Users can enter true or false, or
one of the following values:
m ADC_NONDIFFERENTIAL_INPUTS
m ADC_DIFFERENTIAL_INPUTS
Returns

false if setting fails due to an in progress conversion

2.6.2.3 bool ADC14_configureMultiSequenceMode (uint32_t memoryStart, uint32_t
memoryEnd, bool repeatMode)

Configures the ADC module to use a multiple memory sample scheme. This means that multiple
samples will consecutively take place and be stored in multiple memory locations. The first
sample/conversion will be placed in memoryStart, while the last sample will be stored in
memoryEnd. Each memory location should be configured individually using the
ADC14_configureConversionMemory function.

The ADC module can be started in "repeat" mode which will cause the ADC module to resume
sampling once the initial sample/conversion set is executed. For multi-sample mode, this means
that the sampling of the entire memory provided.

Wed Aug 14 17:01:15 -05 2019

16

14-Bit Analog-to-Digital Converter (ADC14)

Parameters

memoryStart | Memory location to store first sample/conversion value. Possible values include:
= ADC_MEMO through ADC_MEM31

memoryEnd | Memory location to store last sample. Possible values include:
m ADC_MEMO through ADC_MEM31

repeatMode | Specifies whether or not to repeat the conversion/sample cycle after the first round of
sample/conversions. Valid values are true or false.

Returns
false if setting fails due to an in progress conversion

2.6.2.4 bool ADC14_configureSingleSampleMode (uint32_t memoryDestination, bool
repeatMode)

Configures the ADC module to use a a single ADC memory location for sampling/conversion. This
is used when only one channel might be needed for conversion, or where using a multiple
sampling scheme is not important.

The ADC module can be started in "repeat" mode which will cause the ADC module to resume
sampling once the initial sample/conversion set is executed. In single sample mode, this will cause
the ADC module to continuously sample into the memory destination provided.

Parameters

memoryDesti- | Memory location to store sample/conversion value. Possible values include:
nation = ADC_MEMO through ADC_MEM31

repeatMode | Specifies whether or not to repeat the conversion/sample cycle after the first round of
sample/conversions

Returns
false if setting fails due to an in progress conversion

2.6.2.5 bool ADC14_disableComparatorWindow (uint32_t memorySelect)

Disables the comparator window on the specified memory channels

Parameters

memorySelect | is the mask of memory locations to disable the comparator window for. This can be a
bitwise OR of the following values:

= ADC_MEMO through ADC_MEM31

Wed Aug 14 17:01:15 -05 2019 17

14-Bit Analog-to-Digital Converter (ADC14)

2.6.2.6

2.6.2.7

Returns
false if setting fails due to an in progress conversion

void ADC14_disableConversion (void)

Halts conversion conversion of the ADC module. Note that the software bit for triggering
conversions will also be cleared with this function.

If multi-sequence conversion mode was enabled, the position of the last completed conversion can
be retrieved using ADCLastConversionMemoryGet

Returns
none

void ADC14_disablelnterrupt (uint_fast64 t mask)

Disables the indicated ADCC interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor. The
ADC_INTO through ADC_INT31 parameters correspond to a completion event of the
corresponding memory location. For example, when the ADC_MEMO location finishes a

conversion cycle, the ADC_INTO interrupt will be set.

Parameters
mask | is the bit mask of interrupts to disable. Valid values are a bitwise OR of the following
values:
m ADC_INTO through ADC_INT31
m ADC_IN_INT - Interrupt enable for a conversion in the result register is either greater
than the ADCLO or lower than the ADCHI threshold.
m ADC_LO_INT - Interrupt enable for the falling short of the lower limit interrupt of the
window comparator for the result register.
m ADC_HIL_INT - Interrupt enable for the exceeding the upper limit of the window com-
parator for the result register.
m ADC_OV_INT - Interrupt enable for a conversion that is about to save to a memory
buffer that has not been read out yet.
m ADC_TOV_INT -Interrupt enable for a conversion that is about to start before the
previous conversion has been completed.
m ADC_RDY_INT -Interrupt enable for the local buffered reference ready signal.
Returns
NONE

2.6.2.8 bool ADC14_disableModule (void)

Disables the ADC block.
This will disable operation of the ADC block.

Wed Aug 14 17:01:15 -05 2019

18

14-Bit Analog-to-Digital Converter (ADC14)

Returns
false if user is trying to disable during active conversion

2.6.2.9 bool ADC14_disableReferenceBurst (void)

Disables the "on-demand" activity of the voltage reference register.

Returns
false if setting fails due to an in progress conversion

2.6.2.10 bool ADC14_disableSampleTimer (void)

Disables SAMPCON from being sourced from the sample timer.

Returns
false if the initialization fails due to an in progress conversion

2.6.2.11 bool ADC14_enableComparatorWindow (uint32_t memorySelect, uint32_t
windowSelect)

Enables the specified mask of memory channels to use the specified comparator window. THe
ADCC module has two different comparator windows that can be set with this function.

Parameters

memorySelect | is the mask of memory locations to enable the comparator window for. This can be a
bitwise OR of the following values:

= ADC_MEMO through ADC_MEM31

windowSelect | Memory location to store sample/conversion value. Possible values include: AD-
COMP_WINDOWO [DEFAULT] ADCOMP_WINDOW1

Returns
false if setting fails due to an in progress conversion

2.6.2.12 bool ADC14_enableConversion (void)

Enables conversion of ADC data. Note that this only enables conversion. To trigger the
conversion, you will have to call the ADC14_toggleConversionTrigger or use the source trigger
configured in ADC14_setSampleHoldTrigger.

Returns
false if setting fails due to an in progress conversion

Wed Aug 14 17:01:15 -05 2019 19

14-Bit Analog-to-Digital Converter (ADC14)

2.6.2.13 void ADC14_enablelnterrupt (uint_fast64 t mask)

Enables the indicated ADCC interrupt sources. The ADC_INTO through ADC_INT31 parameters
correspond to a completion event of the corresponding memory location. For example, when the
ADC_MEMO location finishes a conversion cycle, the ADC_INTO interrupt will be set.

Parameters
mask | is the bit mask of interrupts to enable. Valid values are a bitwise OR of the following
values:
m ADC_INTO through ADC_INT31
m ADC_IN_INT - Interrupt enable for a conversion in the result register is either greater
than the ADCLO or lower than the ADCHI threshold.
m ADC_LO_INT - Interrupt enable for the falling short of the lower limit interrupt of the
window comparator for the result register.
m ADC_HI_INT - Interrupt enable for the exceeding the upper limit of the window com-
parator for the result register.
m ADC_OV_INT - Interrupt enable for a conversion that is about to save to a memory
buffer that has not been read out yet.
m ADC_TOV_INT -Interrupt enable for a conversion that is about to start before the
previous conversion has been completed.
m ADC_RDY_INT -Interrupt enable for the local buffered reference ready signal.
Returns
NONE

2.6.2.14 void ADC14_enableModule (void)

Enables the ADC block.
This will enable operation of the ADC block.

Returns
none.

2.6.2.15 bool ADC14_enableReferenceBurst (void)

Enables the "on-demand" activity of the voltage reference register. If this setting is enabled, the
internal voltage reference buffer will only be updated during a sample or conversion cycle. This is
used to optimize power consumption.

Returns

false if setting fails due to an in progress conversion

Wed Aug 14 17:01:15 -05 2019

20

14-Bit Analog-to-Digital Converter (ADC14)

2.6.2.16 bool ADC14_enableSampleTimer (uint32_t multiSampleConvert)

Enables SAMPCON to be sourced from the sampling timer and to configures multi sample and
conversion mode.

Wed Aug 14 17:01:15 -05 2019 21

14-Bit Analog-to-Digital Converter (ADC14)

2.6.2.17

2.6.2.18

Parameters

multiSample- | - Switches between manual and automatic iteration when using the sample timer. Valid

Convert | values are:

cycle.

ule will automatically continue on to the next sample

Returns
false if the initialization fails due to an in progress conversion

uint_fast64_t ADC14_getEnabledInterruptStatus (void)

Returns the status of a the ADC interrupt register masked with the enabled interrupts. This
function is useful to call in ISRs to get a list of pending interrupts that are actually enabled and
could have caused the ISR. The ADC_INTO through ADC_INT31 parameters correspond to a
completion event of the corresponding memory location. For example, when the ADC_MEMO
location finishes a conversion cycle, the ADC_INTO

Returns
The interrupt status. Value is a bitwise OR of the following values:

m ADC_INTO through ADC_INT31

m ADC_IN_INT - Interrupt enable for a conversion in the result register is either greater
than the ADCLO or lower than the ADCHI threshold.

m ADC_LO_INT - Interrupt enable for the falling short of the lower limit interrupt of the
window comparator for the result register.

m ADC_HI_INT - Interrupt enable for the exceeding the upper limit of the window
comparator for the result register.

m ADC_OV_INT - Interrupt enable for a conversion that is about to save to a memory
buffer that has not been read out yet.

m ADC_TOV_INT -Interrupt enable for a conversion that is about to start before the
previous conversion has been completed.

m ADC_RDY_INT -Interrupt enable for the local buffered reference ready signal.

References ADC14_getinterruptStatus().

uint_fast64_t ADC14_getinterruptStatus (void)

Returns the status of a the ADC interrupt register. The ADC_INTO through ADC_INT31
parameters correspond to a completion event of the corresponding memory location. For example,
when the ADC_MEMO location finishes a conversion cycle, the ADC_INTO interrupt will be set.

Wed Aug 14 17:01:15 -05 2019 22

m ADC_MANUAL_ITERATION The user will have to manually set the SHI signal (
usually by ADC14_toggleConversionTrigger) at the end of each sample/conversion

m ADC_AUTOMATIC_ITERATION After one sample/convert is finished, the ADC mod-

14-Bit Analog-to-Digital Converter (ADC14)

Returns
The interrupt status. Value is a bitwise OR of the following values:

m ADC_INTO through ADC_INT31

m ADC_IN_INT - Interrupt enable for a conversion in the result register is either greater
than the ADCLO or lower than the ADCHI threshold.

m ADC_LO_INT - Interrupt enable for the falling short of the lower limit interrupt of the
window comparator for the result register.

m ADC_HI_INT - Interrupt enable for the exceeding the upper limit of the window
comparator for the result register.

m ADC_OV_INT - Interrupt enable for a conversion that is about to save to a memory
buffer that has not been read out yet.

m ADC_TOV_INT -Interrupt enable for a conversion that is about to start before the
previous conversion has been completed.

m ADC_RDY_INT -Interrupt enable for the local buffered reference ready signal.

Referenced by ADC14_getEnabledInterruptStatus().

2.6.2.19 void ADC14_getMultiSequenceResult (uint16_t x res)

Returns the conversion results of the currently configured multi-sequence conversion. If a
multi-sequence conversion has not happened, this value is unreliable. Note that it is up to the user
to verify the integrity of and proper size of the array being passed. If there are 16 multi-sequence
results, and an array with only 4 elements allocated is passed, invalid memory settings will occur

Parameters

] res \ conversion result of the last multi-sequence sample in an array of unsigned 16-bit integers \

Returns
None

2.6.2.20 uint_fast32_t ADC14_getResolution (void)

Gets the resolution of the ADC module.

Returns
Resolution of the ADC module

m ADC_B8BIT (10 clock cycle conversion time)

m ADC_10BIT (12 clock cycle conversion time)
m ADC_12BIT (14 clock cycle conversion time)
m ADC_14BIT (16 clock cycle conversion time)

2.6.2.21 uint_fast16_t ADC14_getResult (uint32_t memorySelect)

Returns the conversion result for the specified memory channel in the format assigned by the
ADC14_setResultFormat (unsigned binary by default) function.

Wed Aug 14 17:01:15 -05 2019 23

14-Bit Analog-to-Digital Converter (ADC14)

Parameters

memorySelect | is the memory location to get the conversion result. Valid values are:
= ADC_MEMO through ADC_MEM31

Returns
conversion result of specified memory channel

2.6.2.22 void ADC14_getResultArray (uint32_t memoryStart, uint32_t memoryEna,
uint16_t x res)

Returns the conversion results of the specified ADC memory locations. Note that it is up to the
user to verify the integrity of and proper size of the array being passed. If there are 16
multi-sequence results, and an array with only 4 elements allocated is passed, invalid memory
settings will occur. This function is inclusive.

Parameters

memoryStart | is the memory location to get the conversion result. Valid values are:
= ADC_MEMO through ADC_MEM31

memoryEnd | is the memory location to get the conversion result. Valid values are:
= ADC_MEMO through ADC_MEM31

res | conversion result of the last multi-sequence sample in an array of unsigned 16-bit integers

Returns
None

2.6.2.23 bool ADC14_initModule (uint32_t clockSource, uint32_t clockPredivider,
uint32_t clockDivider, uint32_t internalChannelMask)

Initializes the ADC module and sets up the clock system divider/pre-divider. This initialization
function will also configure the internal/external signal mapping.

Wed Aug 14 17:01:15 -05 2019 24

14-Bit Analog-to-Digital Converter (ADC14)

Note

A call to this function while active ADC conversion is happening is an invalid case and will
result in a false value being returned.

Parameters

clockSource

The clock source to use for the ADC module.
m ADC_CLOCKSOURCE_ADCOSC [DEFAULT]
m ADC_CLOCKSOURCE_SYSOSC
m ADC_CLOCKSOURCE_ACLK
m ADC_CLOCKSOURCE_MCLK
m ADC_CLOCKSOURCE_SMCLK
= ADC_CLOCKSOURCE_HSMCLK

clockPredivider

Divides the given clock source before feeding it into the main clock divider. Valid values
are:

= ADC_PREDIVIDER_1 [DEFAULT]
= ADC_PREDIVIDER_4

= ADC_PREDIVIDER_32

= ADC_PREDIVIDER_64

clockDivider

Divides the pre-divided clock source Valid values are
m ADC_DIVIDER_1 [Default value]
= ADC_DIVIDER_2
m ADC_DIVIDER_3
= ADC_DIVIDER_4
m ADC_DIVIDER_5
m ADC_DIVIDER_6
= ADC_DIVIDER_7
m ADC_DIVIDER_8

Wed Aug 14 17:01:15 -05 2019

25

14-Bit Analog-to-Digital Converter (ADC14)

internalChan- | Configures the internal/external pin mappings for the ADC modules. This setting deter-

nelMask | mines if the given ADC channel or component is mapped to an external pin (default), or
routed to an internal component. This parameter is a bit mask where a logical high value
will switch the component to the internal routing. For a list of internal routings, please refer
to the device specific data sheet. Valid values are a logical OR of the following values:

= ADC_MAPINTCH3

= ADC_MAPINTCH2

= ADC_MAPINTCH1

= ADC_MAPINTCHO

= ADC_TEMPSENSEMAP
= ADC_BATTMAP

m ADC_NOROUTE If internalChannelMask is not desired, pass ADC_NOROUTE in
lieu of this parameter.

Returns
false if the initialization fails due to an in progress conversion

2.6.2.24 bool ADC14_isBusy (void)

Returns a boolean value that tells if a conversion/sample is in progress

Returns
true if conversion is active, false otherwise
2.6.2.25 void ADC14_registerinterrupt (void(x)(void) intHandler)

Registers an interrupt handler for the ADC interrupt.

Parameters

] intHandler | is a pointer to the function to be called when the ADC interrupt occurs.

This function registers the handler to be called when an ADC interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific ADC14 interrupts must be enabled
via ADC14_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt source
via ADC14_clearinterruptFlag().

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

Wed Aug 14 17:01:15 -05 2019 26

14-Bit Analog-to-Digital Converter (ADC14)

2.6.2.26 bool ADC14_setComparatorWindowValue (uint32_t window, int16_t low, int16_t
high)

Sets the lower and upper limits of the specified window comparator. Note that this function will
truncate values based of the resolution/data format configured. If the ADC is operating in 10-bit
mode, and a 12-bit value is passed into this function the most significant 2 bits will be truncated.

The parameters provided to this function for the upper and lower threshold depend on the current
resolution for the ADC. For example, if configured in 12-bit mode, a 12-bit resolution is the
maximum that can be provided for the window. If in 2's complement mode, Bit 15 is used as the

MSB.
Parameters
window | Memory location to store sample/conversion value. Possible values include:
ADC_COMP_WINDOWO [DEFAULT] ADC_COMP_WINDOW1
low | is the lower limit of the window comparator
high | is the upper limit of the window comparator
Returns

false if setting fails due to an in progress conversion

2.6.2.27 bool ADC14_setPowerMode (uint32_t powerMode)

Sets the power mode of the ADC module. A more aggressive power mode will restrict the number
of samples per second for sampling while optimizing power consumption. Ideally, if power
consumption is a concern, this value should be set to the most restrictive setting that satisfies your
sampling requirement.

Parameters

adcPowerMode | is the power mode to set. Valid values are:

= ADC_UNRESTRICTED_POWER_MODE (no restriction)

m ADC_LOW_POWER_MODE (500ksps restriction)

m ADC_ULTRA_LOW_POWER_MODE (200ksps restriction)

m ADC_EXTREME_LOW_POWER_MODE (50ksps restriction)

Returns
false if setting fails due to an in progress conversion

2.6.2.28 void ADC14_setResolution (uint32_t resolution)

Sets the resolution of the ADC module. The default resolution is 12-bit, however for power
consumption concerns this can be limited to a lower resolution

Wed Aug 14 17:01:15 -05 2019 27

14-Bit Analog-to-Digital Converter (ADC14)

2.6.2.29

2.6.2.30

Parameters

resolution | Resolution of the ADC module

m ADC_B8BIT (10 clock cycle conversion time)

m ADC_10BIT (12 clock cycle conversion time)

m ADC_12BIT (14 clock cycle conversion time)

m ADC_14BIT (16 clock cycle conversion time)[DEFAULT]

Returns
none

bool ADC14_setResultFormat (uint32_t resultFormat)

Switches between a binary unsigned data format and a signed 2’'s complement data format.

Parameters
resultFormat | Format for result to conversion results. Possible values include:
ADC_UNSIGNED_BINARY [DEFAULT] ADC_SIGNED_BINARY
Returns

false if setting fails due to an in progress conversion

bool ADC14_setSampleHoldTime (uint32_t firstPulseWidth, uint32_t
secondPulseWidth)

Sets the sample/hold time for the specified memory register range. The duration of time required
for a sample differs depending on the user’s hardware configuration.

There are two values in the ADCC module. The first value controls ADC memory locations
ADC_MEMORY_0 through ADC_MEMORY_7 and ADC_MEMORY_24 through
ADC_MEMORY_31, while the second value controls memory locations ADC_MEMORY_8
through ADC_MEMORY_23.

Wed Aug 14 17:01:15 -05 2019 28

14-Bit Analog-to-Digital Converter (ADC14)

Parameters

firstPulseWidth

Pulse width of the first pulse in ADCCLK cycles Possible values must be one of the fol-
lowing:

= ADC_PULSE_WIDTH_4 [DEFAULT]
= ADC_PULSE_WIDTH_8

= ADC_PULSE_WIDTH_16

= ADC_PULSE_WIDTH_32

= ADC_PULSE_WIDTH_64

= ADC_PULSE_WIDTH_96

= ADC_PULSE_WIDTH_128

= ADC_PULSE_WIDTH_192

second-
PulseWidth

Pulse width of the second pulse in ADCCLK cycles. Possible values must be one of the
following:

= ADC_PULSE_WIDTH_4 [DEFAULT]
= ADC_PULSE_WIDTH_8

= ADC_PULSE_WIDTH_16

= ADC_PULSE_WIDTH_32

= ADC_PULSE_WIDTH_64

= ADC_PULSE_WIDTH_96

= ADC_PULSE_WIDTH_128

= ADC_PULSE_WIDTH_192

Returns

false if setting fails due to an in progress conversion

2.6.2.31 bool ADC14_setSampleHoldTrigger (uint32_t source, bool invertSignal)

Sets the source for the trigger of the ADC module. By default, this value is configured to a
software source (the ADCSC bit), however depending on the specific device the trigger can be set
to different sources (for example, a timer output). These sources vary from part to part and the
user should refer to the device specific datasheet.

Wed Aug 14 17:01:15 -05 2019

29

14-Bit Analog-to-Digital Converter (ADC14)

Parameters

source | Trigger source for sampling. Possible values include:
m ADC_TRIGGER_ADCSC [DEFAULT]

m ADC_TRIGGER_SOURCE1

m ADC_TRIGGER_SOURCE2

= ADC_TRIGGER_SOURCE3

m ADC_TRIGGER_SOURCE4

m ADC_TRIGGER_SOURCES5

m ADC_TRIGGER_SOURCE6

m ADC_TRIGGER_SOURCE7

invertSignal | When set to true, will invert the trigger signal to a falling edge. When false, will use a rising
edge.

Returns
false if setting fails due to an in progress conversion

2.6.2.32 bool ADC14_toggleConversionTrigger (void)

Toggles the trigger for conversion of the ADC module by toggling the trigger software bit. Note that
this will cause the ADC to start conversion regardless if the software bit was set as the trigger
using ADC14_setSampleHoldTrigger.

Returns
false if setting fails due to an in progress conversion

2.6.2.33 void ADC14_unregisterinterrupt (void)

Unregisters the interrupt handler for the ADCC module.

This function unregisters the handler to be called when an ADCC interrupt occurs. This function
also masks off the interrupt in the interrupt controller so that the interrupt handler no longer is
called.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 30

Advanced Encryption Standard 256 Module (AES256)

3.1

3.2

Advanced Encryption Standard 256 Module
(AES256)

MOAUIE OPEIAtION . ..ttt ettt e e 28
KBY FOatUIES e 28
Encryption/Decryption Cycle TiMe e 29
Programming EXamiple 29
D NIt IONS ... e 30

Module Operation

The AES256 accelerator module performs encryption and decryption of 128-bit data with 128-bit
keys according to the advanced encryption standard (AES256) (FIPS PUB 197) in hardware.

Key Features

The key features of the AES256 module include:

m Encryption and decryption according to AES256 FIPS PUB 197 with 128-bit key
m On-the-fly key expansion for encryption and decryption

m Off-line key generation for decryption

m Byte and word access to key, input, and output data

m AES256 ready interrupt flag

The AES256256 accelerator module performs encryption and decryption of 128-bit data with
128-/192-/256-bit keys according to the advanced encryption standard (AES256) (FIPS PUB 197)
in hardware.

Wed Aug 14 17:01:15 -05 2019 31

Advanced Encryption Standard 256 Module (AES256)

3.3 Encryption/Decryption Cycle Times

The the AES256 accelerator decryption/encryption cycle counts are as follows:

AES256 encryption

m 128 bit - 168 cycles
m 192 bit - 204 cycles
m 256 bit - 234 cycles

AES256 decryption:

m 128 bit - 168 cycles
m 192 bit - 206 cycles
m 256 bit - 234 cycles

3.4 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the AES256 module. These code examples are accessible under the examples/ folder of the
SDK release as well as through Tl Resource Explorer if using Code Composer Studio. Below is a
simple code example of how to encrypt/decrypt data using a cipher key with the AES256 module

Wed Aug 14 17:01:15 -05 2019 32

Advanced Encryption Standard 256 Module (AES256)

3.5 Definitions

Functions

m void AES256_clearErrorFlag (uint32_t modulelnstance)

m void AES256_clearInterruptFlag (uint32_t modulelnstance)

m void AES256_decryptData (uint32_t modulelnstance, const uint8_t «data, uint8_t
xdecryptedData)

m void AES256_disablelnterrupt (uint32_t modulelnstance)

void AES256_enablelnterrupt (uint32_t modulelnstance)

void AES256_encryptData (uint32_t modulelnstance, const uint8_t «xdata, uint8_t

xencryptedData)

bool AES256_getDataOut (uint32_t modulelnstance, uint8_t xoutputData)

uint32_t AES256_getErrorFlagStatus (uint32_t modulelnstance)

uint32_t AES256_getinterruptFlagStatus (uint32_t modulelnstance)

uint32_t AES256_getinterruptStatus (uint32_t modulelnstance)

bool AES256_isBusy (uint32_t modulelnstance)

void AES256_registerinterrupt (uint32_t modulelnstance, void(xintHandler)(void))

void AES256_reset (uint32_t modulelnstance)

bool AES256_setCipherKey (uint32_t modulelnstance, const uint8_t xcipherKey,

uint_fast16_t keyLength)

m bool AES256_setDecipherKey (uint32_t modulelnstance, const uint8_t «cipherKey,
uint_fast16_t keyLength)

m void AES256_startDecryptData (uint32_t modulelnstance, const uint8_t «data)

m void AES256_startEncryptData (uint32_t modulelnstance, const uint8_t xdata)

m bool AES256_startSetDecipherKey (uint32_t modulelnstance, const uint8_t xcipherKey,
uint_fast16_t keyLength)

m void AES256_unregisterinterrupt (uint32_t modulelnstance)

3.5.1 Detailed Description

The code for this module is contained in driverlib/aes256.c and
driverlib/legacy/MSP432xx/legacy_aes256.c,With driverlib/aes256.h and
driverlib/legacy/MSP432xx/legacy_aes256.h containing the API declarations for use by
applications.

Wed Aug 14 17:01:15 -05 2019 33

Advanced Encryption Standard 256 Module (AES256)

3.5.2 Function Documentation

3.5.2.1 void AES256_clearErrorFlag (uint32_t modulelnstance)

Clears the AES256 error flag.

Parameters

| modulelnstance | is the base address of the AES256 module.

Modified bits are AESERRFG of AESACTLO register.

Returns
None

3.5.2.2 void AES256_clearlnterruptFlag (uint32_t modulelnstance)

Clears the AES256 ready interrupt flag.

Parameters

] modulelnstance \ is the base address of the AES256 module.

Modified bits are AESRDYIFG of AESACTLO register.

Returns
None

3.5.2.3 void AES256_decryptData (uint32_t modulelnstance, const uint8 t x data,
uint8_t « decryptedData)

Decrypts a block of data using the AES256 module.

This function requires a pregenerated decryption key. A key can be loaded and pregenerated by
using function AES256_setDecipherKey() or AES256_startSetDecipherKey(). The decryption

takes 167 MCLK.
Parameters

modulelnstance

is the base address of the AES256 module.

data

is a pointer to an uint8_t array with a length of 16 bytes that contains encrypted data to be
decrypted.

decryptedData

is a pointer to an uint8_t array with a length of 16 bytes in that the decrypted data will be
written.

Returns
None

3.5.2.4 void AES256_disablelnterrupt (uint32_t modulelnstance)

Disables AES256 ready interrupt.

Wed Aug 14 17:01:15 -05 2019

34

Advanced Encryption Standard 256 Module (AES256)

3.5.2.5

3.5.2.6

3.5.2.7

Parameters

] modulelnstance \ is the base address of the AES256 module.

Modified bits are AESRDYIE of AESACTLO register.

Returns
None

void AES256_enablelnterrupt (uint32_t modulelnstance)

Enables AES256 ready interrupt.

Parameters

] modulelnstance \ is the base address of the AES256 module.

Modified bits are AESRDYIE of AESACTLO register.

Returns
None

void AES256_encryptData (uint32_t modulelnstance, const uint8_t « data,
uint8_t x encryptedData)

Encrypts a block of data using the AES256 module.

The cipher key that is used for encryption should be loaded in advance by using function
AES256_setCipherKey()

Parameters

modulelnstance | is the base address of the AES256 module.

data | is a pointer to an uint8_t array with a length of 16 bytes that contains data to be encrypted.

written.

encryptedData | is a pointer to an uint8_t array with a length of 16 bytes in that the encrypted data will be

Returns
None

bool AES256 getDataOut (uint32_t modulelnstance, uint8 t x outputData)

Reads back the output data from AES256 module.

This function is meant to use after an encryption or decryption process that was started and
finished by initiating an interrupt by use of AES256_startEncryptData or
AES256_startDecryptData functions.

Wed Aug 14 17:01:15 -05 2019 35

Advanced Encryption Standard 256 Module (AES256)

3.5.2.8

3.5.2.9

3.5.2.10

Parameters

modulelnstance | is the base address of the AES256 module.

outputData | is a pointer to an uint8_t array with a length of 16 bytes in that the data will be written.

Returns
true if data is valid, otherwise false
uint32_t AES256_getErrorFlagStatus (uint32_t modulelnstance)

Gets the AES256 error flag status.

Parameters

| modulelnstance | is the base address of the AES256 module.

Returns
One of the following:

m AES256_ERROR_OCCURRED
m AES256_NO_ERROR
indicating the error flag status

uint32_t AES256_getinterruptFlagStatus (uint32_t modulelnstance)

Gets the AES256 ready interrupt flag status.

Parameters

] modulelnstance \ is the base address of the AES256 module.

Returns
One of the following:
m AES256_READY_INTERRUPT

m AES256_NOTREADY_INTERRUPT
indicating the status of the AES256 ready status

Referenced by AES256_getinterruptStatus().

uint32_t AES256_getinterruptStatus (uint32_t modulelnstance)

Returns the current interrupt flag for the peripheral.

Parameters

| _modulelnstance | Instance of the AES256 module

Returns
The currently triggered interrupt flag for the module.

References AES256_getinterruptFlagStatus().

Wed Aug 14 17:01:15 -05 2019 36

Advanced Encryption Standard 256 Module (AES256)

3.5.2.11 bool AES256 isBusy (uint32_t modulelnstance)

Gets the AES256 module busy status.

Wed Aug 14 17:01:15 -05 2019 37

Advanced Encryption Standard 256 Module (AES256)

Parameters

] modulelnstance \ is the base address of the AES256 module.

Returns
true if busy, false otherwise

3.5.2.12 void AES256_registerinterrupt (uint32_t modulelnstance, void(x)(void)
intHandler)

Registers an interrupt handler for the AES interrupt.

Parameters

modulelnstance | Instance of the AES256 module

intHandler | is a pointer to the function to be called when the AES interrupt occurs.

This function registers the handler to be called when a AES interrupt occurs. This function enables
the global interrupt in the interrupt controller; specific AES interrupts must be enabled via
AES256_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt source
via AES256_clearInterrupt().

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

3.5.2.13 void AES256_reset (uint32_t modulelnstance)

Resets AES256 Module immediately.

Parameters

| modulelnstance | is the base address of the AES256 module.

Modified bits are AESSWRST of AESACTLDO register.

Returns
None

3.5.2.14 bool AES256_setCipherKey (uint32_t modulelnstance, const uint8_t x
cipherKey, uint_fast16_t keyLength)

Loads a 128, 192 or 256 bit cipher key to AES256 module.

Wed Aug 14 17:01:15 -05 2019 38

Advanced Encryption Standard 256 Module (AES256)

Parameters

modulelnstance | is the base address of the AES256 module.

cipherKey | is a pointer to an uint8_t array with a length of 16 bytes that contains a 128 bit cipher key.

keyLength | is the length of the key. Valid values are:
m AES256_KEYLENGTH_128BIT
m AES256_KEYLENGTH_192BIT
m AES256_KEYLENGTH_256BIT

Returns
true if set correctly, false otherwise

3.5.2.15 bool AES256_setDecipherKey (uint32_t modulelnstance, const uint8_t x

cipherKey, uint_fast16_t keyLength)

Sets the decipher key.

The APl AES256_startSetDecipherKey or AES256_setDecipherKey must be invoked before
invoking AES256_startDecryptData.

Parameters

modulelnstance | is the base address of the AES256 module.

cipherKey | is a pointer to an uint8_t array with a length of 16 bytes that contains a 128 bit cipher key.

keyLength | is the length of the key. Valid values are:
m AES256_KEYLENGTH_128BIT
m AES256_KEYLENGTH_192BIT
m AES256_KEYLENGTH_256BIT

Returns
true if set, false otherwise

Decypts a block of data using the AES256 module.

This is the non-blocking equivalant of AES256_decryptData(). This function requires a
pregenerated decryption key. A key can be loaded and pregenerated by using function

AES256_setDecipherKey() or AES256_startSetDecipherKey(). The decryption takes 167 MCLK. It

is recommended to use interrupt to check for procedure completion then use the
AES256 getDataOut() API to retrieve the decrypted data.

Parameters

3.5.2.16 void AES256_startDecryptData (uint32_t modulelnstance, const uint8_t x data)

Wed Aug 14 17:01:15 -05 2019

39

Advanced Encryption Standard 256 Module (AES256)

3.5.2.17 void AES256_startEncryptData (uint32_t modulelnstance, const uint8_t x data)

modulelnstance | is the base address of the AES256 module.

decrypted.

data | is a pointer to an uint8_t array with a length of 16 bytes that contains encrypted data to be

Returns
None

Starts an encryption process on the AES256 module.

The cipher key that is used for decryption should be loaded in advance by using function
AES256_setCipherKey(). This is a non-blocking equivalent pf AES256_encryptData(). It is

recommended to use the interrupt functionality to check for procedure completion then use the

AES256 getDataOut() API to retrieve the encrypted data.

Parameters
modulelnstance | is the base address of the AES256 module.
data | is a pointer to an uint8_t array with a length of 16 bytes that contains data to be encrypted.
Returns
None

3.5.2.18 bool AES256_startSetDecipherKey (uint32_t modulelnstance, const uint8_t
cipherKey, uint_fast16_t keyLength)

Sets the decipher key.

The API AES256_startSetDecipherKey() or AES256_setDecipherKey() must be invoked before
invoking AES256_startDecryptData.

Parameters
modulelnstance | is the base address of the AES256 module.
cipherKey | is a pointer to an uint8_t array with a length of 16 bytes that contains a 128 bit cipher key.
keyLength | is the length of the key. Valid values are:
m AES256 KEYLENGTH_128BIT
m AES256 KEYLENGTH_192BIT
m AES256 KEYLENGTH_256BIT
Returns

true if set correctly, false otherwise

3.5.2.19 void AES256_unregisterinterrupt (uint32_t modulelnstance)

Unregisters the interrupt handler for the AES interrupt

Wed Aug 14 17:01:15 -05 2019

40

Advanced Encryption Standard 256 Module (AES256)

Parameters

| modulelnstance | Instance of the AES256 module

This function unregisters the handler to be called when AES interrupt occurs. This function also
masks off the interrupt in the interrupt controller so that the interrupt handler no longer is called.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 41

Analog Comparator (COMP_E)

4.1

Analog Comparator (COMP_E)

MOAUIE OPEIAtION ...ttt ettt et et e e e e e s 39
Programming EXampleo s ?2?
DB I ONS ..t 41

Module Operation

The Comparator (Comp) API provides a set of functions for using the SDK COMP_E modules.
Functions are provided to initialize the COMP_E modules, setup reference voltages for input, and
manage interrupts for the COMP_E modules.

The COMP_E module provides the ability to compare two analog signals and use the output in
software and on an output pin. The output represents whether the signal on the positive terminal is
higher than the signal on the negative terminal. The COMP_E moduke may be used to generate a
hysteresis. There are 16 different inputs that can be used, as well as the ability to short 2 input
together. The COMP_E module also has control over the REF_A module to generate a reference
voltage as an input.

The COMP_E module can generate multiple interrupts. An interrupt may be asserted for the
output, with separate interrupts on whether the output rises, or falls.

Wed Aug 14 17:01:15 -05 2019 42

Analog Comparator (COMP_E)

4.2 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the COMP_E module. These code examples are accessible under the examples/ folder of the
SDK release as well as through Tl Resource Explorer if using Code Composer Studio. These
code examples provide a comprehensive list of use cases as well as practical applications
involving each module.

Below is a simple example of how to setup the COMP_E module to setup a comparator window
with a Vcompare of 1.2v using the internal reference.

First, below is an example of setting up the COMP_E module configuration structure:

Below are the actual DriverLib calls to configure/setup the Comp module:

Wed Aug 14 17:01:15 -05 2019 43

Analog Comparator (COMP_E)

4.3 Definitions

Data Structures
m struct _COMP_E_Config

Functions

void COMP_E_clearInterruptFlag (uint32_t comparator, uint_fast16_t mask)

void COMP_E_disablelnputBuffer (uint32_t comparator, uint_fast16_t inputPort)
void COMP_E_disablelnterrupt (uint32_t comparator, uint_fast16_t mask)

void COMP_E_disableModule (uint32_t comparator)

void COMP_E_enablelnputBuffer (uint32_t comparator, uint_fast16_t inputPort)
void COMP_E_enablelnterrupt (uint32_t comparator, uint_fast16_t mask)

void COMP_E_enableModule (uint32_t comparator)

uint_fast16_t COMP_E_getEnabledInterruptStatus (uint32_t comparator)
uint_fast16_t COMP_E_getinterruptStatus (uint32_t comparator)

bool COMP_E_initModule (uint32_t comparator, const COMP_E_Config xconfig)
uint8_t COMP_E_outputValue (uint32_t comparator)

void COMP_E_ registerInterrupt (uint32_t comparator, void(xintHandler)(void))
void COMP_E_setiInterruptEdgeDirection (uint32_t comparator, uint_fast8 t edgeDirection)
void COMP_E_setPowerMode (uint32_t comparator, uint_fast16_t powerMode)
void COMP_E_setReferenceAccuracy (uint32_t comparator, uint_fast16_t
referenceAccuracy)

void COMP_E_setReferenceVoltage (uint32_t comparator, uint_fast16_t
supplyVoltageReferenceBase, uint_fast16_t lowerLimitSupplyVoltageFractionOf32,
uint_fast16_t upperLimitSupplyVoltageFractionOf32)

void COMP_E_shortInputs (uint32_t comparator)

void COMP_E_swaplO (uint32_t comparator)

void COMP_E_togglelnterruptEdgeDirection (uint32_t comparator)

void COMP_E_unregisterinterrupt (uint32_t comparator)

void COMP_E_unshortlnputs (uint32_t comparator)

4.3.1 Detailed Description

The code for this module is contained in driverlib/comp_e.c, with driverlib/comp_e.h
containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 44

Analog Comparator (COMP_E)

4.3.2 Data Structure Documentation

4.3.2.1 struct COMP_E_Config

Type definition for _COMP_E_Config structure.
ypedef COMP_E_Config

Configuration structure for Comparator module. See COMP_E_initModule for parameter
documentation.

4.3.3 Function Documentation
4.3.3.1 void COMP_E_clearInterruptFlag (uint32_t comparator, uint_fast16_t mask)

Clears Comparator interrupt flags.

Parameters

comparator | is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EQ_BASE
= COMP_E1_BASE

mask | is a bit mask of the interrupt sources to be cleared. Mask value is the logical OR of any of
the following

= COMP_E_INTERRUPT_FLAG - Output interrupt flag

m COMP_E_INTERRUPT_FLAG_INVERTED_POLARITY - Output interrupt flag in-
verted polarity

m COMP_E_INTERRUPT_FLAG_READY - Ready interrupt flag

The Comparator interrupt source is cleared, so that it no longer asserts. The highest interrupt flag
is automatically cleared when an interrupt vector generator is used.

Wed Aug 14 17:01:15 -05 2019 45

Analog Comparator (COMP_E)

Returns
NONE

4.3.3.2 void COMP_E_disablelnputBuffer (uint32_t comparator, uint_fast16_t inputPort
)

Disables the input buffer of the selected input port to effectively allow for analog signals.

Parameters

comparator | is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO_BASE
= COMP_E1_BASE

inputPort | is the port in which the input buffer will be disabled. Valid values are a logical OR of the
following:

= COMP_E_INPUTO [Default]
= COMP_E_INPUT1
= COMP_E_INPUT2
= COMP_E_INPUT3
= COMP_E_INPUT4
= COMP_E_INPUT5
= COMP_E_INPUT6
= COMP_E_INPUT?
= COMP_E_INPUTS
= COMP_E_INPUT9
= COMP_E_INPUT10
= COMP_E_INPUT11
= COMP_E_INPUT12
= COMP_E_INPUT13
= COMP_E_INPUT14

m COMP_E_INPUT15
Modified bits are CEPDx of CECTL3 register.

This function sets the bit to disable the buffer for the specified input port to allow for analog signals
from any of the comparator input pins. This bit is automatically set when the input is initialized to
be used with the comparator module. This function should be used whenever an analog input is
connected to one of these pins to prevent parasitic voltage from causing unexpected results.

Wed Aug 14 17:01:15 -05 2019 46

Analog Comparator (COMP_E)

Returns
NONE

4.3.3.3 void COMP_E_disablelnterrupt (uint32_t comparator, uint_fast16_t mask)

Disables selected Comparator interrupt sources.

Wed Aug 14 17:01:15 -05 2019 47

Analog Comparator (COMP_E)

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO_BASE
= COMP_E1_BASE

mask

is the bit mask of the interrupt sources to be disabled. Mask value is the logical OR of any
of the following

m COMP_E_OUTPUT_INTERRUPT - Output interrupt
m COMP_E_INVERTED_POLARITY_INTERRUPT - Output interrupt inverted polarity
m COMP_E_READY_INTERRUPT - Ready interrupt

Disables the indicated Comparator interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns
NONE

4.3.3.4 void COMP_E_disableModule (uint32_t comparator)

Turns off the Comparator module.

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO_BASE
= COMP_E1_BASE

This function clears the CEON bit disabling the operation of the Comparator module, saving from
excess power consumption.

Modified bits are CEON of CECTL1 register.

Returns
NONE

4.3.3.5 void COMP_E_enablelnputBuffer (uint32_t comparator, uint_fast16_t inputPort

)

Enables the input buffer of the selected input port to allow for digital signals.

Wed Aug 14 17:01:15 -05 2019

48

Analog Comparator (COMP_E)

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO_BASE
= COMP_E1_BASE

inputPort

is the port in which the input buffer will be enabled. Valid values are a logical OR of the
following:

= COMP_E_INPUTO [Default]
= COMP_E_INPUT1
= COMP_E_INPUT2
= COMP_E_INPUT3
= COMP_E_INPUT4
= COMP_E_INPUT5
= COMP_E_INPUT6
= COMP_E_INPUT?
= COMP_E_INPUTS
= COMP_E_INPUT9
= COMP_E_INPUT10
= COMP_E_INPUT11
= COMP_E_INPUT12
= COMP_E_INPUT13
= COMP_E_INPUT14

m COMP_E_INPUT15
Modified bits are CEPDx of CECTL3 register.

This function clears the bit to enable the buffer for the specified input port to allow for digital
signals from any of the comparator input pins. This should not be reset if there is an analog signal
connected to the specified input pin to prevent from unexpected results.

Wed Aug 14 17:01:15 -05 2019

49

Analog Comparator (COMP_E)

Returns
NONE

4.3.3.6 void COMP_E_enablelnterrupt (uint32_t comparator, uint_fast16_t mask)

Enables selected Comparator interrupt sources.

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO_BASE
= COMP_E1_BASE

mask

is the bit mask of the interrupt sources to be enabled. Mask value is the logical OR of any
of the following

m COMP_E_OUTPUT_INTERRUPT - Output interrupt
m COMP_E_INVERTED_POLARITY_INTERRUPT - Output interrupt inverted polarity
m COMP_E_READY_INTERRUPT - Ready interrupt

Enables the indicated Comparator interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor. The default
trigger for the non-inverted interrupt is a rising edge of the output, this can be changed with the
interruptSetEdgeDirection() function.

Returns
NONE

4.3.3.7 void COMP_E_enableModule (uint32_t comparator)

Turns on the Comparator module.

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO_BASE
= COMP_E1_BASE

This function sets the bit that enables the operation of the Comparator module.

Wed Aug 14 17:01:15 -05 2019

50

Analog Comparator (COMP_E)

Returns
NONE

4.3.3.8 uint_fast16_t COMP_E_getEnabledInterruptStatus (uint32_t comparator)

Enables selected Comparator interrupt sources masked with the enabled interrupts. This function
is useful to call in ISRs to get a list of pending interrupts that are actually enabled and could have

caused the ISR.
Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO_BASE
= COMP_E1_BASE

Enables the indicated Comparator interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor. The default
trigger for the non-inverted interrupt is a rising edge of the output, this can be changed with the
COMP_E_setInterruptEdgeDirection() function.

Returns
NONE

References COMP_E_getinterruptStatus().

4.3.3.9 uint_fast16_t COMP_E_getinterruptStatus (uint32_t comparator)

Gets the current Comparator interrupt status.

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO0_BASE
= COMP_E1_BASE

This returns the interrupt status for the Comparator module based on which flag is passed.

Returns

The current interrupt flag status for the corresponding mask.

Referenced by COMP_E_getEnabledInterruptStatus().

4.3.3.10 bool COMP_E_initModule (uint32_t comparator, const COMP_E_Config *

config)

Initializes the Comparator Module.

Wed Aug 14 17:01:15 -05 2019

51

Analog Comparator (COMP_E)

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO0_BASE
= COMP_E1_BASE

config

Configuration structure for the Comparator module

Configuration options for COMP_E_Config structure.

Parameters

positive Termi-
nallnput

selects the input to the positive terminal. Valid values are

m COMP_E_INPUTO [Default]
= COMP_E_INPUT1

m COMP_E_INPUT2

= COMP_E_INPUT3

= COMP_E_INPUT4

m COMP_E_INPUT5

= COMP_E_INPUT6

m COMP_E_INPUT?7

= COMP_E_INPUTS8

= COMP_E_INPUT9

= COMP_E_INPUT10

= COMP_E_INPUT11

m COMP_E_INPUT12

= COMP_E_INPUT13

= COMP_E_INPUT14

= COMP_E_INPUT15

= COMP_E_VREF

Modified bits are CEIPSEL and CEIPEN of CECTLO register, CERSEL of CECTL2
register, and CEPDx of CECTLS register.

Wed Aug 14 17:01:15 -05 2019

52

Analog Comparator (COMP_E)

negativeTermi-
nallnput

selects the input to the negative terminal.
Valid values are:

= COMP_E_INPUTO [Default]
= COMP_E_INPUT1
= COMP_E_INPUT2
= COMP_E_INPUT3
= COMP_E_INPUT4
= COMP_E_INPUT5
= COMP_E_INPUT6
= COMP_E_INPUT?
= COMP_E_INPUTS
= COMP_E_INPUT9
= COMP_E_INPUT10
= COMP_E_INPUT11
= COMP_E_INPUT12
= COMP_E_INPUT13
= COMP_E_INPUT14
= COMP_E_INPUT15

= COMP_E_VREF

Modified bits are CEIMSEL and CEIMEN of CECTLO register, CERSEL of CECTL2
register, and CEPDx of CECTLS register.

Wed Aug 14 17:01:15 -05 2019

53

Analog Comparator (COMP_E)

outputFilterEn- | controls the output filter delay state, which is either off or enabled with a specified delay
ableAndDe- | level.
layLevel | Valid values are
m COMP_E_FILTEROUTPUT_OFF [Defauli]
m COMP_E_FILTEROUTPUT_DLYLVL1
m COMP_E_FILTEROUTPUT _DLYLVL2
m COMP_E_FILTEROUTPUT _DLYLVL3
m COMP_E_FILTEROUTPUT_DLYLVL4
This parameter is device specific and delay levels should be found in the device’s
datasheet.
Modified bits are CEF and CEFDLY of CECTL1 register.
invertedOutput- | controls if the output will be inverted or not. Valid values are
Polarity |« cOMP_E_NORMALOUTPUTPOLARITY - indicates the output should be normal.
[Default]
m COMP_E_INVERTEDOUTPUTPOLARITY - the output should be inverted.
Modified bits are CEOUTPOL of CECTLA1 register.
powerMode | controls the power mode of the module
m COMP_E_HIGH_SPEED_MODE [default]
= COMP_E_NORMAL_MODE
m COMP_E_ULTRA_LOW_POWER_MODE Upon successful initialization of the Com-
parator module, this function will have reset all necessary register bits and set
the given options in the registers. To actually use the comparator module,
the COMP_E_enableModule() function must be explicitly called before use. If
a Reference Voltage is set to a terminal, the Voltage should be set using the
COMP_E_setReferenceVoltage() function.
Returns

true or false of the initialization process.

4.3.3.11 uint8_t COMP_E_outputValue (uint32_t comparator)

Returns the output value of the Comparator module.

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO_BASE
= COMP_E1_BASE

Returns the output value of the Comparator module.

Wed Aug 14 17:01:15 -05 2019

54

Analog Comparator (COMP_E)

Returns

COMP_E_HIGH or COMP_E_LOW as the output value of the Comparator module.

4.3.3.12 void COMP_E_registerinterrupt (uint32_t comparator, void(x)(void) intHandler)

Registers an interrupt handler for the Comparator E interrupt.

Parameters
intHandler | is a pointer to the function to be called when the Comparator interrupt occurs.
comparator | is the instance of the Comparator module. Valid parameters vary from part to part, but

can include:
= COMP_EO BASE
= COMP_E1_BASE

This function registers the handler to be called when a Comparator interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific Comparator interrupts must be
enabled via COMP_E_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the
interrupt source via COMP_E_clearInterruptFlag().

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

4.3.3.13 void COMP_E_ setiInterruptEdgeDirection (uint32_t comparator, uint_fast8 t

edgeDirection)

Explicitly sets the edge direction that would trigger an interrupt.

Parameters
comparator | is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:
= COMP_EO_BASE
m COMP_E1_BASE
edgeDirection | determines which direction the edge would have to go to generate an interrupt based on

the non-inverted interrupt flag. Valid values are

m COMP_E_FALLINGEDGE - sets the bit to generate an interrupt when the output of
the comparator falls from HIGH to LOW if the normal interrupt bit is set(and LOW to
HIGH if the inverted interrupt enable bit is set). [Default]

m COMP_E_RISINGEDGE - sets the bit to generate an interrupt when the output of
the comparator rises from LOW to HIGH if the normal interrupt bit is set(and HIGH
to LOW if the inverted interrupt enable bit is set).

Modified bits are CEIES of CECTLA1 register.

This function will set which direction the output will have to go, whether rising or falling, to generate
an interrupt based on a non-inverted interrupt.

Wed Aug 14 17:01:15 -05 2019

55

Analog Comparator (COMP_E)

Returns
NONE

4.3.3.14 void COMP_E_setPowerMode (uint32_t comparator, uint_fast16_t powerMode)

Sets the power mode

Parameters
comparator | is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:
= COMP_EO_BASE
m COMP_E1_BASE
powerMode | decides the power mode Valid values are
m COMP_E_HIGH_SPEED_MODE
m COMP_E_NORMAL_MODE
m COMP_E_ULTRA_LOW_POWER_MODE
Modified bits are CEPWRMD of CECTL1 register.
Returns
NONE

4.3.3.15 void COMP_E_setReferenceAccuracy (uint32_t comparator, uint_fast16_t
referenceAccuracy)

Sets the reference accuracy

Parameters
comparator | is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:
= COMP_EO_BASE
= COMP_E1_BASE
referenceAccu- | is the reference accuracy setting of the comparator. Clocked is for low power/low accuracy.

racy

Valid values are
m COMP_E_ACCURACY_STATIC

m COMP_E_ACCURACY_CLOCKED
Modified bits are CEREFACC of CECTLZ2 register.

Wed Aug 14 17:01:15 -05 2019

56

Analog Comparator (COMP_E)

The reference accuracy is set to the desired setting. Clocked is better for low power operations

but has a lower accuracy.

Returns
NONE

4.3.3.16 void COMP_E_setReferenceVoltage (uint32_t comparator, uint_fast16_t sup-
plyVoltageReferenceBase, uint_fast16_t lowerLimitSupplyVoltageFractionOf32,
uint_fast16_t upperLimitSupplyVoltageFractionOf32)

Generates a Reference Voltage to the terminal selected during initialization.

Parameters
comparator | is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:
= COMP_EO_BASE
= COMP_E1_BASE
supplyVolt- | decides the source and max amount of Voltage that can be used as a reference. Valid
ageReference- | values are
Base = COMP_E_REFERENCE_AMPLIFIER_DISABLED
m COMP_E_VREFBASE1_2V
m COMP_E_VREFBASE2_0V
m COMP_E_VREFBASE2_5V
upperLimitSup- | is the numerator of the equation to generate the reference voltage for the upper limit
plyVoltageFrac- | reference voltage. Valid values are between 1 and 32.
tionOf32
lowerLimitSup- | is the numerator of the equation to generate the reference voltage for the lower limit refer-
plyVoltageFrac- | ence voltage. Valid values are between 1 and 32.
tionOf32 | Modified bits are CEREFO of CECTL2 register.

Use this function to generate a voltage to serve as a reference to the terminal selected at
initialization. The voltage is determined by the equation: Vbase x (Numerator / 32). If the upper
and lower limit voltage numerators are equal, then a static reference is defined, whereas they are
different then a hysteresis effect is generated.

Returns
NONE

4.3.3.17 void COMP_E_shortinputs (uint32_t comparator)

Shorts the two input pins chosen during initialization.

Wed Aug 14 17:01:15 -05 2019

57

Analog Comparator (COMP_E)

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO_BASE
= COMP_E1_BASE

This function sets the bit that shorts the devices attached to the input pins chosen from the
initialization of the comparator.

Modified bits are CESHORT of CECTLA1 register.

Returns
NONE

4.3.3.18 void COMP_E_swaplO (uint32_t comparator)

Toggles the bit that swaps which terminals the inputs go to, while also inverting the output of the

comparator.

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= \bCOMP_EO
m \ bCOMP_E1

This function toggles the bit that controls which input goes to which terminal. After initialization,
this bit is set to 0, after toggling it once the inputs are routed to the opposite terminal and the

output is inverted.

Modified bits are CEEX of CECTLA1 register.

Returns
NONE

4.3.3.19 void COMP_E_togglelnterruptEdgeDirection (uint32_t comparator)

Toggles the edge direction that would trigger an interrupt.

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO_BASE
= COMP_E1_BASE

This function will toggle which direction the output will have to go, whether rising or falling, to
generate an interrupt based on a non-inverted interrupt. If the direction was rising, it is now falling,
if it was falling, it is now rising.

Wed Aug 14 17:01:15 -05 2019

58

Analog Comparator (COMP_E)

Modified bits are CEIES of CECTL1 register.

Returns
NONE

4.3.3.20 void COMP_E_unregisterinterrupt (uint32_t comparator)

Unregisters the interrupt handler for the Comparator E interrupt

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO_BASE
= COMP_E1_BASE

This function unregisters the handler to be called when Comparator E interrupt occurs. This
function also masks off the interrupt in the interrupt controller so that the interrupt handler no

longer is called.

See Also

Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

4.3.3.21 void COMP_E_unshortlnputs (uint32_t comparator)

Disables the short of the two input pins chosen during initialization.

Parameters

comparator

is the instance of the Comparator module. Valid parameters vary from part to part, but
can include:

= COMP_EO_BASE
= COMP_E1_BASE

This function clears the bit that shorts the devices attached to the input pins chosen from the
initialization of the comparator.

Modified bits are CESHORT of CECTL1 register.

Returns
NONE

Wed Aug 14 17:01:15 -05 2019

59

Cyclic Redundancy Check 32 (CRC32)

5.1

5.2

Cyclic Redundancy Check 32 (CRC32)

MOAUIE OPEIAtION ...ttt ettt et et e e e e e s 58
Programming EXample e 58
DB NIt ONS ..t 59

Module Operation

The Cyclic Redundancy Check 32 (CRC32) API provides a set of functions for using the SDK
CRC32 module. Functions are provided to initialize the CRC and create a CRC signature to check
the validity of data. This is mostly useful in the communication of data, or as a startup procedure
to as a more complex and accurate check of data.

The CRC32 module offers no interrupts and is used only to generate CRC signatures to verify
against pre-made CRC signatures (Checksums).

The CRC32 module provides the capability for both 32-bit and 16-bit calculations. As such, the
DriverLib API provides functionality for the user to provide variable bit-length data for either 16-bit
or 32-bit calculations.

Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the CRC32 module. These code examples are accessible under the examples/ folder of the
SDK release as well as through Tl Resource Explorer if using Code Composer Studio. These
code examples provide a comprehensive list of use cases as well as practical applications
involving each module.

In the following very simple code example, an array of data is fed into the CRC32 module and the
32-bit calculation is retrieved:

Wed Aug 14 17:01:15 -05 2019 60

Cyclic Redundancy Check 32 (CRC32)

5.3 Definitions

Functions

uint32_t CRC32_getResult (uint_fast8_t crcType)

uint32_t CRC32_getResultReversed (uint_fast8_t crcType)

void CRC32_set16BitData (uint16_t dataln, uint_fast8_t crcType)

void CRC32_set16BitDataReversed (uint16_t dataln, uint_fast8_t crcType)
void CRC32_set32BitData (uint32_t dataln)

void CRC32_set32BitDataReversed (uint32_t dataln)

void CRC32_set8BitData (uint8_t dataln, uint_fast8_t crcType)

void CRC32_set8BitDataReversed (uint8_t dataln, uint_fast8_t crcType)
void CRC32_setSeed (uint32_t seed, uint_fast8_t crcType)

5.3.1 Detailed Description

The code for this module is contained in driverlib/crc32.c and
driverlib/legacy/MSP432xx/legacy_crc32.c, Withdriverlib/crc32.h and
driverlib/legacy/MSP432xx/legacy_crc32.h containing the APl declarations for use by
applications.

Wed Aug 14 17:01:15 -05 2019 61

Cyclic Redundancy Check 32 (CRC32)

5.3.2 Function Documentation

5.3.2.1 uint32_t CRC32_getResult (uint_fast8 t crcType)

Returns the value of CRC Signature Result.
Parameters
] crcType | selects between CRC32 and CRC16 Valid values are CRC16_MODE and CRC32_MODE |

This function returns the value of the signature result generated by the CRC. Bit 0 is treated as
LSB.

Returns
uint32_t Result

5.3.2.2 uint32_t CRC32_getResultReversed (uint_fast8_t crcType)

Returns the bit-wise reversed format of the 32 bit Signature Result.
Parameters

] crcType | selects between CRC32 and CRC16 Valid values are CRC16_MODE and CRC32_MODE |

This function returns the bit-wise reversed format of the Signature Result. Bit 0 is treated as MSB.

Returns
uint32_t Result
5.3.2.3 void CRC32_set16BitData (uint16_t dataln, uint_fast8 t crcType)

Sets the 16 Bit data to add into the CRC module to generate a new signature.

Parameters

dataln | is the data to be added, through the CRC module, to the signature. Modified bits are
CRC16DIWO0 of CRC16DIWO register. CRC32DIWO0 of CRC32DIWO register.
crcType | selects between CRC32 and CRC16 Valid values are CRC16_MODE and CRC32_MODE

This function sets the given data into the CRC module to generate the new signature from the
current signature and new data. Bit 0 is treated as LSB

Returns
NONE

5.3.2.4 void CRC32_set16BitDataReversed (uint16_t dataln, uint_fast8 t crcType)

Translates the data by reversing the bits in each 16 bit data and then sets this data to add into the
CRC module to generate a new signature.

Wed Aug 14 17:01:15 -05 2019 62

Cyclic Redundancy Check 32 (CRC32)

Parameters

dataln

is the data to be added, through the CRC module, to the signature. Modified bits are
CRC16DIRBWO of CRC16DIRBWO register. CRC32DIRBWO0 of CRC32DIRBWO regis-
ter.

crcType

selects between CRC32 and CRC16 Valid values are CRC16_MODE and CRC32_MODE

This function first reverses the bits in each byte of the data and then generates the new signature
from the current signature and new translated data. Bit 0 is treated as MSB.

Returns
NONE

5.3.2.5 void CRC32_set32BitData (uint32_t dataln)

Sets the 32 Bit data to add into the CRC module to generate a new signature. Available only for
CRC32_MODE and not for CRC16_MODE

Parameters

dataln

is the data to be added, through the CRC module, to the signature. Modified bits are
CRC32DIL0 of CRC32DILO register.

This function sets the given data into the CRC module to generate the new signature from the
current signature and new data. Bit 0 is treated as LSB

Returns
NONE

5.3.2.6 void CRC32_set32BitDataReversed (uint32_t dataln)

Translates the data by reversing the bits in each 32 Bit Data and then sets this data to add into the
CRC module to generate a new signature. Available only for CRC32 mode and not for CRC16

mode
Parameters

dataln

is the data to be added, through the CRC module, to the signature. Modified bits are
CRC32DIRBLO of CRC32DIRBLO register.

This function first reverses the bits in each byte of the data and then generates the new signature
from the current signature and new translated data. Bit 0 is treated as MSB.

Returns
NONE

5.3.2.7 void CRC32_set8BitData (uint8_t dataln, uint_fast8 t crcType)

Sets the 8 Bit data to add into the CRC module to generate a new signature.

Wed Aug 14 17:01:15 -05 2019

63

Cyclic Redundancy Check 32 (CRC32)

Parameters

dataln

is the data to be added, through the CRC module, to the signature. Modified bits are
CRC16DIB0 of CRC16DIBO register. CRC32DIB0 of CRC32DIBO register.

crcType

selects between CRC32 and CRC16 Valid values are CRC16_MODE and CRC32_MODE

This function sets the given data into the CRC module to generate the new signature from the
current signature and new data. Bit 0 is treated as LSB.

Returns
NONE

5.3.2.8 void CRC32_set8BitDataReversed (uint8_t dataln, uint_fast8_t crcType)

Translates the data by reversing the bits in each 8 bit data and then sets this data to add into the
CRC module to generate a new signature.

Parameters

dataln

is the data to be added, through the CRC module, to the signature. Modified bits are
CRC16DIRBB0 of CRC16DIRBBO register. CRC32DIRBBO0 of CRC32DIRBBO register.

crcType

selects between CRC32 and CRC16 Valid values are CRC16_MODE and CRC32_MODE

This function first reverses the bits in each byte of the data and then generates the new signature
from the current signature and new translated data. Bit O is treated as MSB.

Returns
NONE

5.3.2.9 void CRC32_setSeed (uint32_t seed, uint_fast8 t crcType)

Sets the seed for the CRC.

Parameters

seed

is the seed for the CRC to start generating a signature from. Modified bits are
CRC16INIRESLO of CRC16INIRESLO register. CRC32INIRESLO of CRC32INIRESLO
register

crcType

selects between CRC32 and CRC16 Valid values are CRC16_MODE and CRC32_MODE

This function sets the seed for the CRC to begin generating a signature with the given seed and all
passed data. Using this function resets the CRC32 signature.

Returns
NONE

Wed Aug 14 17:01:15 -05 2019

64

Clock System (CS)

6.1

6.2

6.3

6.4

Clock System (CS)

MOAUIE OPEIAtION ...ttt ettt et et e e e e e s 63
TIMEOUL ParameterS ... e e e e e 63
Custom DCO FrEQUENCIES . ..ottt ettt e e e e e e e e e e et e e e e e e e e e e 63
Specifying External Crystal FreQUENCIESt e 63
Programming EXamiple 64
D iNItIONS ... e 65

Module Operation

The clock system module for DriverLib gives users the ability to fully configure and control all
aspects of the MSP432 clock system. This includes initializing and maintaining the MCLK, ACLK,
HSMCLK, SMCLK, and BCLK clock systems. Additionally, APIs exist for configuring connected
crystal oscillators as well as configuring/manipulating the DCO and reference oscillator.

Timeout Parameters

For crystal configuration APIs (starting the LFXT and HFXT), a "timeout" API exists that will return
control of execution back to the user application if a specified duration passes. The variable that is
passed into these functions is a unit of time specified by how many "loop iterations" elapse before
unsuccessful stabilization of the respected crystal. The API will attempt to check to see if there
was a crystal fault, clear the crystal fault flag, and repeat the check until no fault exists. If the user
calls the API with a specified timeout, the loop will only check the given number of loop iterations
for a successfully stabilized crystal.

Custom DCO Frequency

For tuning the DCO frequency to a specific frequency, a convenient CS_setDCOFrequency
function is provided to users. This function accepts any uint32_t frequency and automatically
calculates the appropriate tuning parameters to get the DCO frequency as close as possible to the
provided frequency. Note that with this function, floating point math is involved so if efficiency is a
concern the user should enable the FPU using the FPU_enableModule function.

Specifying External Crystal Frequencies

MSP432 DriverLib has a variety of convenience functions for obtaining the specific frequency of a
clock source (such as CS_getMCLK). If a clock source is sourced from an external crystal, the
crystal frequency must be specified explicitly using the CS_setExternalClockSourceFrequency
function. This function must be used prior to the getters for the clock source if an external crystal
is used.

Wed Aug 14 17:01:15 -05 2019 65

Clock System (CS)

6.5 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the CS module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a very brief code example showing how to start the external high frequency crystal and
source MCLK from this crystal. An LED is configured as an output in this example as well. For a
set of more detailed code examples, please refer to the code examples in the examples/ directory
of the SDK release:

Wed Aug 14 17:01:15 -05 2019 66

Clock System (CS)

6.6 Definitions

Functions

void CS_clearInterruptFlag (uint32_t flags)

void CS_disableClockRequest (uint32_t selectClock)

void CS_disableDCOExternalResistor (void)

void CS_disableFaultCounter (uint_fast8 t counterSelect)

void CS_disablelnterrupt (uint32_t flags)

void CS_enableClockRequest (uint32_t selectClock)

void CS_enableDCOExternalResistor (void)

void CS_enableFaultCounter (uint_fast8_t counterSelect)

void CS_enablelnterrupt (uint32_t flags)

uint32_t CS_getACLK (void)

uint32_t CS_getBCLK (void)

uint32_t CS_getDCOFrequency (void)

uint32_t CS_getEnabledInterruptStatus (void)

uint32_t CS_getHSMCLK (void)

uint382_t CS_getlnterruptStatus (void)

uint32_t CS_getMCLK (void)

uint32_t CS_getSMCLK (void)

void CS_initClockSignal (uint32_t selectedClockSignal, uint32_t clockSource, uint32_t
clockSourceDivider)

void CS_registerInterrupt (void(xintHandler)(void))

void CS_resetFaultCounter (uint_fast8_t counterSelect)

void CS_setDCOCenteredFrequency (uint32_t dcoFreq)

void CS_setDCOExternalResistorCalibration (uint_fast8_t uiCalData, uint_fast8_t freqRange)
void CS_setDCOFrequency (uint32_t dcoFrequency)

void CS_setExternalClockSourceFrequency (uint32_t Ifxt XT_CLK_frequency, uint32_t
hfxt_XT_CLK_frequency)

void CS_setReferenceOscillatorFrequency (uint8_t referenceFrequency)

void CS_startFaultCounter (uint_fast8_t counterSelect, uint_fast8_t countValue)
bool CS_startHFXT (bool bypassMode)

bool CS_startHFXTWithTimeout (bool bypassMode, uint32_t timeout)

bool CS_startLFXT (uint32_t xtDrive)

bool CS_startLFXTWithTimeout (uint32_t xtDrive, uint32_t timeout)

void CS_tuneDCOFrequency (int16_t tuneParameter)

void CS_unregisterInterrupt (void)

6.6.1 Detailed Description

The code for this module is contained in driverlib/cs.c, with driverlib/cs.h containing
the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 67

Clock System (CS)

6.6.2 Function Documentation

6.6.2.1 void CS_clearlnterruptFlag (uint32_t flags)

Clears clock system interrupt sources.

Parameters

flags | is a bit mask of the interrupt sources to be cleared. Must be a logical OR of:
m CS_LFXT_FAULT,

m CS_HFXT_FAULT,

m CS_DCO_OPEN_FAULT,

m CS_STARTCOUNT_LFXT_FAULT,

m CS_STARTCOUNT_HFXT_FAULT,

The specified clock system interrupt sources are cleared, so that they no longer assert. This
function must be called in the interrupt handler to keep it from being called again immediately
upon exit.

Note
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the
interrupt source be cleared early in the interrupt handler (as opposed to the very last action)
to avoid returning from the interrupt handler before the interrupt source is actually cleared.
Failure to do so may result in the interrupt handler being immediately reentered (because the
interrupt controller still sees the interrupt source asserted).
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns
None.

6.6.2.2 void CS_disableClockRequest (uint32_t selectClock)

Disables conditional module requests

Parameters
selectClock | selects specific request disables. Valid values are are a logical OR of the following values:
m CS_ACLK,
m CS_HSMCLK,
m CS_SMCLK,
m CS_MCLK

Returns
NONE

Wed Aug 14 17:01:15 -05 2019 68

Clock System (CS)

6.6.2.3 void CS_disableDCOExternalResistor (void)

Disables the external resistor for DCO operation

Returns
NONE

6.6.2.4 void CS_disableFaultCounter (uint_fast8 t counterSelect)
Disables the fault counter for the CS module. This function can disable either the HFXT fault

counter or the LFXT fault counter.
Parameters

counterSelect | selects the fault counter to disable
m CS_HFXT_FAULT _COUNTER
m CS_LFXT_FAULT _COUNTER

Returns
NONE

6.6.2.5 void CS_disablelnterrupt (uint32_t flags)

Disables individual clock system interrupt sources.

Parameters

flags | is a bit mask of the interrupt sources to be disabled. Must be a logical OR of:
m CS_LFXT_FAULT,

m CS_HFXT_FAULT,

= CS_DCOMIN_FAULT,

m CS_DCOMAX_FAULT,

m CS_DCO_OPEN_FAULT,

m CS_STARTCOUNT_LFXT_FAULT,

m CS_STARTCOUNT_HFXT_FAULT,

Note
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns
None.

Wed Aug 14 17:01:15 -05 2019 69

Clock System (CS)

6.6.2.6 void CS_enableClockRequest (uint32_t selectClock)

Enables conditional module requests

Wed Aug 14 17:01:15 -05 2019 70

Clock System (CS)

Parameters
selectClock | selects specific request enables. Valid values are are a logical OR of the following values:
m CS_ACLK,
m CS_HSMCLK,
m CS_SMCLK,
m CS_MCLK

Returns
NONE

6.6.2.7 void CS_enableDCOExternalResistor (void)

Enables the external resistor for DCO operation

Returns
NONE

6.6.2.8 void CS_enableFaultCounter (uint_fast8 t counterSelect)

Enables the fault counter for the CS module. This function can enable either the HFXT fault
counter or the LFXT fault counter.

Parameters

counterSelect | selects the fault counter to enable
m CS_HFXT_FAULT _COUNTER
m CS LFXT _FAULT COUNTER

Wed Aug 14 17:01:15 -05 2019 71

Clock System (CS)

Returns
NONE

6.6.2.9 void CS_enablelnterrupt (uint32_t flags)

Enables individual clock control interrupt sources.

Parameters

flags | is a bit mask of the interrupt sources to be enabled. Must be a logical OR of:
m CS_LFXT_FAULT,

m CS_HFXT_FAULT,

m CS_DCOMIN_FAULT,

m CS_DCOMAX_FAULT,

m CS_DCO_OPEN_FAULT,

m CS_STARTCOUNT_LFXT_FAULT,

m CS_STARTCOUNT_HFXT_FAULT,

This function enables the indicated clock system interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

Note
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns
None.

6.6.2.10 uint32_t CS_getACLK (void)

Get the current ACLK frequency.

If a oscillator fault is set, the frequency returned will be based on the fail safe mechanism of CS
module. The user of this API must ensure that CS_setExternalClockSourceFrequency() APl was
invoked before in case LFXT is being used.

Returns
Current ACLK frequency in Hz

6.6.2.11 uint32_t CS_getBCLK (void)

Get the current BCLK frequency.

If a oscillator fault is set, the frequency returned will be based on the fail safe mechanism of CS
module. The user of this API must ensure that CS_setExternalClockSourceFrequency APl was
invoked before in case LFXT or HFXT is being used.

Wed Aug 14 17:01:15 -05 2019 72

Clock System (CS)

6.6.2.12

6.6.2.13

6.6.2.14

Returns
Current BCLK frequency in Hz

uint32_t CS_getDCOFrequency (void)

Gets the current tuned DCO frequency. If no tuning has been done, this returns the nominal DCO
frequency of the current DCO range. Note that this function will grab any constant/calibration data
from the DDDS table without any user interaction needed.

Note
This function uses floating point math to calculate the DCO tuning parameter. If efficiency is
a concern, the user should use the FPU_enableModule function (if available) to enable the
floating point co-processor.

Returns
Current DCO frequency in Hz

References SysCtl_A_getTLVInfo(), and SysCtl_getTLVInfo().

uint32_t CS_getEnabledInterruptStatus (void)

Gets the current interrupt status masked with the enabled interrupts. This function is useful to call
in ISRs to get a list of pending interrupts that are actually enabled and could have caused the ISR.

Returns
The current interrupt status, enumerated as a bit field of

= CS_LFXT_FAULT,

= CS_HFXT_FAULT,

= CS_DCO_OPEN_FAULT,

= CS_DCO_SHORT_FAULT,

= CS_STARTCOUNT_LFXT_FAULT,
= CS_STARTCOUNT_HFXT_FAULT,

Note
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

References CS_getinterruptStatus().

uint32_t CS_getHSMCLK (void)

Get the current HSMCLK frequency.

If a oscillator fault is set, the frequency returned will be based on the fail safe mechanism of CS
module. The user of this API must ensure that CS_setExternalClockSourceFrequency APl was
invoked before in case LFXT or HFXT is being used.

Returns
Current HSMCLK frequency in Hz

Wed Aug 14 17:01:15 -05 2019 73

Clock System (CS)

6.6.2.15

6.6.2.16

6.6.2.17

6.6.2.18

uint32_t CS_getinterruptStatus (void)

Gets the current interrupt status.

Returns
The current interrupt status, enumerated as a bit field of:

= CS_LFXT_FAULT,
= CS_HFXT_FAULT,

= CS_DCO_OPEN_FAULT,

= CS_DCO_SHORT_FAULT,

= CS_STARTCOUNT_LFXT_FAULT,
= CS_STARTCOUNT_HFXT_FAULT,

Note
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Referenced by CS_getEnabledInterruptStatus().

uint32_t CS_getMCLK (void)

Get the current MCLK frequency.

If a oscillator fault is set, the frequency returned will be based on the fail safe mechanism of CS
module. The user of this API must ensure that CS_setExternalClockSourceFrequency APl was
invoked before in case LFXT or HFXT is being used.

Returns
Current MCLK frequency in Hz

uint32_t CS_getSMCLK (void)

Get the current SMCLK frequency.

If a oscillator fault is set, the frequency returned will be based on the fail safe mechanism of CS
module. The user of this API must ensure that CS_setExternalClockSourceFrequency APl was
invoked before in case LFXT or HFXT is being used.

Returns
Current SMCLK frequency in Hz

void CS_initClockSignal (uint32_t selectedClockSignal, uint32_t clockSource,
uint32_t clockSourceDivider)

This function initializes each of the clock signals. The user must ensure that this function is called
for each clock signal. If not, the default state is assumed for the particular clock signal. Refer to
DriverLib documentation for CS module or Device Family User’s Guide for details of default clock
signal states.

Wed Aug 14 17:01:15 -05 2019 74

Clock System (CS)

Note that this function is blocking and will wait on the appropriate bit to be set in the CSSTAT
READY register to be set before setting the clock source.

Also note that when HSMCLK and SMCLK share the same clock signal. If you change the clock
signal for HSMCLK, the clock signal for SMCLK will change also (and vice-versa).

HFXTCLK is not available for BCLK or ACLK.

Parameters

selected-
ClockSignal

Clock signal to initialize.
m CS_ACLK,
m CS_MCLK,
m CS_HSMCLK
m CS_SMCLK
m CS_BCLK [clockSourceDivider is ignored for this parameter]

clockSource

Clock source for the selectedClockSignal signal.
m CS_LFXTCLK_SELECT,
m CS_HFXTCLK_SELECT,
m CS_VLOCLK_SELECT, [Not available for BCLK]
m CS_DCOCLK_SELECT, [Not available for ACLK, BCLK]
m CS_REFOCLK_SELECT,
m CS_MODOSC_SELECT [Not available for ACLK, BCLK]

clockSourceDi-
vider

- selected the clock divider to calculate clock signal from clock source. This parameter is
ignored when setting BLCK. Valid values are:

m CS_CLOCK_DIVIDER_1,
m CS_CLOCK_DIVIDER_2,
m CS_CLOCK_DIVIDER_A4,
m CS_CLOCK_DIVIDER_S,
m CS_CLOCK_DIVIDER_16,
m CS_CLOCK_DIVIDER_32,
m CS_CLOCK_DIVIDER_64,
m CS_CLOCK_DIVIDER_128

Returns
NONE

6.6.2.19 void CS_registerinterrupt (void(x)(void) intHandler)

Registers an interrupt handler for the clock system interrupt.

Wed Aug 14 17:01:15 -05 2019

75

Clock System (CS)

Parameters

] intHandler \ is a pointer to the function to be called when the clock system interrupt occurs.

This function registers the handler to be called when a clock system interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific clock system interrupts must be
enabled via CS_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt
source via CS_clearlnterruptFlag().

Clock System can generate interrupts when

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

6.6.2.20 void CS_resetFaultCounter (uint_fast8 t counterSelect)

Resets the fault counter for the CS module. This function can reset either the HFXT fault counter
or the LFXT fault counter.

Parameters

counterSelect | selects the fault counter to reset
m CS_HFXT_FAULT _COUNTER
m CS_LFXT_FAULT COUNTER

Returns
NONE

6.6.2.21 void CS_setDCOCenteredFrequency (uint32_t dcoFreq)

Sets the centered frequency of DCO operation. Each frequency represents the centred frequency
of a particular frequency range. Further tuning can be achieved by using the
CS_tuneDCOFrequency function. Note that setting the nominal frequency will reset the tuning
parameters.

Parameters

dcoFreq | selects between the valid frequencies:

m CS_DCO_FREQUENCY_1_5, [1MHz to 2MHZz]
m CS_DCO_FREQUENCY_3, [2MHz to 4MHZ]

m CS_DCO_FREQUENCY_6, [4MHz to 8MHz]

m CS_DCO_FREQUENCY_12, [8MHz to 16MHz]
m CS_DCO_FREQUENCY_24, [16MHz to 32MHz]
m CS_DCO_FREQUENCY_48 [32MHz to 64MHz]

Wed Aug 14 17:01:15 -05 2019 76

Clock System (CS)

Returns
NONE

Referenced by CS_setDCOFrequency).

6.6.2.22 void CS_setDCOExternalResistorCalibration (uint_fast8 t uiCalData,
uint_fast8 t freqRange)

Sets the calibration value for the DCO when using the external resistor mode. This value is used
for tuning the DCO to custom frequencies. By default, the value in the CS module is populated by
the calibration data of the suggested external resistor (see device datasheet).

Parameters

calData | is the calibration data constant for the external resistor.

fregRange | is the range of the DCO to set the external calibration for. Frequencies above 32MHZ
have a different calibration value than frequencies below 32MHZ.

Returns
None

6.6.2.23 void CS_setDCOFrequency (uint32_t dcoFrequency)

Automatically sets/tunes the DCO to the given frequency. Any valid value up to max frequency in
the spec can be given to this function and the API will do its best to determine the correct tuning
parameter.

Note
The frequency ranges that can be custom tuned on early release MSP432 devices is limited.
For further details on supported tunable frequencies, please refer to the device errata sheet
or data sheet.

Parameters

] dcoFrequency \ Frequency in Hz that the user wants to set the DCO to.

Note
This function uses floating point math to calculate the DCO tuning parameter. If efficiency is
a concern, the user should use the FPU_enableModule function (if available) to enable the
floating point co-processor.

Returns
None

Automatically sets/tunes the DCO to the given frequency. Any valid value up to (and including)
64Mhz can be given to this function and the API will do its best to determine the correct tuning
parameter.

Wed Aug 14 17:01:15 -05 2019 77

Clock System (CS)

Note
This function is not currently available on pre-release MSP432 devices. On early release
versions of MSP432, the DCO calibration information has not been populated making the
DCO only able to operate at the pre-calibrated centered frequencies accessible by the
CS_setDCOCenteredFrequency function. While this function will be added on the final
devices being released, for early silicon please default to the pre-calibrated DCO center
frequencies.

Parameters

] dcoFrequency \ Frequency in Hz (1500000 - 64000000) that the user wants to set the DCO to.

Note
This function uses floating point math to calculate the DCO tuning parameter. If efficiency is
a concern, the user should use the FPU_enableModule function (if available) to enable the
floating point co-processor.

Returns
None

Automatically sets/tunes the DCO to the given frequency. Any valid value up to (and including)
64Mhz can be given to this function and the API will do its best to determine the correct tuning
parameter.

Note
This function is not currently available on pre-release MSP432 devices. On early release
versions of MSP432, the DCO calibration information has not been populated making the
DCO only able to operate at the pre-calibrated centered frequencies accessible by the
CS_setDCOCenteredFrequency function. While this function will be added on the final
devices being released, for early silicon please default to the pre-calibrated DCO center
frequencies.

Parameters

] dcoFrequency \ Frequency in Hz (1500000 - 64000000) that the user wants to set the DCO to.

Note
This function uses floating point math to calculate the DCO tuning parameter. If efficiency is
a concern, the user should use the FPU_enableModule function (if available) to enable the
floating point co-processor.

Returns
None

Automatically sets/tunes the DCO to the given frequency. Any valid value up to max frequency in
the spec can be given to this function and the API will do its best to determine the correct tuning
parameter.

Note
The frequency ranges that can be custom tuned on early release MSP432 devices is limited.
For further details on supported tunable frequencies, please refer to the device errata sheet
or data sheet.

Wed Aug 14 17:01:15 -05 2019 78

Clock System (CS)

Parameters

] dcoFrequency \ Frequency in Hz that the user wants to set the DCO to.

Note
This function uses floating point math to calculate the DCO tuning parameter. If efficiency is
a concern, the user should use the FPU_enableModule function (if available) to enable the
floating point co-processor.

Returns
None

References CS_setDCOCenteredFrequency(), CS_tuneDCOFrequency(), SysCtl_A_getTLVInfo(),
and SysCitl_getTLVInfo().

6.6.2.24 void CS_setExternalClockSourceFrequency (uint32_t lfxt XT _CLK frequency,
uint32_t hixt XT_CLK frequency)

This function sets the external clock sources LFXT and HFXT crystal oscillator frequency values.
This function must be called if an external crystal LFXT or HFXT is used and the user intends to
call CS_getSMCLK, CS_getMCLK, CS_getBCLK, CS_getHSMCLK, CS_getACLK and any of the
HFXT oscillator control functions

Parameters

is the LFXT crystal frequencies in Hz
ltxt XT_CLK_frequency

is the HFXT crystal frequencies in Hz
hixt XT_CLK_frequency

Returns
None

6.6.2.25 void CS_setReferenceOscillatorFrequency (uint8_t referenceFrequency)

Selects between the frequency of the internal REFO clock source

Parameters

referencefre- | selects between the valid frequencies:
quency | m CS_REFO_32KHZ,
m CS_REFO_128KHZ,

Returns
NONE

Wed Aug 14 17:01:15 -05 2019 79

Clock System (CS)

6.6.2.26 void CS_startFaultCounter (uint_fast8 t counterSelect, uint_fast8 t countValue

)

Sets the count for the start value of the fault counter. This function can be used to set either the
HFXT count or the LFXT count.

Wed Aug 14 17:01:15 -05 2019 80

Clock System (CS)

Parameters
counterSelect | selects the fault counter to reset
m CS_HFXT_FAULT_COUNTER
m CS_LFXT_FAULT_COUNTER
countValue | selects the cycles to set the fault counter to
m CS_FAULT_COUNTER_4096_CYCLES
m CS_FAULT_COUNTER_8192_CYCLES
m CS_FAULT_COUNTER_16384_CYCLES
m CS_FAULT_COUNTER_32768_CYCLES
Returns
NONE

6.6.2.27 bool CS_startHFXT (bool bypassMode)

Initializes the HFXT crystal oscillator, which supports crystal frequencies between 0 MHz and 48
MHz, depending on the selected drive strength. Loops until all oscillator fault flags are cleared,
with no timeout. See the device-specific data sheet for appropriate drive settings. NOTE: User
must call CS_setExternalClockSourceFrequency to set frequency of external clocks before calling

this function.

Parameters
bypassMode | When this variable is set, the oscillator will start in bypass mode and the signal can be
generated by a digital square wave.
Returns

true if started correctly, false otherwise

References CS_startHFXTWithTimeout().

6.6.2.28 bool CS_startHFXTWithTimeout (bool bypassMode, uint32_t timeout)

Initializes the HFXT crystal oscillator, which supports crystal frequencies between 0 MHz and 48
MHz, depending on the selected drive strength. Loops until all oscillator fault flags are cleared,
with no timeout. See the device-specific data sheet for appropriate drive settings. NOTE: User
must call CS_setExternalClockSourceFrequency to set frequency of external clocks before calling
this function. This function has a timeout associated with stabilizing the oscillator.

Parameters
bypassMode | When this variable is set, the oscillator will start in bypass mode and the signal can be
generated by a digital square wave.
timeout | is the count value that gets decremented every time the loop that clears oscillator fault
flags gets executed.

Wed Aug 14 17:01:15 -05 2019

81

Clock System (CS)

6.6.2.29

6.6.2.30

Returns
true if started correctly, false otherwise

References SysCtl_A_disableNMISource(), SysCtl_A_enableNMISource(),
SysCtl_A_getNMISourceStatus(), SysCtl_disableNMISource(), SysCtl_enableNMISource(), and
SysCtl_getNMISourceStatus().

Referenced by CS_startHFXT().

bool CS_startLFXT (uint32_t xtDrive)

Initializes the LFXT crystal oscillator, which supports crystal frequencies up to 50kHz, depending
on the selected drive strength. Loops until all oscillator fault flags are cleared, with no timeout.
See the device-specific data sheet for appropriate drive settings. NOTE: User must call
CS_setExternalClockSourceFrequency to set frequency of external clocks before calling this
function.

Parameters

xtDrive | is the target drive strength for the LFXT crystal oscillator. Valid values are:
m CS_LFXT_DRIVEO,

m CS_LFXT_DRIVEA1,

m CS_LFXT_DRIVE2,

m CS_LFXT_DRIVES3, [Default Value]

m CS_LFXT_BYPASS

Note
When CS_LFXT_BYPASS is passed as a parameter the oscillator will start in bypass mode
and the signal can be generated by a digital square wave.

Returns
true if started correctly, false otherwise

References CS_startLFXTWithTimeout().

bool CS_startLFXTWithTimeout (uint32_t xtDrive, uint32_t timeout)

Initializes the LFXT crystal oscillator, which supports crystal frequencies up to 50kHz, depending
on the selected drive strength. Loops until all oscillator fault flags are cleared. See the
device-specific data sheet for appropriate drive settings. NOTE: User must call
CS_setExternalClockSourceFrequency to set frequency of external clocks before calling this
function. This function has a timeout associated with stabilizing the oscillator.

Wed Aug 14 17:01:15 -05 2019 82

Clock System (CS)

Parameters

xtDrive | is the target drive strength for the LFXT crystal oscillator. Valid values are:
m CS_LFXT_DRIVEQO,

m CS_LFXT_DRIVE1,

m CS_LFXT_DRIVEZ2,

m CS_LFXT_DRIVES3, [Default Value]

m CS_LFXT_BYPASS

Note
When CS_LFXT_BYPASS is passed as a parameter the oscillator will start in bypass mode
and the signal can be generated by a digital square wave.

Parameters

timeout | is the count value that gets decremented every time the loop that clears oscillator fault
flags gets executed.

Returns
true if started correctly, false otherwise

References SysCtl_A_disableNMISource(), SysCtl_A_enableNMISource(),
SysCtl_A_getNMISourceStatus(), SysCtl_disableNMISource(), SysCtl_enableNMISource(), and
SysCtl_getNMISourceStatus().

Referenced by CS_startLFXT().

6.6.2.31 void CS_tuneDCOFrequency (int16_t tuneParameter)

Tunes the DCO to a specific frequency. Tuning of the DCO is based off of the following equation in
the user’s guide:

See the user’s guide for more detailed information about DCO tuning.

Note
This function is not currently available on pre-release MSP432 devices. On early release
versions of MSP432, the DCO calibration information has not been populated making the
DCO only able to operate at the pre-calibrated centered frequencies accessible by the
CS_setDCOCenteredFrequency function. While this function will be added on the final
devices being released, for early silicon please default to the pre-calibrated DCO center
frequencies.

Parameters

| tuneParameter | Tuning parameter in 2’s Compliment representation. Can be negative or positive.

Returns
NONE

Referenced by CS_setDCOFrequency).

Wed Aug 14 17:01:15 -05 2019 83

Clock System (CS)

6.6.2.32 void CS_unregisterinterrupt (void)

Unregisters the interrupt handler for the clock system.

This function unregisters the handler to be called when a clock system interrupt occurs. This
function also masks off the interrupt in the interrupt controller so that the interrupt handler no
longer is called.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 84

Direct Memory Access Controller (DMA)

7.1

Direct Memory Access Controller (DMA)

MOAUIE OPEIAtION ...ttt ettt et et e e e e e s 82
(070 01771 6710 o TN 1Y/ [0 o = 84
D NIt ONS ot 85

Module Operation

The Micro Direct Memory Access (DMA) API provides functions to configure the MSP432 uDMA
controller. The DMA controller is designed to work with the ARM Cortex-M processor and provides
an efficient and low-overhead means of transferring blocks of data in the system.

The DMA controller has the following features:

m dedicated channels for supported peripherals

m one channel each for receive and transmit for devices with receive and transmit paths
dedicated channel for software initiated data transfers

channels can be independently configured and operated

an arbitration scheme that is configurable per channel

two levels of priority

subordinate to Cortex-M processor bus usage

data sizes of 8, 16, or 32 bits

address increment of byte, half-word, word, or none
maskable device requests

m optional software initiated transfers on any channel
m interrupt on transfer completion

The uDMA controller supports several different transfer modes, allowing for complex transfer
schemes. The following transfer modes are provided:

m Basic mode performs a simple transfer when a request is asserted by a device. This mode is
appropriate to use with peripherals where the peripheral asserts the request signal whenever
data should be transferred. The transfer pauses if the request is de-asserted, even if the
transfer is not complete.

m Auto-request mode performs a simple transfer that is started by a request, but always
completes the entire transfer, even if the request is de-asserted. This mode is appropriate to
use with software-initiated transfers.

m Ping-Pong mode is used to transfer data to or from two buffers, switching from one buffer to
the other as each buffer fills. This mode is appropriate to use with peripherals as a way to
ensure a continuous flow of data to or from the peripheral. However, it is more complex to set
up and requires code to manage the ping-pong buffers in the interrupt handler.

m Memory scatter-gather mode is a complex mode that provides a way to set up a list of
transfer “tasks” for the uDMA controller. Blocks of data can be transferred to and from
arbitrary locations in memory.

m Peripheral scatter-gather mode is similar to memory scatter-gather mode except that it is
controlled by a peripheral request.

Wed Aug 14 17:01:15 -05 2019 85

Direct Memory Access Controller (DMA)

Detailed explanation of the various transfer modes is beyond the scope of this document. Please
refer to the device data sheet for more information on the operation of the uDMA controller.

Wed Aug 14 17:01:15 -05 2019 86

Direct Memory Access Controller (DMA)

7.2 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the DMA module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a very brief example of how to configure the DMA controller to transfer from a data array
(data_array) to the EUSCI 12C module to be sent over the 12C line. This is useful in the sense that
the EUSCI module does not constantly have to wake up the CPU in order to load the next byte into
the buffer.

Wed Aug 14 17:01:15 -05 2019 87

Direct Memory Access Controller (DMA)

7.3 Definitions

Macros

#define DMA_TaskStructEntry(transferCount, itemSize, srcincrement, srcAddr, dstincrement,
dstAddr, arbSize, mode)
#define DMA_TaskStructEntry(transferCount, itemSize, srclncrement, srcAddr, dstincrement,
dstAddr, arbSize, mode)

Functions

void DMA_assignChannel (uint32_t mapping)

void DMA_assigninterrupt (uint32_t interruptNumber, uint32_t channel)

void DMA_clearErrorStatus (void)

void DMA_clearInterruptFlag (uint32_t channel)

void DMA_disableChannel (uint32_t channelNum)

void DMA_disableChannelAttribute (uint32_t channelNum, uint32_t attr)

void DMA_disablelnterrupt (uint32_t interruptNumber)

void DMA_disableModule (void)

void DMA_enableChannel (uint32_t channelNum)

void DMA_enableChannelAttribute (uint32_t channelNum, uint32_t attr)

void DMA_enablelnterrupt (uint32_t interruptNumber)

void DMA_enableModule (void)

uint32_t DMA_getChannelAttribute (uint32_t channelNum)

uint32_t DMA_getChannelMode (uint32_t channelStructindex)

uint32_t DMA_getChannelSize (uint32_t channelStructindex)

void * DMA_getControlAlternateBase (void)

void x DMA_getControlBase (void)

uint32_t DMA_getErrorStatus (void)

uint32_t DMA_getinterruptStatus (void)

bool DMA_isChannelEnabled (uint32_t channelNum)

void DMA_registerinterrupt (uint32_t interruptNumber, void(xintHandler)(void))
void DMA_requestChannel (uint32_t channelNum)

void DMA_requestSoftwareTransfer (uint32_t channel)

void DMA_setChannelControl (uint32_t channelStructindex, uint32_t control)
void DMA_setChannelScatterGather (uint32_t channelNum, uint32_t taskCount, void
xtaskList, uint32_t isPeriphSG)

void DMA_setChannelTransfer (uint32_t channelStructindex, uint32_t mode, void xsrcAddr,
void «dstAddr, uint32_t transferSize)

void DMA_setControlBase (void xcontrolTable)

void DMA_unregisterinterrupt (uint32_t interruptNumber)

7.3.1 Detailed Description

The code for this module is contained in driverlib/dma.c, with driverlib/dma.h containing
the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 88

Direct Memory Access Controller (DMA)

7.3.2

7.3.2.1

Macro Definition Documentation

#define DMA_TaskStructEntry(transferCount, itemSize, srcincrement,
srcAddr, dstincrement, dstAddr, arbSize, mode)

A helper macro for building scatter-gather task table entries.

This macro is intended to be used to help populate a table of DMA tasks for a scatter-gather
transfer. This macro will calculate the values for the fields of a task structure entry based on the
input parameters.

There are specific requirements for the values of each parameter. No checking is done so it is up
to the caller to ensure that correct values are used for the parameters.

The transferCount parameter is the number of items that will be transferred by this task. It must
be in the range 1-1024.

The itemSize parameter is the bit size of the transfer data. It must be one of UDMA_SIZE_8,
UDMA_SIZE_16, or UDMA_SIZE_32.

The srcincrement parameter is the increment size for the source data. It must be one of
UDMA_SRC_INC_8, UDMA_SRC_INC_16, UDMA_SRC_INC_32, or UDMA_SRC_INC_NONE.

The srcAddr parameter is a void pointer to the beginning of the source data.

The dstincrement parameter is the increment size for the destination data. It must be one of
UDMA_DST INC_8, UDMA_DST_INC_16, UDMA_DST_INC_32, or UDMA_DST_INC_NONE.

The dstAddr parameter is a void pointer to the beginning of the location where the data will be
transferred.

The arbSize parameter is the arbitration size for the transfer, and must be one of UDMA_ARB_1,
UDMA_ARB_2, UDMA_ARB_4, and so on up to UDMA_ARB_1024. This is used to select the
arbitration size in powers of 2, from 1 to 1024.

The mode parameter is the mode to use for this transfer task. It must be one of
UDMA_MODE_BASIC, UDMA_MODE_AUTO, UDMA_MODE_MEM_SCATTER_GATHER, or
UDMA_MODE_PER_SCATTER_GATHER. Note that normally all tasks will be one of the
scatter-gather modes while the last task is a task list will be AUTO or BASIC.

This macro is intended to be used to initialize individual entries of a structure of
DMA_ControlTable type, like this:

DMA_ControlTable MyTaskList[] =
{
DMA_TaskStructEntry (TasklCount, UDMA_SIZE_S8,
UDMA_SRC_INC_S8, MySourceBuf,
UDMA_DST_INC_8, MyDestBuf,
UDMA_ARB_8, UDMA_MODE_MEM_SCATTER_GATHER),
DMA_TaskStructEntry (Task2Count, e)y
}

Parameters

] transferCount \ is the count of items to transfer for this task.

Wed Aug 14 17:01:15 -05 2019 89

Direct Memory Access Controller (DMA)

7.3.2.2

itemSize | is the bit size of the items to transfer for this task.

srclncrement | is the bit size increment for source data.

srcAddr | is the starting address of the data to transfer.

dstincrement | is the bit size increment for destination data.

dstAddr | is the starting address of the destination data.

arbSize | is the arbitration size to use for the transfer task.

mode | is the transfer mode for this task.

Returns
Nothing; this is not a function.

#define DMA_TaskStructEntry(transferCount, itemSize, srcincrement,
srcAddr, dstincrement, dstAddr, arbSize, mode)

A helper macro for building scatter-gather task table entries.

This macro is intended to be used to help populate a table of DMA tasks for a scatter-gather
transfer. This macro will calculate the values for the fields of a task structure entry based on the
input parameters.

There are specific requirements for the values of each parameter. No checking is done so it is up
to the caller to ensure that correct values are used for the parameters.

The transferCount parameter is the number of items that will be transferred by this task. It must
be in the range 1-1024.

The itemSize parameter is the bit size of the transfer data. It must be one of UDMA_SIZE_8,
UDMA_SIZE_16, or UDMA_SIZE_32.

The srcincrement parameter is the increment size for the source data. It must be one of
UDMA_SRC_INC_8, UDMA_SRC_INC_16, UDMA_SRC_INC_32, or UDMA_SRC_INC_NONE.

The srcAddr parameter is a void pointer to the beginning of the source data.

The dstincrement parameter is the increment size for the destination data. It must be one of
UDMA_DST_INC_8, UDMA_DST_INC_16, UDMA_DST_INC_32, or UDMA_DST_INC_NONE.

The dstAddr parameter is a void pointer to the beginning of the location where the data will be
transferred.

The arbSize parameter is the arbitration size for the transfer, and must be one of UDMA_ARB_1,
UDMA_ARB_2, UDMA_ARB_4, and so on up to UDMA_ARB_1024. This is used to select the
arbitration size in powers of 2, from 1 to 1024.

The mode parameter is the mode to use for this transfer task. It must be one of
UDMA_MODE_BASIC, UDMA_MODE_AUTO, UDMA_MODE_MEM_SCATTER_GATHER, or
UDMA_MODE_PER_SCATTER_GATHER. Note that normally all tasks will be one of the
scatter-gather modes while the last task is a task list will be AUTO or BASIC.

This macro is intended to be used to initialize individual entries of a structure of
DMA_ControlTable type, like this:

DMA_ControlTable MyTaskList[] =
{
DMA_TaskStructEntry (TasklCount, UDMA_SIZE_S8,
UDMA_SRC_INC_8, MySourceBuf,
UDMA_DST_INC_S8, MyDestBuf,

Wed Aug 14 17:01:15 -05 2019 90

Direct Memory Access Controller (DMA)

7.3.3

7.3.3.1

7.3.3.2

UDMA_ARB_S8, UDMA_MODE_MEM_SCATTER_GATHER) ,
DMA_TaskStructEntry (Task2Count, cee)y

Parameters

transferCount | is the count of items to transfer for this task.

itemSize | is the bit size of the items to transfer for this task.

srcincrement | is the bit size increment for source data.

srcAddr | is the starting address of the data to transfer.

dstincrement | is the bit size increment for destination data.

dstAddr | is the starting address of the destination data.

arbSize | is the arbitration size to use for the transfer task.

mode | is the transfer mode for this task.

Returns
Nothing; this is not a function.

Function Documentation

void DMA_assignChannel (uint32_t mapping)

Assigns a peripheral mapping for a DMA channel.

Parameters

] mapping \ is a macro specifying the peripheral assignment for a channel.

This function assigns a peripheral mapping to a DMA channel. It is used to select which peripheral
is used for a DMA channel. The parameter mapping should be one of the macros named
UDMA_CHn_tttt from the header file dma.h. For example, to assign DMA channel 0 to the eUSCI
AO RX channel, the parameter should be the macro UDMA_CH1_EUSCIAORX.

Please consult the data sheet for a table showing all the possible peripheral assignments for the
DMA channels for a particular device.

Returns
None.

void DMA_assignlinterrupt (uint32_t interruptNumber, uint32_t channel)

Assigns a specific DMA channel to the corresponding interrupt handler. For MSP432 devices,
there are three configurable interrupts, and one master interrupt. This function will assign a
specific DMA channel to the provided configurable DMA interrupt.

Note that once a channel is assigned to a configurable interrupt, it will be masked in hardware
from the master DMA interrupt (interruptNumber zero). This function can also be used in
conjunction with the DMAIntTrigger function to provide the feature to software trigger specific
channel interrupts.

Wed Aug 14 17:01:15 -05 2019 91

Direct Memory Access Controller (DMA)

7.3.3.3

7.3.3.4

7.3.3.5

Parameters

interruptNumber | is the configurable interrupt to assign the given channel. Valid values are:
m DMA_INT1 the first configurable DMA interrupt handler

m DMA_INT2 the second configurable DMA interrupt handler

m DMA_INTS3 the third configurable DMA interrupt handler

channel | is the channel to assign the interrupt

Returns
None.

References DMA_enablelnterrupt().

void DMA_clearErrorStatus (void)

Clears the DMA error interrupt.

This function clears a pending DMA error interrupt. This function should be called from within the
DMA error interrupt handler to clear the interrupt.

Returns
None.

void DMA_clearlnterruptFlag (uint32_t channel)

Clears the DMA controller channel interrupt mask for interrupt zero.

Parameters

] channel | is the channel interrupt to clear.

This function is used to clear the interrupt status of the DMA controller. Note that only interrupts
that weren’t assigned to DMA interrupts one through three using the DMA_assigninterrupt function
will be affected by this function. For other DMA interrupts, only one channel can be associated and
therefore clearing is unnecessary.

Returns
None

void DMA_disableChannel (uint32_t channelNum)

Disables a DMA channel for operation.

Parameters

Wed Aug 14 17:01:15 -05 2019 92

Direct Memory Access Controller (DMA)

] channelNum \ is the channel number to disable.

This function disables a specific DMA channel. Once disabled, a channel cannot respond to DMA
transfer requests until re-enabled via DMA_enableChannel().

Returns
None.

7.3.3.6 void DMA_disableChannelAttribute (uint32_t channelNum, uint32_t aftr)

Disables attributes of a DMA channel.
Parameters

channelNum | is the channel to configure.

attr | is a combination of attributes for the channel.

This function is used to disable attributes of a DMA channel.

The attr parameter is the logical OR of any of the following:

m UDMA_ATTR_USEBURST is used to restrict transfers to use only burst mode.
m UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this channel.
= UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.

m UDMA_ATTR_REQMASK is used to mask the hardware request signal from the peripheral
for this channel.

Returns
None.

7.3.3.7 void DMA_disablelnterrupt (uint32_t interruptNumber ')

Disables the specified interrupt for the DMA controller.

Parameters

lowing:

interruptNumber | identifies which DMA interrupt is to be disabled. This interrupt should be one of the fol-

m DMA_INT1 the first configurable DMA interrupt handler
m DMA_INT2 the second configurable DMA interrupt handler

= DMA_INTS3 the third configurable DMA interrupt handler

Note for interrupts that are associated with a specific DMA channel (DMA_INT1 -
DMA_INT3), this function will also enable that specific channel for interrupts.

Returns
None.

Wed Aug 14 17:01:15 -05 2019 93

Direct Memory Access Controller (DMA)

7.3.3.8 void DMA_disableModule (void)

Disables the DMA controller for use.

This function disables the DMA controller. Once disabled, the DMA controller cannot operate until
re-enabled with DMA_enableModule().

Returns
None.
7.3.3.9 void DMA_enableChannel (uint32_t channelNum ')

Enables a DMA channel for operation.

Parameters

] channelNum | is the channel number to enable.

When a DMA transfer is completed, the channel is automatically disabled by the DMA controller.
Therefore, this function should be called prior to starting up any new transfer.

Returns
None.

7.3.3.10 void DMA_enableChannelAttribute (uint32_t channelNum, uint32_t attr)

Enables attributes of a DMA channel.
Parameters

channelNum | is the channel to configure.

attr | is a combination of attributes for the channel.

This function is used to enable attributes of a DMA channel.

The attr parameter is the logical OR of any of the following:

= UDMA_ATTR_USEBURST is used to restrict transfers to use only burst mode.

m UDMA ATTR_ALTSELECT is used to select the alternate control structure for this channel
(it is very unlikely that this flag should be used).

m UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.

= UDMA_ATTR_REQMASK is used to mask the hardware request signal from the peripheral
for this channel.

Returns
None.
7.3.3.11 void DMA_enablelnterrupt (uint32_t interruptNumber)

Enables the specified interrupt for the DMA controller. Note for interrupts one through three,
specific channels have to be mapped to the interrupt using the DMA_assigninterrupt function.

Wed Aug 14 17:01:15 -05 2019 94

Direct Memory Access Controller (DMA)

Parameters

ing:

interruptNumber | identifies which DMA interrupt is to be enabled. This interrupt should be one of the follow-

= DMA_INT1 the first configurable DMA interrupt handler
m DMA_INT2 the second configurable DMA interrupt handler
m DMA_INTS the third configurable DMA interrupt handler

Returns
None.

Referenced by DMA_assigninterrupt().

7.3.3.12 void DMA_enableModule (void)

Enables the DMA controller for use.

This function enables the DMA controller. The DMA controller must be enabled before it can be

configured and used.

Returns
None.

7.3.3.13 uint32_t DMA_getChannelAttribute (uint32_t channelNum)

Gets the enabled attributes of a DMA channel.
Parameters

] channelNum \ is the channel to configure.

This function returns a combination of flags representing the attributes of the DMA channel.

Returns
Returns the logical OR of the attributes of the DMA channel, which can be any of the
following:
m UDMA_ATTR_USEBURST is used to restrict transfers to use only burst mode.

m UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this
channel.

m UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.

m UDMA_ATTR_REQMASK is used to mask the hardware request signal from the
peripheral for this channel.

7.3.3.14 uint32_t DMA_getChannelMode (uint32_t channelStructindex)

Gets the transfer mode for a DMA channel control structure.

Wed Aug 14 17:01:15 -05 2019

95

Direct Memory Access Controller (DMA)

Parameters

channelStructin- | is the logical OR of the DMA channel number with either UDMA_PRI_SELECT or
dex | UDMA_ALT_SELECT.

This function is used to get the transfer mode for the DMA channel and to query the status of a
transfer on a channel. When the transfer is complete the mode is UDMA_MODE_STOP.

Returns
Returns the transfer mode of the specified channel and control structure, which is one of the
following values: UDMA_MODE_STOP, UDMA_MODE_BASIC, UDMA_MODE_AUTO,
UDMA_MODE_PINGPONG, UDMA_MODE_MEM_SCATTER_GATHER, or
UDMA_MODE_PER_SCATTER_GATHER.

7.3.3.15 uint32_t DMA_getChannelSize (uint32_t channelStructindex)

Gets the current transfer size for a DMA channel control structure.
Parameters

channelStructin- | is the logical OR of the DMA channel number with either UDMA_PRI_SELECT or
dex | UDMA_ALT SELECT.

This function is used to get the DMA transfer size for a channel. The transfer size is the number of
items to transfer, where the size of an item might be 8, 16, or 32 bits. If a partial transfer has
already occurred, then the number of remaining items is returned. If the transfer is complete, then
0 is returned.

Returns
Returns the number of items remaining to transfer.

7.3.3.16 voidx DMA_getControlAlternateBase (void)

Gets the base address for the channel control table alternate structures.

This function gets the base address of the second half of the channel control table that holds the
alternate control structures for each channel.

Returns
Returns a pointer to the base address of the second half of the channel control table.

7.3.3.17 void+« DMA_getControlBase (void)

Gets the base address for the channel control table.

This function gets the base address of the channel control table. This table resides in system
memory and holds control information for each DMA channel.

Returns
Returns a pointer to the base address of the channel control table.

Wed Aug 14 17:01:15 -05 2019 96

Direct Memory Access Controller (DMA)

7.3.3.18

7.3.3.19

7.3.3.20

7.3.3.21

uint32_t DMA_getErrorStatus (void)

Gets the DMA error status.

This function returns the DMA error status. It should be called from within the DMA error interrupt
handler to determine if a DMA error occurred.

Returns
Returns non-zero if a DMA error is pending.

uint32_t DMA_getInterruptStatus (void)

Gets the DMA controller channel interrupt status for interrupt zero.

This function is used to get the interrupt status of the DMA controller. The returned value is a 32-bit
bit mask that indicates which channels are requesting an interrupt. This function can be used from
within an interrupt handler to determine or confirm which DMA channel has requested an interrupt.

Note that this will only apply to interrupt zero for the DMA controller as only one interrupt can be
associated with interrupts one through three. If an interrupt is assigned to an interrupt other than
interrupt zero, it will be masked by this function.

Returns
Returns a 32-bit mask which indicates requesting DMA channels. There is a bit for each
channel and a 1 indicates that the channel is requesting an interrupt. Multiple bits can be set.

bool DMA_isChannelEnabled (uint32_t channelNum)

Checks if a DMA channel is enabled for operation.

Parameters

| channelNum | is the channel number to check.

This function checks to see if a specific DMA channel is enabled. This function can be used to
check the status of a transfer, as the channel is automatically disabled at the end of a transfer.

Returns
Returns true if the channel is enabled, false if disabled.

void DMA_registerinterrupt (uint32_t interruptNumber, void(x)(void) intHandler)

Registers an interrupt handler for the DMA controller.

Parameters

] interruptNumber \ identifies which DMA interrupt is to be registered.

Wed Aug 14 17:01:15 -05 2019 97

Direct Memory Access Controller (DMA)

] intHandler \ is a pointer to the function to be called when the interrupt is called.

This function registers and enables the handler to be called when the DMA controller generates an
interrupt. The interrupt parameter should be one of the following:

DMA_INTO the master DMA interrupt handler

DMA_INT1 the first configurable DMA interrupt handler
DMA_INT2 the second configurable DMA interrupt handler
DMA_INT3 the third configurable DMA interrupt handler
DMA_INTERR the DMA error interrupt handler

See Also
Interrupt_registerInterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

7.3.3.22 void DMA_requestChannel (uint32_t channelNum)

Requests a DMA channel to start a transfer.

Parameters

] channelNum \ is the channel number on which to request a DMA transfer.

This function allows software to request a DMA channel to begin a transfer. This function could be
used for performing a memory-to-memory transfer, or if for some reason a transfer needs to be
initiated by software instead of the peripheral associated with that channel.

Returns
None.

7.3.3.283 void DMA_requestSoftwareTransfer (uint32_t channel)

Initializes a software transfer of the corresponding DMA channel. This is done if the user wants to
force a DMA on the specified channel without the hardware precondition. Specific channels can
be configured using the DMA_assignChannel function.

Parameters

] channel | is the channel to trigger the interrupt

Returns
None

7.3.3.24 void DMA_setChannelControl (uint32_t channelStructindex, uint32_t control)

Sets the control parameters for a DMA channel control structure.

Wed Aug 14 17:01:15 -05 2019 98

Direct Memory Access Controller (DMA)

Parameters

channelStructin-
dex

is the logical OR of the DMA channel number with UDMA_PRI_SELECT or
UDMA_ALT_SELECT.

control

is logical OR of several control values to set the control parameters for the channel.

This function is used to set control parameters for a DMA transfer. These parameters are typically

not changed often.

The channelStructindex parameter should be the logical OR of the channel number with one of
UDMA_PRI_SELECT or UDMA_ALT_SELECT to choose whether the primary or alternate data

structure is used.

The control parameter is the logical OR of five values: the data size, the source address
increment, the destination address increment, the arbitration size, and the use burst flag. The
choices available for each of these values is described below.

Choose the data size from one of UDMA_SIZE_8, UDMA_SIZE 16, or UDMA_SIZE_32 to select
a data size of 8, 16, or 32 bits.

Choose the source address increment from one of UDMA_SRC_INC_8, UDMA_SRC_INC_16,
UDMA_SRC_INC_32, or UDMA_SRC_INC_NONE to select an address increment of 8-bit bytes,
16-bit half-words, 32-bit words, or to select non-incrementing.

Choose the destination address increment from one of UDMA_DST INC_8,
UDMA_DST_INC_16, UDMA_DST_INC_32, or UDMA_SRC_INC_8 to select an address
increment of 8-bit bytes, 16-bit half-words, 32-bit words, or to select non-incrementing.

The arbitration size determines how many items are transferred before the DMA controller
re-arbitrates for the bus. Choose the arbitration size from one of UDMA_ARB_1, UDMA_ARB 2,
UDMA_ARB_4, UDMA_ARB_8, through UDMA_ARB_1024 to select the arbitration size from 1
to 1024 items, in powers of 2.

The value UDMA_NEXT_USEBURST is used to force the channel to only respond to burst
requests at the tail end of a scatter-gather transfer.

Note

The address increment cannot be smaller than the data size.

Returns
None.

7.3.3.25 void DMA_setChannelScatterGather (uint32_t channelNum, uint32_t taskCount,
void * taskList, uint32_t isPeriphSG)

Configures a DMA channel for scatter-gather mode.

Parameters
channelNum | is the DMA channel number.
taskCount | is the number of scatter-gather tasks to execute.
taskList | is a pointer to the beginning of the scatter-gather task list.

Wed Aug 14 17:01:15 -05 2019

99

Direct Memory Access Controller (DMA)

isPeriphSG | is a flag to indicate it is a peripheral scatter-gather transfer (else it is memory scatter-
gather transfer)

This function is used to configure a channel for scatter-gather mode. The caller must have already
set up a task list and must pass a pointer to the start of the task list as the taskList parameter. The
taskCount parameter is the count of tasks in the task list, not the size of the task list. The flag
blsPeriphSG should be used to indicate if scatter-gather should be configured for peripheral or
memory operation.

See Also
DMA_TaskStructEntry

Returns
None.

7.3.3.26 void DMA_setChannelTransfer (uint32_t channelStructindex, uint32_t mode,
void * srcAddr, void x dstAddr, uint32_t transferSize)

Sets the transfer parameters for a DMA channel control structure.
Parameters

channelStructin- | is the logical OR of the DMA channel number with either UDMA_PRI_SELECT or
dex | UDMA_ALT_SELECT.

mode | is the type of DMA transfer.

srcAddr | is the source address for the transfer.

dstAddr | is the destination address for the transfer.

transferSize | is the number of data items to transfer.

This function is used to configure the parameters for a DMA transfer. These parameters are
typically changed often. The function DMA_setChannelControl() MUST be called at least once for
this channel prior to calling this function.

The channelStructindex parameter should be the logical OR of the channel number with one of
UDMA_PRI_SELECT or UDMA_ALT_SELECT to choose whether the primary or alternate data
structure is used.

The mode parameter should be one of the following values:

m UDMA_MODE_STOP stops the DMA transfer. The controller sets the mode to this value at
the end of a transfer.

= UDMA_MODE_BASIC to perform a basic transfer based on request.

= UDMA_MODE_AUTO to perform a transfer that always completes once started even if the
request is removed.

m UDMA_MODE_PINGPONG to set up a transfer that switches between the primary and
alternate control structures for the channel. This mode allows use of ping-pong buffering for
DMA transfers.

= UDMA_MODE_MEM_SCATTER_GATHER to set up a memory scatter-gather transfer.
= UDMA_MODE_PER_SCATTER_GATHER to set up a peripheral scatter-gather transfer.

The srcAddr and dstAddr parameters are pointers to the first location of the data to be transferred.
These addresses should be aligned according to the item size. The compiler takes care of this
alignment if the pointers are pointing to storage of the appropriate data type.

Wed Aug 14 17:01:15 -05 2019 100

Direct Memory Access Controller (DMA)

7.3.3.27

7.3.3.28

The transferSize parameter is the number of data items, not the number of bytes.

The two scatter-gather modes, memory and peripheral, are actually different depending on
whether the primary or alternate control structure is selected. This function looks for the
UDMA_PRI_SELECT and UDMA_ALT_SELECT flag along with the channel number and sets the
scatter-gather mode as appropriate for the primary or alternate control structure.

The channel must also be enabled using DMA_enableChannel() after calling this function. The
transfer does not begin until the channel has been configured and enabled. Note that the channel
is automatically disabled after the transfer is completed, meaning that DMA_enableChannel() must
be called again after setting up the next transfer.

Note
Great care must be taken to not modify a channel control structure that is in use or else the
results are unpredictable, including the possibility of undesired data transfers to or from
memory or peripherals. For BASIC and AUTO modes, it is safe to make changes when the
channel is disabled, or the DMA_getChannelMode() returns UDMA_MODE_STOP. For
PINGPONG or one of the SCATTER_GATHER modes, it is safe to modify the primary or
alternate control structure only when the other is being used. The DMA_getChannelMode()
function returns UDMA_MODE_STOP when a channel control structure is inactive and safe
to modify.

Returns

None.

void DMA_setControlBase (void x controlTable)

Sets the base address for the channel control table.
Parameters

] controlTable \ is a pointer to the 1024-byte-aligned base address of the DMA channel control table.

This function configures the base address of the channel control table. This table resides in
system memory and holds control information for each DMA channel. The table must be aligned
on a 1024-byte boundary. The base address must be configured before any of the channel
functions can be used.

The size of the channel control table depends on the number of DMA channels and the transfer
modes that are used. Refer to the introductory text and the microcontroller datasheet for more
information about the channel control table.

Returns
None.

void DMA_unregisterinterrupt (uint32_t interruptNumber)

Unregisters an interrupt handler for the DMA controller.

Wed Aug 14 17:01:15 -05 2019 101

Direct Memory Access Controller (DMA)

Parameters

] interruptNumber \ identifies which DMA interrupt to unregister.

This function disables and unregisters the handler to be called for the specified DMA interrupt.
The interrupt parameter should be one of the parameters as documented for the function
DMA_registerinterrupt().

Note for interrupts that are associated with a specific DMA channel (DMA_INT1 - DMA_INT3), this
function will also disable that specific channel for interrupts.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 102

Flash Memory Controller (FlashCtl)

8.1

8.2

8.3

Flash Memory Controller (FlashCitl)

MOAUIE OPEIAtIONttt e et e e e e e e 100
Flash Limitationso e e e e e e 100
VerifiCation MOGESt e 2?
Programming EXamPIe e 101
D NIt ONS .t e 102

Module Operation

The MSP432 DriverLib Flash Controller peripheral is designed to simplify the process or writing,
erasing, and configuring the flash memory on the MSP432 part. Many of the stringent verification
requirements/preconditions are handled entirely inside the FlashCtl APlIs.

Flash Controller Limitations

When utilizing the flash controller for MSP432, the user program has to take special consideration
on a few critical limitations. The biggest obstacle that the user has to be mindful of is the stringent
verification requirements imposed by the flash controller. Many operations (such as program and
verify) will take multiple cycles to complete successfully and the usage is somewhat complicated
for a normal user program. For this reason, it is strongly recommended that the user uses the
DriverLib APIs for programming and erasing flash. Using the flash controller directly is strongly
discouraged as the level of overhead and attention to verification requirements make for a very
intricate user experience.

Furthermore, when using the FlashCtl APIs, the user must take special consideration of where the
APl is being executed. For the critical APIs (such as erase and program), the DriverLib APls are
required to be executed from either SRAM or ROM (using the ROM__ prefix). Due to the verification
requirements of the flash controller, running these APIs out of Flash is not currently supported.

Wait State Considerations

When changing read modes on the MSP432 microcontroller, some read modes (such as erase
verify) require an additional number of wait states. The wait states of the flash controller can be
configured using the FlashCtl_setWaitState command. When using the DriverLib APls, the wait
states are automatically changed within the API.

Wed Aug 14 17:01:15 -05 2019 103

Flash Memory Controller (FlashCtl)

8.4 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the FlashCtl module. These code examples are accessible under the examples/ folder of the
SDK release as well as through Tl Resource Explorer if using Code Composer Studio. These
code examples provide a comprehensive list of use cases as well as practical applications
involving each module.

Below is a very brief code example showing how to unprotect a sector and issue a mass erase
with the FlashCtl module:

Wed Aug 14 17:01:15 -05 2019 104

Flash Memory Controller (FlashCtl)

8.5

8.5.1

Definitions

Functions

void FlashCtl_clearInterruptFlag (uint32_t flags)

void FlashCtl_clearProgramVerification (uint32_t verificationSetting)

void FlashCtl_disablelnterrupt (uint32_t flags)

void FlashCtl_disableReadBuffering (uint_fast8_t memoryBank, uint_fast8_t accessMethod)
void FlashCtl_disableWordProgramming (void)

void FlashCtl_enablelnterrupt (uint32_t flags)

void FlashCtl_enableReadBuffering (uint_fast8_t memoryBank, uint_fast8_t accessMethod)
void FlashCtl_enableWordProgramming (uint32_t mode)

bool FlashCtl_eraseSector (uint32_t addr)

uint32_t FlashCtl_getEnabledInterruptStatus (void)

uint32_t FlashCtl_getinterruptStatus (void)

void FlashCtl_getMemorylInfo (uint32_t addr, uint32_t xbankNum, uint32_t xsectorNum)
uint32_t FlashCtl_getReadMode (uint32_t flashBank)

uint32_t FlashCtl_getWaitState (uint32_t bank)

void FlashCtl_initiateMassErase (void)

void FlashCtl_initiateSectorErase (uint32_t addr)

bool FlashCtl_isSectorProtected (uint_fast8 t memorySpace, uint32_t sector)

uint32_t FlashCtl_isWordProgrammingEnabled (void)

bool FlashCtl_performMassErase (void)

bool FlashCtl_programMemory (void *src, void xdest, uint32_t length)

bool FlashCtl_protectSector (uint_fast8_t memorySpace, uint32_t sectorMask)

void FlashCtl_registerInterrupt (void(xintHandler)(void))

void FlashCtl_setProgramVerification (uint32_t verificationSetting)

bool FlashCtl_setReadMode (uint32_t flashBank, uint32_t readMode)

void FlashCil_setWaitState (uint32_t bank, uint32_t waitState)

bool FlashCtl_unprotectSector (uint_fast8 t memorySpace, uint32_t sectorMask)

void FlashCtl_unregisterinterrupt (void)

bool FlashCtl_verifyMemory (void xverifyAddr, uint32_t length, uint_fast8_t pattern)

Detailed Description

The code for this module is contained in driverlib/flash.c, with driverlib/flash.h
containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019

105

Flash Memory Controller (FlashCtl)

8.5.2 Function Documentation

8.5.2.1 void FlashCtl_clearInterruptFlag (uint32_t flags)

Clears flash system interrupt sources.

Parameters

flags | is a bit mask of the interrupt sources to be cleared. Must be a logical OR of:
= FLASH_PROGRAM_ERROR,

FLASH_BENCHMARK_INT,

FLASH_ERASE_COMPLETE,

FLASH_BRSTPRGM_COMPLETE,
FLASH_WRDPRGM_COMPLETE,

FLASH_POSTVERIFY_FAILED,

FLASH_PREVERIFY_FAILED,

FLASH _BRSTRDCMP_COMPLETE

The specified flash system interrupt sources are cleared, so that they no longer assert. This
function must be called in the interrupt handler to keep it from being called again immediately
upon exit.

Note
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the
interrupt source be cleared early in the interrupt handler (as opposed to the very last action)
to avoid returning from the interrupt handler before the interrupt source is actually cleared.
Failure to do so may result in the interrupt handler being immediately reentered (because the
interrupt controller still sees the interrupt source asserted).
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Wed Aug 14 17:01:15 -05 2019 106

Flash Memory Controller (FlashCtl)

Returns
None.

8.5.2.2 void FlashCtl_clearProgramVerification (uint32_t verificationSetting)

Clears pre/post verification of burst and regular flash programming instructions. Note that this API
is for advanced users that are programming their own flash drivers. The program/erase APIs are
not affected by this setting and take care of the verification requirements.

Parameters

verificationSet- | Verification setting to clear. This value can be a bitwise OR of the following values:
ting | w FLASH_BURSTPOST,

= FLASH_BURSTPRE,

FLASH_REGPRE,

FLASH_REGPOST

FLASH_NOVER No verification enabled

FLASH_FULLVER Full verification enabled

Returns
none

8.5.2.3 void FlashCtl_disablelnterrupt (uint32_t flags)

Disables individual flash system interrupt sources.

Parameters

flags | is a bit mask of the interrupt sources to be disabled. Must be a logical OR of:
= FLASH_PROGRAM_ERROR,

FLASH_BENCHMARK_INT,

FLASH_ERASE_COMPLETE,

FLASH _BRSTPRGM_COMPLETE,
FLASH_WRDPRGM_COMPLETE,

FLASH_POSTVERIFY_FAILED,

FLASH_PREVERIFY_FAILED,

FLASH_BRSTRDCMP_COMPLETE

This function disables the indicated flash system interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

Returns
None.

Wed Aug 14 17:01:15 -05 2019 107

Flash Memory Controller (FlashCtl)

8.5.2.4 void FlashCtl_disableReadBuffering (uint_fast8 t memoryBank, uint_fast8 t
accessMethod)

Disables read buffering on accesses to a specified bank of flash memory

Wed Aug 14 17:01:15 -05 2019 108

Flash Memory Controller (FlashCtl)

Parameters
memoryBank | is the value of the memory bank to disable read buffering. Must be only one of the following
values:
= FLASH_BANKO,
= FLASH_BANK1
accessMethod | is the value of the access type to disable read buffering. Must ne only one of the following
values:
m FLASH_DATA_READ,
m FLASH_INSTRUCTION_FETCH
Returns
None.

8.5.2.5 void FlashCtl_disableWordProgramming (void)

Disables word programming of flash memory.

Refer to FlashCtl_enableWordProgramming and the user’s guide for description on the difference
between full word and immediate programming

Returns
None.

Referenced by FlashCtl_programMemory().

8.5.2.6 void FlashCtl_enablelnterrupt (uint32_t flags)

Enables individual flash control interrupt sources.

Parameters

flags

is a bit mask of the interrupt sources to be enabled. Must be a logical OR of:
m FLASH PROGRAM_ERROR,
m FLASH BENCHMARK_INT,

FLASH_ERASE_COMPLETE,

FLASH_BRSTPRGM_COMPLETE,

FLASH_WRDPRGM_COMPLETE,

FLASH_POSTVERIFY_FAILED,

FLASH_PREVERIFY_FAILED,

FLASH_BRSTRDCMP_COMPLETE

This function enables the indicated flash system interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the

processor.

Wed Aug 14 17:01:15 -05 2019

109

Flash Memory Controller (FlashCtl)

Note

The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns
None.

8.5.2.7 void FlashCtl_enableReadBuffering (uint_fast8_t memoryBank, uint_fast8_t
accessMethod)

Enables read buffering on accesses to a specified bank of flash memory
Parameters

memoryBank | is the value of the memory bank to enable read buffering. Must be only one of the following
values:

= FLASH_BANKO,
= FLASH_BANK1

accessMethod | is the value of the access type to enable read buffering. Must be only one of the following
values:

= FLASH_DATA_READ,
= FLASH_INSTRUCTION_FETCH

Returns
None.

8.5.2.8 void FlashCtl_enableWordProgramming (uint32_t mode)

Enables word programming of flash memory.

This function will enable word programming of the flash memory and set the mode of behavior
when the flash write occurs.

Parameters

mode | The mode specifies the behavior of the flash controller when programming words to flash.
In FLASH_IMMEDIATE_WRITE_MODE, the program operation happens immediately on
the write to flash while in FLASH_COLLATED_WRITE_MODE the write will be delayed
until a full 128-bits have been collated. Possible values include:

= FLASH_IMMEDIATE_WRITE_MODE
m FLASH_COLLATED_WRITE_MODE

Refer to the user’s guide for further documentation.

Returns
none

Referenced by FlashCtl_programMemory().

Wed Aug 14 17:01:15 -05 2019 110

Flash Memory Controller (FlashCtl)

8.5.2.9 bool FlashCtl_eraseSector (uint32_t addr)

Erases a sector of MAIN or INFO flash memory.

Wed Aug 14 17:01:15 -05 2019 111

Flash Memory Controller (FlashCtl)

8.5.2.10

8.5.2.11

Parameters
addr | The start of the sector to erase. Note that with flash, the minimum allowed size that can
be erased is a flash sector (which is 4KB on the MSP432 family). If an address is provided
to this function which is not on a 4KB boundary, the entire sector will still be erased.
Note

This function is blocking and will not exit until operation has either completed or failed due to
an error. Furthermore, given the complex verification requirements of the flash controller,
master interrupts are disabled throughout execution of this function. The original interrupt
context is saved at the start of execution and restored prior to exit of the API.

Due to the hardware limitations of the flash controller, this function cannot erase a memory
addressin the same flash bank that it is executing from. If using the ROM version of this API
(by using the (ROM__ or MAP__ prefixes) this is a don’t care, however if this API resides in
flash then special care needs to be taken to ensure no code execution or reads happen in
the flash bank being programmed while this APl is being executed.

Returns

true if sector erase is successful, false otherwise.

References FlashCtl_verifyMemory(), Interrupt_disableMaster(), Interrupt_enableMaster(),
SysCitl_getFlashSize(), and SysCtl_getTLVInfo().

Referenced by FlashCtl_performMassErase().

uint32_t FlashCtl_getEnabledInterruptStatus (void)

Gets the current interrupt status masked with the enabled interrupts. This function is useful to call
in ISRs to get a list of pending interrupts that are actually enabled and could have caused the ISR.

Returns

The current interrupt status, enumerated as a bit field of
= FLASH_PROGRAM_ERROR,
FLASH_BENCHMARK_INT,
FLASH_ERASE_COMPLETE,
FLASH_BRSTPRGM_COMPLETE,
FLASH_WRDPRGM_COMPLETE,
FLASH_POSTVERIFY_FAILED,
FLASH_PREVERIFY_FAILED,
FLASH_BRSTRDCMP_COMPLETE

Note

The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

References FlashCil_getinterruptStatus().

uint32_t FlashCtl_getinterruptStatus (void)

Gets the current interrupt status.

Wed Aug 14 17:01:15 -05 2019 112

Flash Memory Controller (FlashCtl)

8.5.2.12

8.5.2.13

Returns
The current interrupt status, enumerated as a bit field of:

= FLASH_PROGRAM_ERROR,
FLASH_BENCHMARK_INT,
FLASH_ERASE_COMPLETE,
FLASH_BRSTPRGM_COMPLETE,
FLASH_WRDPRGM_COMPLETE,
FLASH_POSTVERIFY_FAILED,
FLASH_PREVERIFY_FAILED,
FLASH_BRSTRDCMP_COMPLETE

Note
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Referenced by FlashCtl_getEnabledinterruptStatus().

void FlashCtl_getMemoryinfo (uint32_t addr, uint32_t x bankNum, uint32_t
sectorNum)

Calculates the flash bank and sector number given an address. Stores the results into the two
pointers given as parameters. The user must provide a valid memory address (an address in
SRAM for example will give an invalid result).

Parameters

addr | Address to calculate the bank/sector information for

bankNum | The bank number will be stored in here after the function completes.

sectorNum | The sector number will be stored in here after the function completes.

Note
For simplicity, this API only works with address in MAIN flash memory. For calculating the
sector/bank number of an address in info memory, please refer to your device datasheet/

Returns
None.

References SysCil_getFlashSize().

uint32_t FlashCtl_getReadMode (uint32_t flashBank)

Gets the flash read mode to be used by default flash read operations.

Parameters

flashBank | Flash bank to set read mode for. Valid values are:
= FLASH_BANKO
m FLASH_BANK1

Wed Aug 14 17:01:15 -05 2019 113

Flash Memory Controller (FlashCtl)

8.5.2.14

8.5.2.15

8.5.2.16

Returns
Returns the read mode to set. Valid values are:

= FLASH_NORMAL_READ_ MODE,
FLASH_MARGINO_READ_MODE,
FLASH_MARGIN1_READ_MODE,
FLASH_PROGRAM_VERIFY_READ_MODE,
FLASH_ERASE_VERIFY_READ_MODE,
FLASH_LEAKAGE_VERIFY_READ_MODE,
FLASH_MARGINOB_READ_MODE,
FLASH_MARGIN1B_READ_MODE

Referenced by FlashCtl_verifyMemory().

uint32_t FlashCtl_getWaitState (uint32_t bank)

Returns the set number of flash wait states for the given flash bank.

Parameters

flashBank | Flash bank to set wait state for. Valid values are:
= FLASH_BANKO
= FLASH_BANK1

Returns
The wait state setting for the specified flash bank

Referenced by FlashCtl_verifyMemory().

void FlashCtl_initiateMassErase (void)

Initiates a mass erase and returns control back to the program. This is a non-blocking function,
however it is the user’s responsibility to perform the necessary verification requirements after the
interrupt is set to signify completion.

Returns
None

void FlashCtl_initiateSectorErase (uint32_t adadr)

Initiates a sector erase of MAIN or INFO flash memory. Note that this function simply initaites the
sector erase, but does no verification which is required by the flash controller. The user must
manually set and enable interrupts on the flash controller to fire on erase completion and then use
the FlashCtl_verifyMemory function to verify that the sector was actually erased

Wed Aug 14 17:01:15 -05 2019 114

Flash Memory Controller (FlashCtl)

Parameters
addr | The start of the sector to erase. Note that with flash, the minimum allowed size that can
be erased is a flash sector (which is 4KB on the MSP432 family). If an address is provided
to this function which is not on a 4KB boundary, the entire sector will still be erased.
Returns
None

References SysCil_getFlashSize().

8.5.2.17 bool FlashCitl_isSectorProtected (uint_fast8 t memorySpace, uint32_t sector)

Returns the sector protection for given sector mask and memory space

Wed Aug 14 17:01:15 -05 2019

115

Flash Memory Controller (FlashCtl)

Parameters

memorySpace

is the value of the memory bank to check for program protection. Must be only one of the
following values:

FLASH_MAIN_MEMORY_SPACE_BANKO,
FLASH_MAIN_MEMORY_SPACE_BANKI,
FLASH_INFO_MEMORY_SPACE_BANKO,
FLASH_INFO_MEMORY_SPACE_BANK1

sector

is the sector to check for program protection. Must be one of the following values:

FLASH_SECTORO,
FLASH_SECTORI,
FLASH_SECTOR2,
FLASH_SECTORS,
FLASH_SECTORA4,
FLASH_SECTORS,
FLASH_SECTORS,
FLASH_SECTOR?7,
FLASH_SECTORS,
FLASH_SECTORSY,
FLASH_SECTOR10,
FLASH_SECTOR11,
FLASH_SECTOR12,
FLASH_SECTOR13,
FLASH_SECTOR14,
FLASH_SECTOR15,
FLASH_SECTOR16,
FLASH_SECTOR17,
FLASH_SECTOR18,
FLASH_SECTOR19,
FLASH_SECTOR20,
FLASH_SECTOR21,
FLASH_SECTOR22,
FLASH_SECTOR23,
FLASH_SECTOR24,
FLASH_SECTOR25,
FLASH_SECTOR26,
FLASH_SECTOR27,
FLASH_SECTOR28,
FLASH_SECTOR29,
FLASH_SECTOR30,
FLASH_SECTOR31

Wed Aug 14 17:01:15 -05 2019

116

Flash Memory Controller (FlashCtl)

Note that flash sector sizes are 4KB and the number of sectors may vary depending on the
specific device. Also, for INFO memory space, only sectors FLASH_SECTORO and
FLASH_SECTORT1 will exist.

Note
Not all devices will contain a dedicated INFO memory. Please check the device datasheet to
see if your device has INFO memory available for use. For devices without INFO memory,
any operation related to the INFO memory will be ignored by the hardware.

Returns
true if sector protection enabled false otherwise.

Referenced by FlashCitl_protectSector(), and FlashCtl_unprotectSector().

8.5.2.18 uint32_t FlashCtl_isWordProgrammingEnabled (void)

Returns if word programming mode is enabled (and if it is, the specific mode)

Refer to FlashCtl_enableWordProgramming and the user’s guide for description on the difference
between full word and immediate programming

Returns
a zero value if word programming is disabled,
= FLASH_IMMEDIATE_WRITE_MODE
m FLASH_COLLATED_WRITE_MODE

8.5.2.19 bool FlashCil_performMassErase (void)

Performs a mass erase on all unprotected flash sectors. Protected sectors are ignored.

Note
This function is blocking and will not exit until operation has either completed or failed due to
an error. Furthermore, given the complex verification requirements of the flash controller,
master interrupts are disabled throughout execution of this function. The original interrupt
context is saved at the start of execution and restored prior to exit of the API.
Due to the hardware limitations of the flash controller, this function cannot erase a memory
address in the same flash bank that it is executing from. If using the ROM version of this API
(by using the (ROM_ or MAP__ prefixes) this is a don’t care, however if this API resides in
flash then special care needs to be taken to ensure no code execution or reads happen in
the flash bank being programmed while this APl is being executed.

Returns
true if mass erase completes successfully, false otherwise

References FlashCil_eraseSector(), FlashCtl_verifyMemory(), Interrupt_disableMaster(),
Interrupt_enableMaster(), and SysCtl_getFlashSize().

8.5.2.20 bool FlashCtl_programMemory (void *x src, void x dest, uint32_t length)

Program a portion of flash memory with the provided data

Wed Aug 14 17:01:15 -05 2019 117

Flash Memory Controller (FlashCtl)

Parameters

src | Pointer to the data source to program into flash

dest | Pointer to the destination in flash to program

length | Length in bytes to program

Note
There are no sector/boundary restrictions for this function, however it is encouraged to
proved a start address aligned on 32-bit boundaries. Providing an unaligned address will
result in unaligned data accesses and detriment efficiency.
This function is blocking and will not exit until operation has either completed or failed due to
an error. Furthermore, given the complex verification requirements of the flash controller,
master interrupts are disabled throughout execution of this function. The original interrupt
context is saved at the start of execution and restored prior to exit of the APL.
Due to the hardware limitations of the flash controller, this function cannot program a
memory addressin the same flash bank that it is executing from. If using the ROM version of
this API (by using the (ROM_ or MAP__ prefixes) this is a don’t care, however if this API
resides in flash then special care needs to be taken to ensure no code execution or reads
happen in the flash bank being programmed while this APl is being executed.

Returns
Whether or not the program succeeded

References FlashCitl_disableWordProgramming(), FlashCtl_enableWordProgramming(),
Interrupt_disableMaster(), Interrupt_enableMaster(), and SysCtl_getTLVInfo().

8.5.2.21 bool FlashCtl_protectSector (uint_fast8 t memorySpace, uint32_t sectorMask)

Enables program protection on the given sector mask. This setting can be applied on a
sector-wise bases on a given memory space (INFO or MAIN).

Parameters

memorySpace | is the value of the memory bank to enable program protection. Must be only one of the
following values:

= FLASH_MAIN_MEMORY_SPACE_BANKO,
= FLASH_MAIN_MEMORY_SPACE_BANK,
= FLASH_INFO_MEMORY_SPACE_BANKO,
= FLASH_INFO_MEMORY_SPACE_BANK1

Wed Aug 14 17:01:15 -05 2019 118

Flash Memory Controller (FlashCtl)

sectorMask

is a bit mask of the sectors to enable program protection. Must be a bitfield of the following
values:

FLASH_SECTORQO,
FLASH_SECTORI,
FLASH_SECTOR2,
FLASH_SECTORS,
FLASH_SECTORS,
FLASH_SECTORS,
FLASH_SECTORS,
FLASH_SECTOR?,
FLASH_SECTORS,
FLASH_SECTORSY,
FLASH_SECTOR10,
FLASH_SECTOR11,
FLASH_SECTOR12,
FLASH_SECTOR13,
FLASH_SECTOR14,
FLASH_SECTOR15,
FLASH_SECTOR16,
FLASH_SECTOR17,
FLASH_SECTOR18,
FLASH_SECTOR19,
FLASH_SECTOR20,
FLASH_SECTOR21,
FLASH_SECTOR22,
FLASH_SECTORZ23,
FLASH_SECTOR24,
FLASH_SECTOR25,
FLASH_SECTOR26,
FLASH_SECTOR27,
FLASH_SECTOR28,
FLASH_SECTOR29,
FLASH_SECTOR30,
FLASH_SECTOR31

Wed Aug 14 17:01:15 -05 2019

119

Flash Memory Controller (FlashCtl)

Note
Flash sector sizes are 4KB and the number of sectors may vary depending on the specific
device. Also, for INFO memory space, only sectors FLASH_SECTORO and
FLASH_SECTOR1 will exist.
Not all devices will contain a dedicated INFO memory. Please check the device datasheet to
see if your device has INFO memory available for use. For devices without INFO memory,
any operation related to the INFO memory will be ignored by the hardware.

Returns
true if sector protection enabled false otherwise.

References FlashCil_isSectorProtected().

8.5.2.22 void FlashCtl_registerinterrupt (void(x)(void) intHandler)

Registers an interrupt handler for flash clock system interrupt.

Parameters

] intHandler \ is a pointer to the function to be called when the clock system interrupt occurs.

This function registers the handler to be called when a clock system interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific flash controller interrupts must be
enabled via FlashCtl_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the
interrupt source via FlashCtl_clearInterruptFlag().

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

8.5.2.23 void FlashCtl_setProgramVerification (uint32_t verificationSetting)

Setups pre/post verification of burst and regular flash programming instructions. Note that this API
is for advanced users that are programming their own flash drivers. The program/erase APls are
not affected by this setting and take care of the verification requirements.

Parameters

verificationSet- | Verification setting to set. This value can be a bitwise OR of the following values:
ting | w FLASH_BURSTPOST,

m FLASH_BURSTPRE,

FLASH_REGPRE,

FLASH_REGPOST

FLASH_NOVER No verification enabled

FLASH_FULLVER Full verification enabled

Wed Aug 14 17:01:15 -05 2019 120

Flash Memory Controller (FlashCtl)

Returns
none

8.5.2.24 bool FlashCtl_setReadMode (uint32_t flashBank, uint32_t readMode)

Sets the flash read mode to be used by default flash read operations. Note that the proper wait
states must be set prior to entering this function.

Parameters

flashBank

Flash bank to set read mode for. Valid values are:
= FLASH_BANKO
m FLASH_BANK1

readMode

The read mode to set. Valid values are:

= FLASH_NORMAL_READ_MODE,
FLASH_MARGINO_READ_MODE,
FLASH_MARGIN1_READ_MODE,
FLASH _PROGRAM_VERIFY_READ_MODE,
FLASH_ERASE_VERIFY_READ_MODE,
FLASH_LEAKAGE_VERIFY_READ_ MODE,
FLASH_MARGINOB_READ_MODE,
FLASH_MARGIN1B_READ_MODE

Returns
None.

Referenced by FlashCtl_verifyMemory().

8.5.2.25 void FlashCtl_setWaitState (uint32_t bank, uint32_t waitState)

Changes the number of wait states that are used by the flash controller for read operations. When
changing frequency ranges of the clock, this functions must be used in order to allow for readable

flash memory.

Parameters

waitState

The number of wait states to set. Note that only bits 0-3 are used.

flashBank

Flash bank to set wait state for. Valid values are:
= FLASH_BANKO
m FLASH_BANK1

Referenced by FlashCtl_verifyMemory().

Wed Aug 14 17:01:15 -05 2019

121

Flash Memory Controller (FlashCtl)

8.5.2.26 bool FlashCtl_unprotectSector (uint_fast8_t memorySpace, uint32_t sectorMask
)

Disables program protection on the given sector mask. This setting can be applied on a
sector-wise bases on a given memory space (INFO or MAIN).

Wed Aug 14 17:01:15 -05 2019 122

Flash Memory Controller (FlashCtl)

Parameters

memorySpace

is the value of the memory bank to disable program protection. Must be only one of the
following values:

FLASH_MAIN_MEMORY_SPACE_BANKO,
FLASH_MAIN_MEMORY_SPACE_BANKI,
FLASH_INFO_MEMORY_SPACE_BANKO,
FLASH_INFO_MEMORY_SPACE_BANK1

sectorMask

is a bit mask of the sectors to disable program protection. Must be a bitfield of the following
values:

FLASH_SECTORQO,
FLASH_SECTORI,
FLASH_SECTOR2,
FLASH_SECTORS,
FLASH_SECTORA4,
FLASH_SECTORS5,
FLASH_SECTORS,
FLASH_SECTOR?,
FLASH_SECTORS,
FLASH_SECTORSY,
FLASH_SECTOR10,
FLASH_SECTOR11,
FLASH_SECTOR12,
FLASH_SECTOR13,
FLASH_SECTOR14,
FLASH_SECTOR15,
FLASH_SECTOR16,
FLASH_SECTOR17,
FLASH_SECTOR18,
FLASH_SECTOR19,
FLASH_SECTOR20,
FLASH_SECTOR21,
FLASH_SECTOR22,
FLASH_SECTOR23,
FLASH_SECTOR24,
FLASH_SECTOR25,
FLASH_SECTOR26,
FLASH_SECTORZ27,
FLASH_SECTOR28,
FLASH_SECTOR29,
FLASH_SECTOR30,
FLASH_SECTOR31

Wed Aug 14

Z:04:-15 0520490

o To—uo U

123
=

Flash Memory Controller (FlashCtl)

8.5.2.27

8.5.2.28

Note
Flash sector sizes are 4KB and the number of sectors may vary depending on the specific
device. Also, for INFO memory space, only sectors FLASH_SECTORO and
FLASH_SECTOR1 will exist.
Not all devices will contain a dedicated INFO memory. Please check the device datasheet to
see if your device has INFO memory available for use. For devices without INFO memory,
any operation related to the INFO memory will be ignored by the hardware.

Returns
true if sector protection disabled false otherwise.

References FlashCil_isSectorProtected().

void FlashCtl_unregisterinterrupt (void)

Unregisters the interrupt handler for the flash system.

This function unregisters the handler to be called when a clock system interrupt occurs. This
function also masks off the interrupt in the interrupt controller so that the interrupt handler no
longer is called.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().
bool FlashCtl_verifyMemory (void x verifyAddr, uint32_t length, uint_fast8 t
pattern)

Verifies a given segment of memory based off either a high (1) or low (0) state.

Parameters

verifyAddr | Start address where verification will begin

length | Length in bytes to verify based off the pattern

pattern

The pattern which verification will check versus. This can either be a low pattern (each
register will be checked versus a pattern of 32 zeros, or a high pattern (each register
will be checked versus a pattern of 32 ones). Valid values are: FLASH_0_PATTERN,
FLASH_1_PATTERN

Note

There are no sector/boundary restrictions for this function, however it is encouraged to
proved a start address aligned on 32-bit boundaries. Providing an unaligned address will
result in unaligned data accesses and detriment efficiency.

This function is blocking and will not exit until operation has either completed or failed due to
an error. Furthermore, given the complex verification requirements of the flash controller,
master interrupts are disabled throughout execution of this function. The original interrupt
context is saved at the start of execution and restored prior to exit of the API.

Wed Aug 14 17:01:15 -05 2019

124

Flash Memory Controller (FlashCtl)

Due to the hardware limitations of the flash controller, this function cannot verify a memory
address in the same flash bank that it is executing from. If using the ROM version of this API
(by using the (ROM_ or MAP__ prefixes) this is a don’t care, however if this API resides in
flash then special care needs to be taken to ensure no code execution or reads happen in
the flash bank being programmed while this APl is being executed.

Returns
true if memory verification is successful, false otherwise.

References FlashCil_getReadMode(), FlashCtl_getWaitState(), FlashCtl_setReadMode(),
FlashCtl_setWaitState(), Interrupt_disableMaster(), Interrupt_enableMaster(), and
SysCtl_getFlashSize().

Referenced by FlashCitl_eraseSector(), and FlashCtl_performMassErase().

Wed Aug 14 17:01:15 -05 2019 125

Flash Memory Controller (FlashCtl)

9.1

9.2

9.3

Flash Memory Controller (FlashCtl)

MOAUIE OPEIALIONttt ettt e e e 121
Flash Limitationsot e e et e e e e e e e e 121
Verification MOOES ??
Programming EXamiple 122
Dl ONS .. 123

Module Operation

Note that this module is for use exclusively on the MSP432P4111. If using the MSP432P401,
please refer to the non-a variant.

The MSP432 DriverLib Flash Controller A peripheral is designed to simplify the process or writing,
erasing, and configuring the flash memory on the MSP432 part. Many of the stringent verification
requirements/preconditions are handled entirely inside the FlashCtl APlIs.

Flash Controller Limitations

When utilizing the flash controller for MSP432, the user program has to take special consideration
on a few critical limitations. The biggest obstacle that the user has to be mindful of is the stringent
verification requirements imposed by the flash controller. Many operations (such as program and
verify) will take multiple cycles to complete successfully and the usage is somewhat complicated
for a normal user program. For this reason, it is strongly recommended that the user uses the
DriverLib APIs for programming and erasing flash. Using the flash controller directly is strongly
discouraged as the level of overhead and attention to verification requirements make for a very
intricate user experience.

Furthermore, when using the FlashCtl APIs, the user must take special consideration of where the
APl is being executed. For the critical APls (such as erase and program), the DriverLib APIs are
required to be executed from either SRAM or ROM (using the ROM__ prefix). Due to the verification
requirements of the flash controller, running these APIs out of Flash is not currently supported.

Wait State Considerations

When changing read modes on the MSP432 microcontroller, some read modes (such as erase
verify) require an additional number of wait states. The wait states of the flash controller can be
configured using the FlashCtl_setWaitState command. When using the DriverLib APls, the wait
states are automatically changed within the API.

Wed Aug 14 17:01:15 -05 2019 126

Flash Memory Controller (FlashCtl4)

9.4 Programming Example

Wed Aug 14 17:01:15 -05 2019 127

Flash Memory Controller (FlashCtl)

9.5 Definitions

Functions

void FlashCtl_A_clearInterruptFlag (uint32_t flags)

void FlashCtl_A_clearProgramVerification (uint32_t verificationSetting)

void FlashCtl_A_disablelnterrupt (uint32_t flags)

void FlashCtl_A_disableReadBuffering (uint_fast8_t memoryBank, uint_fast8_t
accessMethod)

void FlashCtl_A_disableWordProgramming (void)

void FlashCtl_A_enablelnterrupt (uint32_t flags)

void FlashCtl_A_enableReadBuffering (uint_fast8_t memoryBank, uint_fast8_t
accessMethod)

void FlashCtl_A_enableWordProgramming (uint32_t mode)

bool FlashCtl_A_eraseSector (uint32_t addr)

uint32_t FlashCtl_A_getEnabledInterruptStatus (void)

uint32_t FlashCtl_A_getInterruptStatus (void)

void FlashCtl_A_getMemorylInfo (uint32_t addr, uint32_t xbankNum, uint32_t xsectorNum)
uint32_t FlashCtl_A_getReadMode (uint32_t flashBank)

uint32_t FlashCtl_A_getWaitState (uint32_t bank)

void FlashCtl_A initiateMassErase (void)

void FlashCtl_A_initiateSectorErase (uint32_t addr)

bool FlashCtl_A_isMemoryProtected (uint32_t addr)

bool FlashCtl_A_isMemoryRangeProtected (uint32_t startAddr, uint32_t endAddr)
uint32_t FlashCtl_A_isWordProgrammingEnabled (void)

bool FlashCtl_A_performMassErase (void)

bool FlashCtl_A_programMemory (void xsrc, void xdest, uint32_t length)

bool FlashCtl_A_protectMemory (uint32_t startAddr, uint32_t endAddr)

void FlashCtl_A_registerInterrupt (void(xintHandler)(void))

void FlashCtl_A_setProgramVerification (uint32_t verificationSetting)

bool FlashCtl_A_setReadMode (uint32_t flashBank, uint32_t readMode)

void FlashCtl_A_setWaitState (uint32_t bank, uint32_t waitState)

bool FlashCtl_A_unprotectMemory (uint32_t startAddr, uint32_t endAddr)

void FlashCtl_A_unregisterInterrupt (void)

bool FlashCtl_A_verifyMemory (void «verifyAddr, uint32_t length, uint_fast8_t pattern)

9.5.1 Detailed Description

The code for this module is contained in driverlib/flash_a.c, withdriverlib/flash_a.h
containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 128

Flash Memory Controller (FlashCtl4)

9.5.2 Function Documentation

9.5.2.1 void FlashCtl_A_clearInterruptFlag (uint32_t flags)

Clears flash system interrupt sources.

Parameters

flags | is a bit mask of the interrupt sources to be cleared. Must be a logical OR of:
= FLASH_A PROGRAM_ERROR,

FLASH_A_BENCHMARK_INT,

FLASH_A_ERASE_COMPLETE,
FLASH_A_BRSTPRGM_COMPLETE,
FLASH_A_WRDPRGM_COMPLETE,
FLASH_A_POSTVERIFY_FAILED,
FLASH_A_PREVERIFY_FAILED,
FLASH_A_BRSTRDCMP_COMPLETE

The specified flash system interrupt sources are cleared, so that they no longer assert. This
function must be called in the interrupt handler to keep it from being called again immediately
upon exit.

Note
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the
interrupt source be cleared early in the interrupt handler (as opposed to the very last action)
to avoid returning from the interrupt handler before the interrupt source is actually cleared.
Failure to do so may result in the interrupt handler being immediately reentered (because the
interrupt controller still sees the interrupt source asserted).
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Wed Aug 14 17:01:15 -05 2019 129

Flash Memory Controller (FlashCtl4)

Returns
None.

9.5.2.2 void FlashCtl_A_clearProgramVerification (uint32_t verificationSetting)

Clears pre/post verification of burst and regular flash programming instructions. Note that this API
is for advanced users that are programming their own flash drivers. The program/erase APIs are
not affected by this setting and take care of the verification requirements.

Parameters

verificationSet- | Verification setting to clear. This value can be a bitwise OR of the following values:
ting m FLASH_A_BURSTPOST,

= FLASH_A_BURSTPRE,

FLASH_A_REGPRE,

FLASH_A_REGPOST

FLASH_A_NOVER No verification enabled

FLASH_A_FULLVER Full verification enabled

Returns
none

9.5.2.3 void FlashCtl_A_disablelnterrupt (uint32_t flags)

Disables individual flash system interrupt sources.

Parameters

flags | is a bit mask of the interrupt sources to be disabled. Must be a logical OR of:
= FLASH_A_PROGRAM_ERROR,

FLASH_A_BENCHMARK_INT,

FLASH_A_ERASE_COMPLETE,
FLASH_A_BRSTPRGM_COMPLETE,
FLASH_A_WRDPRGM_COMPLETE,
FLASH_A_POSTVERIFY_FAILED,

FLASH_A_PREVERIFY_FAILED,
FLASH_A_BRSTRDCMP_COMPLETE

This function disables the indicated flash system interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

Returns
None.

Wed Aug 14 17:01:15 -05 2019 130

Flash Memory Controller (FlashCtl4)

9.5.2.4 void FlashCtl_A_disableReadBuffering (uint_fast8 t memoryBank, uint_fast8_t
accessMethod)

Disables read buffering on accesses to a specified bank of flash memory

Wed Aug 14 17:01:15 -05 2019 131

Flash Memory Controller (FlashCtl)

Parameters
memoryBank | is the value of the memory bank to disable read buffering. Must be only one of the following
values:
m FLASH_A_ BANKO,
= FLASH_A_BANK1
accessMethod | is the value of the access type to disable read buffering. Must ne only one of the following
values:
m FLASH_A_DATA_READ,
m FLASH_A_INSTRUCTION_FETCH
Returns
None.

9.5.2.5 void FlashCtl_A_disableWordProgramming (void)

Disables word programming of flash memory.

Refer to FlashCtl_A_enableWordProgramming and the user’s guide for description on the
difference between full word and immediate programming

Returns
None.

Referenced by FlashCtl_A_programMemory().

9.5.2.6 void FlashCtl_A_enablelnterrupt (uint32_t flags)

Enables individual flash control interrupt sources.

Parameters

flags

is a bit mask of the interrupt sources to be enabled. Must be a logical OR of:
m FLASH_A_PROGRAM_ERROR,
m FLASH_A_BENCHMARK_INT,
FLASH_A_ERASE_COMPLETE,
FLASH_A_BRSTPRGM_COMPLETE,
FLASH_A_WRDPRGM_COMPLETE,
FLASH_A_POSTVERIFY_FAILED,
FLASH_A_PREVERIFY_FAILED,
FLASH_A_BRSTRDCMP_COMPLETE

This function enables the indicated flash system interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the

processor.

Wed Aug 14 17:01:15 -05 2019

132

Flash Memory Controller (FlashCtl)

Note

The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns
None.

9.5.2.7 void FlashCtl_A

accessMethod)

enableReadBuffering (uint_fast8 t memoryBank, uint_fast8_t

Enables read buffering on accesses to a specified bank of flash memory

Parameters
memoryBank | is the value of the memory bank to enable read buffering. Must be only one of the following
values:
m FLASH_A_ BANKO,
m FLASH_A_BANK1
accessMethod | is the value of the access type to enable read buffering. Must be only one of the following
values:
m FLASH_A_DATA_READ,
m FLASH_A_INSTRUCTION_FETCH
Returns
None.

9.5.2.8 void FlashCtl_A_enableWordProgramming (uint32_t mode)

Enables word programming of flash memory.

This function will enable word programming of the flash memory and set the mode of behavior
when the flash write occurs.

Parameters

mode

The mode specifies the behavior of the flash controller when programming words to flash.
In FLASH_A_IMMEDIATE_WRITE_MODE, the program operation happens immediately
on the write to flash while in FLASH_A_COLLATED_WRITE_MODE the write will be
delayed until a full 128-bits have been collated. Possible values include:

= FLASH_A_IMMEDIATE_WRITE_MODE
= FLASH_A_COLLATED_WRITE_MODE

Refer to the user’s guide for further documentation.

Returns
none

Referenced by FlashCtl_A_programMemory().

Wed Aug 14 17:01:15 -05 2019

133

Flash Memory Controller (FlashCtl4)

9.5.2.9 Dbool FlashCtl_A_eraseSector (uint32_t addr)

Erases a sector of MAIN or INFO flash memory.

Wed Aug 14 17:01:15 -05 2019 134

Flash Memory Controller (FlashCtl)

Parameters
addr | The start of the sector to erase. Note that with flash, the minimum allowed size that can
be erased is a flash sector (which is 4KB on the MSP432 family). If an address is provided
to this function which is not on a 4KB boundary, the entire sector will still be erased.
Note

This function is blocking and will not exit until operation has either completed or failed due to
an error. Furthermore, given the complex verification requirements of the flash controller,
master interrupts are disabled throughout execution of this function. The original interrupt
context is saved at the start of execution and restored prior to exit of the APL.

Due to the hardware limitations of the flash controller, this function cannot erase a memory
adress in the same flash bank that it is executing from. If using the ROM version of this API
(by using the (ROM_ or MAP__ prefixes) this is a don’t care, however if this API resides in
flash then special care needs to be taken to ensure no code execution or reads happen in
the flash bank being programmed while this API is being executed.

Returns

true if sector erase is successful, false otherwise.

References FlashCtl_A verifyMemory(), Interrupt_disableMaster(), Interrupt_enableMaster(),
SysCtl_A_getFlashSize(), and SysCtl_A_getTLVInfo().

9.5.2.10 uint32_t FlashCtl_A_getEnabledInterruptStatus (void)

Gets the current interrupt status masked with the enabled interrupts. This function is useful to call
in ISRs to get a list of pending interrupts that are actually enabled and could have caused the ISR.

Returns

The current interrupt status, enumerated as a bit field of
FLASH_A_PROGRAM_ERROR,
FLASH_A_BENCHMARK_INT,
FLASH_A_ERASE_COMPLETE,
FLASH_A_BRSTPRGM_COMPLETE,

FLASH _A_WRDPRGM_COMPLETE,
FLASH_A_POSTVERIFY_FAILED,
FLASH_A_PREVERIFY_FAILED,
FLASH_A_BRSTRDCMP_COMPLETE

Note

The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

References FlashCtl_A_getInterruptStatus().

9.5.2.11 uint32_t FlashCtl_A_getiInterruptStatus (void)

Gets the current interrupt status.

Wed Aug 14 17:01:15 -05 2019

135

Flash Memory Controller (FlashCtl)

9.5.2.12

9.5.2.13

Returns
The current interrupt status, enumerated as a bit field of:

= FLASH_A_PROGRAM_ERROR,
FLASH_A_BENCHMARK_INT,
FLASH_A_ERASE_COMPLETE,
FLASH_A_BRSTPRGM_COMPLETE,
FLASH_A_WRDPRGM_COMPLETE,
FLASH_A_POSTVERIFY_FAILED,
FLASH_A_PREVERIFY_FAILED,
FLASH_A_BRSTRDCMP_COMPLETE

Note
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Referenced by FlashCtl_A_getEnabledinterruptStatus().

void FlashCtl_A_getMemoryinfo (uint32_t addr, uint32_t « bankNum, uint32_t x
sectorNum)

Calculates the flash bank and sector number given an address. Stores the results into the two
pointers given as parameters. The user must provide a valid memory address (an address in
SRAM for example will give an invalid result).

Parameters

addr | Address to calculate the bank/sector information for

bankNum | The bank number will be stored in here after the function completes.

sectorNum | The sector number will be stored in here after the function completes.

Note
For simplicity, this API only works with address in MAIN flash memory. For calculating the
sector/bank number of an address in info memory, please refer to your device datasheet/

Returns
None.

References SysCtl_A_getFlashSize().

uint32_t FlashCtl_A_getReadMode (uint32_t flashBank)

Gets the flash read mode to be used by default flash read operations.

Parameters

flashBank | Flash bank to set read mode for. Valid values are:
m FLASH_A_BANKO
m FLASH_A BANK1

Wed Aug 14 17:01:15 -05 2019 136

Flash Memory Controller (FlashCtl)

9.5.2.14

9.5.2.15

9.5.2.16

Returns
Returns the read mode to set. Valid values are:

= FLASH_A_NORMAL_READ_MODE,
FLASH_A_MARGINO_READ_ MODE,
FLASH_A MARGIN1_READ_MODE,
FLASH_A_PROGRAM_VERIFY_READ_MODE,
FLASH_A_ERASE_VERIFY_READ_MODE,
FLASH_A_LEAKAGE_VERIFY_READ_ MODE,
FLASH_A_MARGINOB_READ_MODE,
FLASH_A_MARGIN1B_READ_MODE

Referenced by FlashCtl_A_verifyMemory().

uint32_t FlashCtl_A_getWaitState (uint32_t bank)

Returns the set number of flash wait states for the given flash bank.
Parameters

flashBank | Flash bank to set wait state for. Valid values are:
m FLASH_A_ BANKO
= FLASH_A BANK1

Returns
The wait state setting for the specified flash bank

Referenced by FlashCtl_A_verifyMemory().

void FlashCtl_A_initiateMassErase (void)

Initiates a mass erase and returns control back to the program. This is a non-blocking function,
however it is the user’s responsibility to perform the necessary verification requirements after the
interrupt is set to signify completion.

Returns
None

void FlashCtl_A_initiateSectorErase (uint32_t adadr)

Initiates a sector erase of MAIN or INFO flash memory. Note that this function simply initaites the
sector erase, but does no verification which is required by the flash controller. The user must
manually set and enable interrupts on the flash controller to fire on erase completion and then use
the FlashCtl_A_verifyMemory function to verify that the sector was actually erased

Wed Aug 14 17:01:15 -05 2019 137

Flash Memory Controller (FlashCtl)

Parameters
addr | The start of the sector to erase. Note that with flash, the minimum allowed size that can
be erased is a flash sector (which is 4KB on the MSP432 family). If an address is provided
to this function which is not on a 4KB boundary, the entire sector will still be erased.
Returns
None

References SysCtl_A_getFlashSize().

9.5.2.17 bool FlashCtl_A _isMemoryProtected (uint32_t adadr)

Scans over the given memory range and returns false if any of the inclusive memory addresses is
protect from writes.

Parameters

startAddr | is the start address to scan

endAddr | is the end address to scan

Returns

true if sector protection enabled on any of the incluseive memory addresses, false otherwise.
References SysCtl_A_getFlashSize(), and SysCtl_A_getlInfoFlashSize().
Referenced by FlashCtl_A_isMemoryRangeProtected(), and FlashCtl_A_performMassErase().

9.5.2.18 bool FlashCtl_A_isMemoryRangeProtected (uint32_t startAddr, uint32_t
endAddr)

Scans over the given memory range and returns false if any of the inclusive memory addresses is
protect from writes.

Parameters

startAddr | is the start address to scan

endAddr | is the end address to scan

Returns
true if sector protection enabled on any of the incluseive memory addresses, false otherwise.

References FlashCtl_A_isMemoryProtected().

9.5.2.19 uint32_t FlashCtl_A_isWordProgrammingEnabled (void)

Returns if word programming mode is enabled (and if it is, the specific mode)

Refer to FlashCtl_A_enableWordProgramming and the user’s guide for description on the
difference between full word and immediate programming

Wed Aug 14 17:01:15 -05 2019 138

Flash Memory Controller (FlashCtl)

Returns

a zero value if word programming is disabled,
m FLASH_A_IMMEDIATE_WRITE_MODE
m FLASH_A COLLATED_WRITE_MODE

9.5.2.20 bool FlashCtl_A_performMassErase (void)

9.5.2.21

Performs a mass erase on all unprotected flash sectors. Protected sectors are ignored.

Note

This function is blocking and will not exit until operation has either completed or failed due to
an error. Furthermore, given the complex verification requirements of the flash controller,
master interrupts are disabled throughout execution of this function. The original interrupt
context is saved at the start of execution and restored prior to exit of the APL.

Due to the hardware limitations of the flash controller, this function cannot erase a memory
adress in the same flash bank that it is executing from. If using the ROM version of this API
(by using the (ROM_ or MAP__ prefixes) this is a don’t care, however if this API resides in
flash then special care needs to be taken to ensure no code execution or reads happen in
the flash bank being programmed while this APl is being executed.

Returns

true if mass erase completes successfully, false otherwise

References FlashCtl_A_isMemoryProtected(), FlashCtl_A_protectMemory(),
FlashCtl_A_verifyMemory(), Interrupt_disableMaster(), Interrupt_enableMaster(),
SysCtl_A_getFlashSize(), SysCtl_A getinfoFlashSize(), and SysCtl_A_getTLVInfo().

bool FlashCtl_A_programMemory (void x src, void x dest, uint32_t length)

Program a portion of flash memory with the provided data

Parameters
src | Pointer to the data source to program into flash
dest | Pointer to the destination in flash to program
length | Length in bytes to program
Note

There are no sector/boundary restrictions for this function, however it is encouraged to
proved a start address aligned on 32-bit boundaries. Providing an unaligned address will
result in unaligned data accesses and detriment efficiency.

This function is blocking and will not exit until operation has either completed or failed due to
an error. Furthermore, given the complex verification requirements of the flash controller,
master interrupts are disabled throughout execution of this function. The original interrupt
context is saved at the start of execution and restored prior to exit of the API.

Due to the hardware limitations of the flash controller, this function cannot program a
memory adress in the same flash bank that it is executing from. If using the ROM version of
this API (by using the (ROM_ or MAP_ prefixes) this is a don’t care, however if this API
resides in flash then special care needs to be taken to ensure no code execution or reads
happen in the flash bank being programmed while this APl is being executed.

Wed Aug 14 17:01:15 -05 2019 139

Flash Memory Controller (FlashCtl)

9.5.2.22

9.5.2.23

9.5.2.24

Returns
Whether or not the program succeeded

References FlashCtl_A_disableWordProgramming(), FlashCtl_A_enableWordProgramming(),
Interrupt_disableMaster(), Interrupt_enableMaster(), and SysCtl_A_getTLVInfo().

bool FlashCtl_A_protectMemory (uint32_t startAddr, uint32_t endAdadr)

Enables protection on the given flash memory range from writes. Note that this function only works
on flash memory and giving in an address to ROM or SRAM will result in unreliable behavior.

Parameters

startAddr | is the start address of the memory to protect

endAddr | is the end address of the memory to protect

Note
Flash memory is organized by protection by sector sizes. This means that you will only be
able to protect/unprotect memory based off 4096 aligned boundaries.

Returns
true if sector protection enabled false otherwise.

References SysCtl_A_getFlashSize(), and SysCtl_A_getInfoFlashSize().
Referenced by FlashCtl_A_performMassErase().
void FlashCtl_A_registerinterrupt (void(x)(void) intHandler)

Registers an interrupt handler for flash clock system interrupt.

Parameters

] intHandller | is a pointer to the function to be called when the clock system interrupt occurs.

This function registers the handler to be called when a clock system interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific flash controller interrupts must be
enabled via FlashCtl_A_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the
interrupt source via FlashCtl_A_clearInterruptFlag().

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

void FlashCtl_A_setProgramVerification (uint32_t verificationSetting)

Setups pre/post verification of burst and regular flash programming instructions. Note that this API
is for advanced users that are programming their own flash drivers. The program/erase APls are
not affected by this setting and take care of the verification requirements.

Wed Aug 14 17:01:15 -05 2019 140

Flash Memory Controller (FlashCtl4)

Parameters

verificationSet- | Verification setting to set. This value can be a bitwise OR of the following values:
ting m FLASH_A_BURSTPOST,

FLASH_A_BURSTPRE,

FLASH_A_REGPRE,

FLASH_A_REGPOST

FLASH_A_NOVER No verification enabled

FLASH_A_FULLVER Full verification enabled

Returns
none

9.5.2.25 bool FlashCtl_A_setReadMode (uint32_t flashBank, uint32_t readMode)

Sets the flash read mode to be used by default flash read operations. Note that the proper wait
states must be set prior to entering this function.

Parameters

flashBank | Flash bank to set read mode for. Valid values are:
m FLASH_A_ BANKO
= FLASH_A BANK1

readMode | The read mode to set. Valid values are:

m FLASH_A_NORMAL_READ_MODE,

m FLASH_A MARGINO_READ_MODE,

m FLASH_A_MARGIN1_READ_MODE,

= FLASH_A PROGRAM_VERIFY_READ_MODE,
m FLASH_A ERASE_VERIFY_READ_MODE,

m FLASH_A_ LEAKAGE_VERIFY_READ_MODE,
m FLASH_A_ MARGINOB_READ_MODE,

m FLASH_A MARGIN1B_READ_MODE

Returns
None.

Referenced by FlashCtl_A_verifyMemory().

9.5.2.26 void FlashCtl_A_setWaitState (uint32_t bank, uint32_t waitState)

Changes the number of wait states that are used by the flash controller for read operations. When
changing frequency ranges of the clock, this functions must be used in order to allow for readable
flash memory.

Wed Aug 14 17:01:15 -05 2019 141

Flash Memory Controller (FlashCtl)

9.5.2.27

9.5.2.28

9.5.2.29

Parameters

waitState | The number of wait states to set. Note that only bits 0-3 are used.

flashBank | Flash bank to set wait state for. Valid values are:
m FLASH_A_BANKO
m FLASH_A BANK1

Referenced by FlashCtl_A_verifyMemory().

bool FlashCtl_A_unprotectMemory (uint32_t startAddr, uint32_t endAdadr)

Disables protection on the given flash memory range from writes. Note that this function only
works on flash memory and giving in an address to ROM or SRAM will result in unreliable
behavior.

Parameters

startAddr | is the start address of the memory to unprotect

endAddr | is the end address of the memory to unprotect

Note
Flash memory is organized by protection by sector sizes. This means that you will only be
able to protect/unprotect memory based off 4096 aligned boundaries.

Returns
true if sector protection enabled false otherwise.

References SysCtl_A_getFlashSize(), and SysCtl_A_getinfoFlashSize().

void FlashCtl_A_unregisterinterrupt (void)

Unregisters the interrupt handler for the flash system.

This function unregisters the handler to be called when a clock system interrupt occurs. This
function also masks off the interrupt in the interrupt controller so that the interrupt handler no
longer is called.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

bool FlashCtl_A verifyMemory (void = verifyAddr, uint32_t length, uint_fast8 t
pattern ')

Verifies a given segment of memory based off either a high (1) or low (0) state.

Wed Aug 14 17:01:15 -05 2019 142

Flash Memory Controller (FlashCtl)

Parameters

verifyAddr | Start address where verification will begin

length | Length in bytes to verify based off the pattern

pattern | The pattern which verification will check versus. This can either be a low pattern (each
register will be checked versus a pattern of 32 zeros, or a high pattern (each register
will be checked versus a pattern of 32 ones). Valid values are: FLASH_A_0_PATTERN,
FLASH_A_1_PATTERN

Note
There are no sector/boundary restrictions for this function, however it is encouraged to
proved a start address aligned on 32-bit boundaries. Providing an unaligned address will
result in unaligned data accesses and detriment efficiency.
This function is blocking and will not exit until operation has either completed or failed due to
an error. Furthermore, given the complex verification requirements of the flash controller,
master interrupts are disabled throughout execution of this function. The original interrupt
context is saved at the start of execution and restored prior to exit of the API.
Due to the hardware limitations of the flash controller, this function cannot verify a memory
adress in the same flash bank that it is executing from. If using the ROM version of this API
(by using the (ROM_ or MAP__ prefixes) this is a don’t care, however if this API resides in
flash then special care needs to be taken to ensure no code execution or reads happen in
the flash bank being programmed while this APl is being executed.

Returns
true if memory verification is successful, false otherwise.

References FlashCil_A_getReadMode(), FlashCtl_A_getWaitState(), FlashCtl_A_setReadMode(),
FlashCtl_A setWaitState(), Interrupt_disableMaster(), Interrupt_enableMaster(), and
SysCtl_A_getFlashSize().

Referenced by FlashCtl_A_eraseSector(), and FlashCtl_A_performMassErase().

Wed Aug 14 17:01:15 -05 2019 143

Floating Point Unit (FPU)

10 Floating Point Unit (FPU)

MOAUIE OPEIAtIONttt e et e e e e e e 138
Programming EXampleo 139
DB NI ONS e 140

10.1 Module Operation

The floating-point unit (FPU) driver provides methods for manipulating the behavior of the
floating-point unit in the Cortex-M processor. By default, the floating-point is disabled and must be
enabled prior to the execution of any floating-point instructions. If a floating-point instruction is
executed when the floating-point unit is disabled, a NOCP usage fault is generated. This feature
can be used by an RTOS, for example, to keep track of which tasks actually use the floating-point
unit, and therefore only perform floating-point context save/restore on task switches that involve
those tasks.

There are three methods of handling the floating-point context when the processor executes an
interrupt handler: it can do nothing with the floating-point context, it can always save the
floating-point context, or it can perform a lazy save/restore of the floating-point context. If nothing
is done with the floating-point context, the interrupt stack frame is identical to a Cortex-M
processor that does not have a floating-point unit, containing only the volatile registers of the
integer unit. This method is useful for applications where the floating-point unit is used by the main
thread of execution, but not in any of the interrupt handlers. By not saving the floating-point
context, stack usage is reduced and interrupt latency is kept to a minimum.

Alternatively, the floating-point context can always be saved onto the stack. This method allows
floating-point operations to be performed inside interrupt handlers without any special precautions,
at the expense of increased stack usage (for the floating-point context) and increased interrupt
latency (due to the additional writes to the stack). The advantage to this method is that the stack
frame always contains the floating-point context when inside an interrupt handler.

The default handling of the floating-point context is to perform a lazy save/restore. When an
interrupt is taken, space is reserved on the stack for the floating-point context but the context is not
written. This method keeps the interrupt latency to a minimum because only the integer state is
written to the stack. Then, if a floating-point instruction is executed from within the interrupt
handler, the floating-point context is written to the stack prior to the execution of the floating-point
instruction. Finally, upon return from the interrupt, the floating-point context is restored from the
stack only if it was written. Using lazy save/restore provides a blend between fast interrupt
response and the ability to use floating-point instructions in the interrupt handler.

The floating-point unit can generate an interrupt when one of several exceptions occur. The
exceptions are underflow, overflow, divide by zero, invalid operation, input denormal, and inexact
exception. The application can optionally choose to enable one or more of these interrupts and
use the interrupt handler to decide upon a course of action to be taken in each case.

The behavior of the floating-point unit can also be adjusted, specifying the format of half-precision
floating-point values, the handle of NaN values, the flush-to-zero mode (which sacrifices full IEEE
compliance for execution speed), and the rounding mode for results.

Wed Aug 14 17:01:15 -05 2019 144

Floating Point Unit (FPU)

10.2 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the FPU module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a very brief example of floating point operation. While the compiler will usually enable the

floating point unit by default, when executing floating point operations it is important to make sure
that the coprocessor is enabled (otherwise a system fault will occur).

Wed Aug 14 17:01:15 -05 2019 145

Floating Point Unit (FPU)

10.3 Definitions

Functions

void FPU_disableModule (void)

void FPU_disableStacking (void)

void FPU_enableLazyStacking (void)

void FPU_enableModule (void)

void FPU_enableStacking (void)

void FPU_setFlushToZeroMode (uint32_t mode)
void FPU_setHalfPrecisionMode (uint32_t mode)
void FPU_setNaNMode (uint32_t mode)

void FPU_setRoundingMode (uint32_t mode)

10.3.1 Detailed Description

The code for this module is contained in driverlib/fpu.c, with driverlib/fpu.h containing
the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 146

Floating Point Unit (FPU)

10.3.2 Function Documentation

10.3.2.1 void FPU_disableModule (void)

Disables the floating-point unit.

This function disables the floating-point unit, preventing floating-point instructions from executing
(generating a NOCP usage fault instead).

Returns
None.

10.3.2.2 void FPU_disableStacking (void)

Disables the stacking of floating-point registers.

This function disables the stacking of floating-point registers s0-s15 when an interrupt is handled.
When floating-point context stacking is disabled, floating-point operations performed in an interrupt
handler destroy the floating-point context of the main thread of execution.

Returns
None.

10.3.2.3 void FPU_enableLazyStacking (void)

Enables the lazy stacking of floating-point registers.

This function enables the lazy stacking of floating-point registers s0-s15 when an interrupt is
handled. When lazy stacking is enabled, space is reserved on the stack for the floating-point
context, but the floating-point state is not saved. If a floating-point instruction is executed from
within the interrupt context, the floating-point context is first saved into the space reserved on the
stack. On completion of the interrupt handler, the floating-point context is only restored if it was
saved (as the result of executing a floating-point instruction).

This method provides a compromise between fast interrupt response (because the floating-point
state is not saved on interrupt entry) and the ability to use floating-point in interrupt handlers
(because the floating-point state is saved if floating-point instructions are used).

Returns
None.

10.3.2.4 void FPU_enableModule (void)

Enables the floating-point unit.

This function enables the floating-point unit, allowing the floating-point instructions to be executed.
This function must be called prior to performing any hardware floating-point operations; failure to
do so results in a NOCP usage fault.

Wed Aug 14 17:01:15 -05 2019 147

Floating Point Unit (FPU)

Returns
None.

10.3.2.5 void FPU_enableStacking (void)

Enables the stacking of floating-point registers.

This function enables the stacking of floating-point registers s0-s15 when an interrupt is handled.
When enabled, space is reserved on the stack for the floating-point context and the floating-point
state is saved into this stack space. Upon return from the interrupt, the floating-point context is
restored.

If the floating-point registers are not stacked, floating-point instructions cannot be safely executed
in an interrupt handler because the values of s0-s15 are not likely to be preserved for the
interrupted code. On the other hand, stacking the floating-point registers increases the stacking
operation from 8 words to 26 words, also increasing the interrupt response latency.

Returns
None.

10.3.2.6 void FPU_setFlushToZeroMode (uint32_t mode)

Selects the flush-to-zero mode.
Parameters

mode | is the flush-to-zero mode; which is either FPU_FLUSH_TO_ ZERO DIS or
FPU _FLUSH_TO ZERO _EN.

This function enables or disables the flush-to-zero mode of the floating-point unit. When disabled
(the default), the floating-point unit is fully IEEE compliant. When enabled, values close to zero are
treated as zero, greatly improving the execution speed at the expense of some accuracy (as well
as IEEE compliance).

Note
Unless this function is called prior to executing any floating-point instructions, the default
mode is used.

Returns
None.

10.3.2.7 void FPU_setHalfPrecisionMode (uint32_t mode)

Selects the format of half-precision floating-point values.
Parameters

Wed Aug 14 17:01:15 -05 2019 148

Floating Point Unit (FPU)

mode | is the format for half-precision floating-point value, which is either FPU_HALF_IEEE or
FPU_HALF_ALTERNATE.

This function selects between the IEEE half-precision floating-point representation and the
Cortex-M processor alternative representation. The alternative representation has a larger range
but does not have a way to encode infinity (positive or negative) or NaN (quiet or signalling). The
default setting is the IEEE format.

Note
Unless this function is called prior to executing any floating-point instructions, the default
mode is used.

Returns
None.

10.3.2.8 void FPU_setNaNMode (uint32_t mode)

Selects the NaN mode.
Parameters

mode | is the mode for NaN results; which is either FPU_NAN_PROPAGATE or
FPU_NAN_DEFAULT.

This function selects the handling of NaN results during floating-point computations. NaNs can
either propagate (the default), or they can return the default NaN.

Note
Unless this function is called prior to executing any floating-point instructions, the default
mode is used.

Returns
None.

10.3.2.9 void FPU_setRoundingMode (uint32_t mode)

Selects the rounding mode for floating-point results.

Parameters

] mode | is the rounding mode.

This function selects the rounding mode for floating-point results. After a floating-point operation,
the result is rounded toward the specified value. The default mode is FPU_ROUND_NEAREST.

The following rounding modes are available (as specified by mode):

= FPU_ROUND_ NEAREST - round toward the nearest value
m FPU_ROUND_POS_INF - round toward positive infinity

m FPU_ROUND_NEG_INF - round toward negative infinity

= FPU_ROUND_ZERO - round toward zero

Wed Aug 14 17:01:15 -05 2019 149

Floating Point Unit (FPU)

Note
Unless this function is called prior to executing any floating-point instructions, the default
mode is used.

Returns
None.

Wed Aug 14 17:01:15 -05 2019 150

General Purpose Input/Output (GPIO)

11

11.1

11.2

General Purpose Input/Output (GPIO)

MOAUIE OPEIAtIONttt e et e e e e e e 145
KBy FeatUrES . e 145
Programming EXample o 146
D iNIEIONS .. e 147

Module Operation

The Digital /0 (GPIO) API provides a set of functions for using the SDK L GPIO modules.
Functions are provided to setup and enable use of input/output pins, setting them up with or
without interrupts and those that access the pin value.

Key Features

The digital 1/0 features include:

m Independently programmable individual 1/0Os
m Any combination of input or output

m Individually configurable P1 and P2 interrupts. Some devices may include additional port
interrupts.

m Independent input and output data registers
m [ndividually configurable pullup or pulldown resistors

Devices within the family may have up to twelve digital I/O ports implemented (P1 to P11 and PJ).
Most ports contain eight I/O lines; however, some ports may contain less (see the device-specific
data sheet for ports available). Each I/O line is individually configurable for input or output
direction, and each can be individually read or written. Each 1/O line is individually configurable for
pullup or pulldown resistors. PJ contains only four 1/O lines.

Individual ports can be accessed as byte-wide ports or can be combined into word-wide ports and
accessed via word formats. Port pairs P1/P2, P3/P4, P5/P6, P7/P8, etc., are associated with the
names PA, PB, PC, PD, etc., respectively. All port registers are handled in this manner with this
naming convention.

When writing to port PA with word operations, all 16 bits are written to the port. When writing to
the lower byte of the PA port using byte operations, the upper byte remains unchanged. Similarly,
writing to the upper byte of the PA port using byte instructions leaves the lower byte unchanged.
When writing to a port that contains less than the maximum number of bits possible, the unused
bits are a "don’t care". Ports PB, PC, PD, PE, and PF behave similarly.

Reading of the PA port using word operations causes all 16 bits to be transferred to the
destination. Reading the lower or upper byte of the PA port (P1 or P2) and storing to memory
using byte operations causes only the lower or upper byte to be transferred to the destination,
respectively. Reading of the PA port and storing to a general-purpose register using byte
operations causes the byte transferred to be written to the least significant byte of the register. The
upper significant byte of the destination register is cleared automatically. Ports PB, PC, PD, PE,

Wed Aug 14 17:01:15 -05 2019 151

General Purpose Input/Output (GPIO)

and PF behave similarly. When reading from ports that contain less than the maximum bits
possible, unused bits are read as zeros (similarly for port PJ).

The GPIO pin may be configured as an I/O pin with GPIO_setAsOutputPin, GPIO_setAsInputPin,
GPIO_setAsInputPinWithPullDownResistor or GPIO_setAsInputPinWithPullUpResistor . The
GPIO pin may instead be configured to operate in the Peripheral Module assigned function by
configuring the GPIO using GPIO_setAsPeripheralModuleFunctionOutputPin or
GPIO_setAsPeripheralModuleFunctionlnputPin.

11.3 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the GPIO module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a simple example of how to set up a GPIO in output mode and toggle an LED using a
simple delay:

Wed Aug 14 17:01:15 -05 2019 152

General Purpose Input/Output (GPIO)

11.4 Definitions

Functions

void GPIO_clearlnterruptFlag (uint_fast8_t selectedPort, uint_fast16_t selectedPins)

void GPIO_disablelnterrupt (uint_fast8_t selectedPort, uint_fast16_t selectedPins)

void GPIO_enablelnterrupt (uint_fast8_t selectedPort, uint_fast16_t selectedPins)

uint_fast16_t GPIO_getEnabledInterruptStatus (uint_fast8_t selectedPort)

uint8_t GPIO_getinputPinValue (uint_fast8_t selectedPort, uint_fast16_t selectedPins)

uint_fast16_t GPIO_getinterruptStatus (uint_fast8_t selectedPort, uint_fast16_t selectedPins)

void GPIO_interruptEdgeSelect (uint_fast8_t selectedPort, uint_fast16_t selectedPins,

uint_fast8_t edgeSelect)

void GPIO_registerInterrupt (uint_fast8_t selectedPort, void(xintHandler)(void))

void GPIO_setAsInputPin (uint_fast8_t selectedPort, uint_fast16_t selectedPins)

m void GPIO_setAsInputPinWithPullDownResistor (uint_fast8 t selectedPort, uint_fast16_t
selectedPins)

m void GPIO_setAsInputPinWithPullUpResistor (uint_fast8_t selectedPort, uint_fast16_t
selectedPins)

m void GPIO_setAsOutputPin (uint_fast8_t selectedPort, uint_fast16_t selectedPins)

m void GPIO_setAsPeripheralModuleFunctionIinputPin (uint_fast8_t selectedPort, uint_fast16_t
selectedPins, uint_fast8_t mode)

m void GPIO_setAsPeripheralModuleFunctionOutputPin (uint_fast8_ t selectedPort,

uint_fast16_t selectedPins, uint_fast8_t mode)

void GPIO_setDriveStrengthHigh (uint_fast8_t selectedPort, uint_fast8_t selectedPins)

void GPIO_setDriveStrengthLow (uint_fast8_t selectedPort, uint_fast8_t selectedPins)

void GPIO_setOutputHighOnPin (uint_fast8 t selectedPort, uint_fast16_t selectedPins)

void GPIO_setOutputLowOnPin (uint_fast8_t selectedPort, uint_fast16_t selectedPins)

void GPIO_toggleOutputOnPin (uint_fast8_t selectedPort, uint_fast16_t selectedPins)

void GPIO_unregisterinterrupt (uint_fast8_t selectedPort)

11.4.1 Detailed Description

The code for this module is contained in driverlib/gpio.c and
driverlib/legacy/MSP432xx/legacy_gpio.c, with driverlib/gpio.h and
driverlib/legacy/MSP432xx/legacy_gpio.h containing the API declarations for use by
applications.

Wed Aug 14 17:01:15 -05 2019 153

General Purpose Input/Output (GPIO)

11.4.2 Function Documentation

11.4.2.1 void GPIO_clearinterruptFlag (uint_fast8 t selectedPort, uint fast16 t

selectedPins)

This function clears the interrupt flag on the selected pin.

This function clears the interrupt flag on the selected pin.

Parameters
selectedPort | is the selected port. Valid values are:
= GPIO_PORT_P1
m GPIO_PORT_P2
m GPIO_PORT_PA
selectedPins | is the specified pin in the selected port. Mask value is the logical OR of any of the following:

= GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
= GPIO_PIN3
= GPIO_PIN4
= GPIO_PIN5
= GPIO_PIN6
= GPIO_PIN?
= GPIO_PINS
= GPIO_PIN9
= GPIO_PIN10
= GPIO_PIN11
= GPIO_PIN12
= GPIO_PIN13
= GPIO_PIN14
= GPIO_PIN15

Modified bits of PxIFG register.

Returns
None

11.4.2.2 void GPIO_disablelnterrupt (uint_fast8 t selectedPort, uint_fast16 t

selectedPins)

This function disables the port interrupt on the selected pin.

This function disables the port interrupt on the selected pin. Note that only Port 1, 2, A have this

Wed Aug 14 17:01:15 -05 2019

154

General Purpose Input/Output (GPIO)

capability.

Wed Aug 14 17:01:15 -05 2019 155

General Purpose Input/Output (GPIO)

Parameters
selectedPort | is the selected port. Valid values are:
= GPIO_PORT_P1
m GPIO_PORT_P2
m GPIO_PORT_PA
selectedPins | is the specified pin in the selected port. Mask value is the logical OR of any of the following:

= GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
= GPIO_PIN3
= GPIO_PIN4
= GPIO_PIN5
= GPIO_PING
= GPIO_PIN?
= GPIO_PINS
= GPIO_PIN9
= GPIO_PIN10
= GPIO_PIN11
= GPIO_PIN12
= GPIO_PIN13
= GPIO_PIN14
= GPIO_PIN15

Modified bits of PxXIE register.

Returns
None

11.4.2.3 void GPIO_enablelnterrupt (uint_fast8_t selectedPort, uint_fast16_t

selectedPins)

This function enables the port interrupt on the selected pin.

This function enables the port interrupt on the selected pin. Note that only Port 1, 2, A have this

capability.

Wed Aug 14 17:01:15 -05 2019

156

General Purpose Input/Output (GPIO)

Parameters
selectedPort | is the selected port. Valid values are:
= GPIO_PORT_P1
m GPIO_PORT_P2
m GPIO_PORT_PA
selectedPins | is the specified pin in the selected port. Mask value is the logical OR of any of the following:

= GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
= GPIO_PIN3
= GPIO_PIN4
= GPIO_PIN5
= GPIO_PING
= GPIO_PIN?
= GPIO_PINS
= GPIO_PIN9
= GPIO_PIN10
= GPIO_PIN11
= GPIO_PIN12
= GPIO_PIN13
= GPIO_PIN14
= GPIO_PIN15

Modified bits of PxXIE register.

Returns
None

11.4.2.4 uint_fast16_t GPIO_getEnabledInterruptStatus (uint_fast8 t selectedPort)

This function gets the interrupt status of the provided PIN and masks it with the interrupts that are
actually enabled. This is useful for inside ISRs where the status of only the enabled interrupts
needs to be checked.

Wed Aug 14 17:01:15 -05 2019

157

General Purpose Input/Output (GPIO)

Parameters

selectedPort | is the selected port. Valid values are:

= GPIO_PORT_P1
= GPIO_PORT_P2
= GPIO_PORT_P3
= GPIO_PORT_P4
= GPIO_PORT_P5
= GPIO_PORT_P6
= GPIO_PORT_P7
= GPIO_PORT_P8
= GPIO_PORT_P9
= GPIO_PORT_P10
= GPIO_PORT_P11
= GPIO_PORT_PJ

Returns
Logical OR of any

= GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
= GPIO_PIN3
= GPIO_PIN4
= GPIO_PIN5
= GPIO_PIN6
= GPIO_PIN?
= GPIO_PINS
= GPIO_PIN9
= GPIO_PIN10
= GPIO_PIN11
= GPIO_PIN12
= GPIO_PIN13
= GPIO_PIN14
= GPIO_PIN15,
= PIN_ALLS,
= PIN_ALL16

of the following:

indicating the interrupt status of the selected pins [Default: 0]

References GPIO_getinterruptStatus().

11.4.2.5 uint8_t GPIO_getinputPinValue (uint_fast8_t selectedPort, uint_fast16_t

selectedPins)

This function gets the input value on the selected pin.

Wed Aug 14 17:01:15 -05 2019

158

General Purpose Input/Output (GPIO)

This function gets the input value on the selected pin.

Wed Aug 14 17:01:15 -05 2019 159

General Purpose Input/Output (GPIO)

Parameters

selectedPort | is the selected port. Valid values are:
= GPIO_PORT_P1
= GPIO_PORT_P2
= GPIO_PORT_P3
= GPIO_PORT_P4
= GPIO_PORT_P5
m GPIO_PORT_P6
= GPIO_PORT_P7
= GPIO_PORT_P8
= GPIO_PORT_P9
= GPIO_PORT_P10
= GPIO_PORT_P11
= GPIO_PORT_PJ

selectedPins | is the specified pin in the selected port. Valid values are:
= GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
= GPIO_PIN3
= GPIO_PIN4
= GPIO_PIN5
= GPIO_PING6
= GPIO_PIN7
= GPIO_PINS
m GPIO_PIN9
= GPIO_PIN10
= GPIO_PIN11
= GPIO_PIN12
= GPIO_PIN13
= GPIO_PIN14
m GPIO_PIN15

Wed Aug 14 17:01:15 -05 2019 160

General Purpose Input/Output (GPIO)

Returns

One of the following:
= GPIO_INPUT_PIN_HIGH

= GPIO_INPUT_PIN_LOW
indicating the status of the pin

11.4.2.6 uint_fast16_t GPIO_getinterruptStatus (uint_fast8_t selectedPort, uint_fast16 t

selectedPins)

This function gets the interrupt status of the selected pin.

This function gets the interrupt status of the selected pin.

Parameters

selectedPort

is the selected port. Valid values are:
= GPIO_PORT_P1
= GPIO_PORT_P2
= GPIO_PORT_PA

selectedPins

is the specified pin in the selected port. Mask value is the logical OR of any of the following:
m GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
m GPIO_PIN3
= GPIO_PIN4
m GPIO_PIN5
m GPIO_PIN6
= GPIO_PIN7
m GPIO_PINS
= GPIO_PIN9
m GPIO_PIN10
= GPIO_PIN11
m GPIO_PIN12
m GPIO_PIN13
= GPIO_PIN14
m GPIO_PIN15

Returns

Logical OR of any of the following:
= GPIO_PINO
m GPIO_PIN1
m GPIO_PIN2
m GPIO_PIN3

Wed Aug 14 17:01:15 -05 2019

161

General Purpose Input/Output (GPIO)

= GPIO_PIN4
= GPIO_PIN5
= GPIO_PIN6
= GPIO_PIN?
= GPIO_PINS
= GPIO_PIN9
= GPIO_PIN10
= GPIO_PIN11
= GPIO_PIN12
= GPIO_PIN13
= GPIO_PIN14

m GPIO_PIN15
indicating the interrupt status of the selected pins [Default: 0]

Referenced by GPIO_getEnabledinterruptStatus().

11.4.2.7 void GPIO_interruptEdgeSelect (uint_fast8_t selectedPort, uint_fast16_t
selectedPins, uint_fast8 t edgeSelect)

This function selects on what edge the port interrupt flag should be set for a transition.

This function selects on what edge the port interrupt flag should be set for a transition. Values for
edgeSelect should be GPIO_LOW_TO_HIGH_TRANSITION or
GPIO_HIGH_TO_LOW_TRANSITION.

Parameters

selectedPort

is the selected port. Valid values are:
= GPIO_PORT_P1
m GPIO_PORT_P2
m GPIO_PORT_P3
m GPIO_PORT_P4
m GPIO_PORT_P5
m GPIO_PORT_P6
m GPIO_PORT_P7
m GPIO_PORT_P8
m GPIO_PORT_P9
m GPIO_PORT_P10
m GPIO_PORT_P11
m GPIO_PORT_PJ

Wed Aug 14 17:01:15 -05 2019

162

General Purpose Input/Output (GPIO)

selectedPins | is the specified pin in the selected port. Mask value is the logical OR of any of the following:
m GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
m GPIO_PIN3
= GPIO_PIN4
m GPIO_PIN5
= GPIO_PIN6
= GPIO_PIN7
m GPIO_PINS
= GPIO_PIN9
m GPIO_PIN10
= GPIO_PIN11
m GPIO_PIN12
m GPIO_PIN13
= GPIO_PIN14
m GPIO_PIN15

edgeSelect | specifies what transition sets the interrupt flag Valid values are:
m GPIO_HIGH_TO_LOW_TRANSITION
m GPIO_LOW_TO_HIGH_TRANSITION

Modified bits of PxIES register.

Returns
None

11.4.2.8 void GPIO_registerinterrupt (uint_fast8 t selectedPort, void(x)(void) intHandler)

Registers an interrupt handler for the port interrupt.

Parameters

selectedPort | is the port to register the interrupt handler

intHandler | is a pointer to the function to be called when the port interrupt occurs.

This function registers the handler to be called when a port interrupt occurs. This function enables
the global interrupt in the interrupt controller; specific GPIO interrupts must be enabled via
GPIO_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt source via
GPIO_clearInterruptFlag().

Clock System can generate interrupts when

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Wed Aug 14 17:01:15 -05 2019 163

General Purpose Input/Output (GPIO)

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

11.4.2.9 void GPIO_setAslnputPin (uint_fast8 t selectedPort, uint_fast16_t selectedPins
)

This function configures the selected Pin as input pin.

This function selected pins on a selected port as input pins.

Wed Aug 14 17:01:15 -05 2019 164

General Purpose Input/Output (GPIO)

Parameters

selectedPort | is the selected port. Valid values are:
= GPIO_PORT_P1
= GPIO_PORT_P2
= GPIO_PORT_P3
= GPIO_PORT_P4
= GPIO_PORT_P5
m GPIO_PORT_P6
= GPIO_PORT_P7
= GPIO_PORT_P8
= GPIO_PORT_P9
= GPIO_PORT_P10
= GPIO_PORT_P11
= GPIO_PORT_PJ

selectedPins | is the specified pin in the selected port. Mask value is the logical OR of any of the following:
= GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
m GPIO_PIN3
m GPIO_PIN4
= GPIO_PIN5
m GPIO_PIN6
= GPIO_PIN7
m GPIO_PINS
= GPIO_PIN9
m GPIO_PIN10
= GPIO_PIN11
= GPIO_PIN12
m GPIO_PIN13
= GPIO_PIN14
m GPIO_PIN15

Modified bits of PxDIR register, bits of PXREN register and bits of PXSEL register.

Wed Aug 14 17:01:15 -05 2019 165

General Purpose Input/Output (GPIO)

Returns
None

11.4.2.10 void GPIO_setAsInputPinWithPullDownResistor (uint_fast8_t selectedPort,
uint_fast16_t selectedPins)

This function sets the selected Pin in input Mode with Pull Down resistor.

This function sets the selected Pin in input Mode with Pull Down resistor.

Parameters

selectedPort

is the selected port. Valid values are:
= GPIO_PORT_P1
m GPIO_PORT_P2
m GPIO_PORT_P3
m GPIO_PORT_P4
m GPIO_PORT_P5
m GPIO_PORT_P6
m GPIO_PORT_P7
m GPIO_PORT_P8
m GPIO_PORT_P9
= GPIO_PORT_P10
m GPIO_PORT_P11
m GPIO_PORT_PJ

Wed Aug 14 17:01:15 -05 2019

166

General Purpose Input/Output (GPIO)

selectedPins

is the specified pin in the selected port. Mask value is the logical OR of any of the following:
m GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
m GPIO_PIN3
= GPIO_PIN4
m GPIO_PIN5
= GPIO_PIN6
= GPIO_PIN7
m GPIO_PINS
= GPIO_PIN9
m GPIO_PIN10
= GPIO_PIN11
m GPIO_PIN12
m GPIO_PIN13
= GPIO_PIN14
m GPIO_PIN15

Modified bits of PxDIR register, bits of PxOUT register and bits of PXxREN register.

Returns
None

11.4.2.11 void GPIO_setAsInputPinWithPullUpResistor (uint_fast8_t selectedPort,
uint_fast16_t selectedPins)

This function sets the selected Pin in input Mode with Pull Up resistor.

This function sets the selected Pin in input Mode with Pull Up resistor.

Wed Aug 14 17:01:15 -05 2019

167

General Purpose Input/Output (GPIO)

Parameters

selectedPort | is the selected port. Valid values are:
= GPIO_PORT_P1
= GPIO_PORT_P2
= GPIO_PORT_P3
= GPIO_PORT_P4
= GPIO_PORT_P5
m GPIO_PORT_P6
= GPIO_PORT_P7
= GPIO_PORT_P8
= GPIO_PORT_P9
= GPIO_PORT_P10
= GPIO_PORT_P11
= GPIO_PORT_PJ

selectedPins | is the specified pin in the selected port. Mask value is the logical OR of any of the following:
= GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
m GPIO_PIN3
m GPIO_PIN4
= GPIO_PIN5
m GPIO_PIN6
= GPIO_PIN7
m GPIO_PINS
= GPIO_PIN9
m GPIO_PIN10
= GPIO_PIN11
= GPIO_PIN12
m GPIO_PIN13
= GPIO_PIN14
m GPIO_PIN15

Wed Aug 14 17:01:15 -05 2019 168

General Purpose Input/Output (GPIO)

Modified bits of PxDIR register, bits of PxOUT register and bits of PXREN register.

Returns
None

11.4.2.12 void GPIO_setAsOutputPin (uint_fast8 t selectedPort, uint_fast16 t

selectedPins ')

This function configures the selected Pin as output pin.

This function selected pins on a selected port as output pins.

Parameters

selectedPort

is the selected port. Valid values are:
= GPIO_PORT_P1
= GPIO_PORT_P2
= GPIO_PORT_P3
= GPIO_PORT_P4
= GPIO_PORT_P5
= GPIO_PORT_P6
= GPIO_PORT_P7
= GPIO_PORT_P8
= GPIO_PORT_P9
m GPIO_PORT_P10
= GPIO_PORT_P11
= GPIO_PORT_PJ

Wed Aug 14 17:01:15 -05 2019

169

General Purpose Input/Output (GPIO)

selectedPins

is the specified pin in the selected port. Mask value is the logical OR of any of the following:
m GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
m GPIO_PIN3
= GPIO_PIN4
m GPIO_PIN5
= GPIO_PIN6
= GPIO_PIN7
m GPIO_PINS
= GPIO_PIN9
m GPIO_PIN10
= GPIO_PIN11
m GPIO_PIN12
m GPIO_PIN13
= GPIO_PIN14
m GPIO_PIN15

Modified bits of PxDIR register and bits of PXSEL register.

Returns
None

11.4.2.13 void GPIO_setAsPeripheralModuleFunctioninputPin (uint_fast8 t selectedPort,
uint_fast16_t selectedPins, uint_fast8_t mode)

This function configures the peripheral module function in the input direction for the selected pin
for either primary, secondary or ternary module function modes.

This function configures the peripheral module function in the input direction for the selected pin
for either primary, secondary or ternary module function modes. Accepted values for mode are
GPIO_PRIMARY_MODULE_FUNCTION, GPIO_SECONDARY_MODULE_FUNCTION, and
GPIO_TERTIARY_MODULE_FUNCTION

Wed Aug 14 17:01:15 -05 2019

170

General Purpose Input/Output (GPIO)

Parameters

selectedPort | is the selected port. Valid values are:
= GPIO_PORT_P1
= GPIO_PORT_P2
= GPIO_PORT_P3
= GPIO_PORT_P4
= GPIO_PORT_P5
m GPIO_PORT_P6
= GPIO_PORT_P7
= GPIO_PORT_P8
= GPIO_PORT_P9
= GPIO_PORT_P10
= GPIO_PORT_P11
= GPIO_PORT_PJ

selectedPins | is the specified pin in the selected port. Mask value is the logical OR of any of the following:
= GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
m GPIO_PIN3
m GPIO_PIN4
= GPIO_PIN5
m GPIO_PIN6
= GPIO_PIN7
m GPIO_PINS
= GPIO_PIN9
m GPIO_PIN10
= GPIO_PIN11
= GPIO_PIN12
m GPIO_PIN13
= GPIO_PIN14
m GPIO_PIN15

Wed Aug 14 17:01:15 -05 2019 171

General Purpose Input/Output (GPIO)

mode | is the specified mode that the pin should be configured for the module function. Valid
values are:

= GPIO_PRIMARY_MODULE_FUNCTION
= GPIO_SECONDARY_MODULE_FUNCTION
m GPIO_TERTIARY_MODULE_FUNCTION

Modified bits of PxDIR register and bits of PXSEL register.

Returns
None

11.4.2.14 void GPIO_setAsPeripheralModuleFunctionOutputPin (uint_fast8 t selectedPort,
uint_fast16_t selectedPins, uint_fast8_t mode)

This function configures the peripheral module function in the output direction for the selected pin
for either primary, secondary or ternary module function modes.

This function configures the peripheral module function in the output direction for the selected pin
for either primary, secondary or ternary module function modes. Accepted values for mode are
GPIO_PRIMARY_MODULE_FUNCTION, GPIO_SECONDARY_MODULE_FUNCTION, and
GPIO_TERTIARY_MODULE_FUNCTION

Parameters

selectedPort | is the selected port. Valid values are:
m GPIO_PORT_P1
m GPIO_PORT_P2
= GPIO_PORT_P3
m GPIO_PORT_P4
m GPIO_PORT_P5
m GPIO_PORT_P6
m GPIO_PORT_P7
m GPIO_PORT_P8
m GPIO_PORT_P9
m GPIO_PORT_P10
m GPIO_PORT_P11
m GPIO_PORT_PJ

Wed Aug 14 17:01:15 -05 2019 172

General Purpose Input/Output (GPIO)

selectedPins

is the specified pin in the selected port. Mask value is the logical OR of any of the following:
m GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
m GPIO_PIN3
= GPIO_PIN4
m GPIO_PIN5
= GPIO_PIN6
= GPIO_PIN7
m GPIO_PINS
= GPIO_PIN9
m GPIO_PIN10
= GPIO_PIN11
m GPIO_PIN12
m GPIO_PIN13
= GPIO_PIN14
m GPIO_PIN15

Wed Aug 14 17:01:15 -05 2019

173

General Purpose Input/Output (GPIO)

mode

is the specified mode that the pin should be configured for the module function. Valid
values are:

= GPIO_PRIMARY_MODULE_FUNCTION
= GPIO_SECONDARY_MODULE_FUNCTION
m GPIO_TERTIARY_MODULE_FUNCTION

Modified bits of PxDIR register and bits of PXSEL register.

Returns
None

11.4.2.15 void GPIO_setDriveStrengthHigh (uint_fast8 t selectedPort, uint_fast8_t

selectedPins)

This function sets the drive strength to high for the selected port

Parameters

selectedPort

is the selected port. Valid values are:
= GPIO_PORT_P1,
m GPIO_PORT_P2,
m GPIO_PORT_P3,
= GPIO_PORT_P4,
m GPIO_PORT_P5,
m GPIO_PORT_P6,
= GPIO_PORT_P7,
m GPIO_PORT_P8,
= GPIO_PORT_P9,
m GPIO_PORT_P10,
m GPIO_PORT_PJ

Wed Aug 14 17:01:15 -05 2019

174

General Purpose Input/Output (GPIO)

selectedPins
= GPIO_PINO,
m GPIO_PINT1,
= GPIO_PIN2,
m GPIO_PIN3,
m GPIO_PIN4,
m GPIO_PINS5,
m GPIO_PINSG,
= GPIO_PIN7,
m GPIO_PINS,
m PIN_ALLS,

is the specified pin in the selected port. Valid values are:

Returns
None

11.4.2.16 void GPIO_setDriveStrengthLow (uint_fast8 t selectedPort, uint_fast8 t

selectedPins)

This function sets the drive strength to low for the selected port

Parameters

selectedPort | is the selected port. Valid values are:
= GPIO_PORT_P1,
= GPIO_PORT_P2,
= GPIO_PORT_P3,
= GPIO_PORT_P4,
= GPIO_PORT_P5,
= GPIO_PORT_P6,
= GPIO_PORT_P7,
= GPIO_PORT_PS8,
= GPIO_PORT_P9,
= GPIO_PORT_P10,

= GPIO_PORT_PJ

Wed Aug 14 17:01:15 -05 2019

175

General Purpose Input/Output (GPIO)

selectedPins

is the specified pin in the selected port. Valid values are:
= GPIO_PINO,
= GPIO_PINT1,
= GPIO_PIN2,
= GPIO_PINS,
= GPIO_PIN4,
= GPIO_PINS5,
m GPIO_PINSG,
= GPIO_PIN7,
= GPIO_PINS,
= PIN_ALLS,

Returns
None

11.4.2.17 void GPIO_setOutputHighOnPin (uint_fast8 t selectedPort,

selectedPins)

uint_fast16 _t

This function sets output HIGH on the selected Pin.

This function sets output HIGH on the selected port’s pin.

Parameters

selectedPort

is the selected port. Valid values are:
= GPIO_PORT_P1
= GPIO_PORT_P2
= GPIO_PORT_P3
= GPIO_PORT_P4
= GPIO_PORT_P5
= GPIO_PORT_P6
= GPIO_PORT_P7
= GPIO_PORT_P8
= GPIO_PORT_P9
m GPIO_PORT_P10
= GPIO_PORT_P11
= GPIO_PORT_PJ

Wed Aug 14 17:01:15 -05 2019

176

General Purpose Input/Output (GPIO)

selectedPins

is the specified pin in the selected port. Mask value is the logical OR of any of the following:
m GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
m GPIO_PIN3
= GPIO_PIN4
m GPIO_PIN5
= GPIO_PIN6
= GPIO_PIN7
m GPIO_PINS
= GPIO_PIN9
m GPIO_PIN10
= GPIO_PIN11
m GPIO_PIN12
m GPIO_PIN13
= GPIO_PIN14
m GPIO_PIN15

Modified bits of PxOUT register.

Returns
None

11.4.2.18 void GPIO_setOutputLowOnPin (uint_fast8 t selectedPort, uint_fast16_t

selectedPins)

This function sets output LOW on the selected Pin.

This function sets output LOW on the selected port’s pin.

Wed Aug 14 17:01:15 -05 2019

177

General Purpose Input/Output (GPIO)

Parameters

selectedPort | is the selected port. Valid values are:
= GPIO_PORT_P1
= GPIO_PORT_P2
= GPIO_PORT_P3
= GPIO_PORT_P4
= GPIO_PORT_P5
m GPIO_PORT_P6
= GPIO_PORT_P7
= GPIO_PORT_P8
= GPIO_PORT_P9
= GPIO_PORT_P10
= GPIO_PORT_P11
= GPIO_PORT_PJ

selectedPins | is the specified pin in the selected port. Mask value is the logical OR of any of the following:
= GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
m GPIO_PIN3
m GPIO_PIN4
= GPIO_PIN5
m GPIO_PIN6
= GPIO_PIN7
m GPIO_PINS
= GPIO_PIN9
m GPIO_PIN10
= GPIO_PIN11
= GPIO_PIN12
m GPIO_PIN13
= GPIO_PIN14
m GPIO_PIN15

Wed Aug 14 17:01:15 -05 2019 178

General Purpose Input/Output (GPIO)

Returns
None

11.4.2.19 void GPIO_toggleOutputOnPin (uint_fast8_t selectedPort, uint_fast16_t

selectedPins)

This function toggles the output on the selected Pin.

This function toggles the output on the selected port’s pin.

Parameters

selectedPort

is the selected port. Valid values are:

= GPIO_PORT_P1
= GPIO_PORT_P2
= GPIO_PORT_P3
= GPIO_PORT_P4
= GPIO_PORT_P5
= GPIO_PORT_P6
= GPIO_PORT_P7
= GPIO_PORT_P8
= GPIO_PORT_P9
= GPIO_PORT_P10
= GPIO_PORT_P11
= GPIO_PORT_PJ

Wed Aug 14 17:01:15 -05 2019

179

General Purpose Input/Output (GPIO)

= GPIO_PINO
= GPIO_PIN1
= GPIO_PIN2
= GPIO_PIN3
= GPIO_PIN4
= GPIO_PIN5
= GPIO_PING
= GPIO_PIN?
= GPIO_PINS
= GPIO_PIN9
= GPIO_PIN10
= GPIO_PIN11
= GPIO_PIN12
= GPIO_PIN13
= GPIO_PIN14
= GPIO_PIN15

selectedPins | is the specified pin in the selected port. Mask value is the logical OR of any of the following:

Modified bits of PxOUT register.

Returns
None

11.4.2.20 void GPIO_unregisterinterrupt (uint_fast8 t selectedPort)

Unregisters the interrupt handler for the port.

Parameters

] selectedPort | is the port to unregister the interrupt handler

This function unregisters the handler to be called when a port interrupt occurs. This function also
masks off the interrupt in the interrupt controller so that the interrupt handler no longer is called.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 180

Inter-Integrated Circuit (12C)

12 Inter-Integrated Circuit (12C)

MOAUIE OPEIAtIONttt e et e e e e e e 178
MaSTEr OPEIatIONttt et e e 178
SIAVE OPEIAtION ..ttt ettt et e e e e e 179
TIMEOUL Param et er .o e 180
Programming EXamipleo 180
D NIt IONS .. 181

12.1 12C Module Operation

In 12C mode, the eUSCI_B module provides an interface between the device and 12C-compatible
devices connected by the two-wire 12C serial bus. External components attached to the 12C bus
serially transmit and/or receive serial data to/from the eUSCI_B module through the 2-wire 12C
interface. The Inter-Integrated Circuit (12C) API provides a set of functions for using the SDK 12C
modules. Functions are provided to initialize the 12C modules, to send and receive data, obtain
status, and to manage interrupts for the 12C modules. For the sake of simplicity and code
readability, the EUSCI_B module name has been omitted from the APl name space.

The 12C module provide the ability to communicate to other IC devices over an 12C bus. The 12C
bus is specified to support devices that can both transmit and receive (write and read) data. Also,
devices on the 12C bus can be designated as either a master or a slave. The SDK L I12C modules
support both sending and receiving data as either a master or a slave, and also support the
simultaneous operation as both a master and a slave.

I2C module can generate interrupts. The 12C module configured as a master will generate
interrupts when a transmit or receive operation is completed (or aborted due to an error). The 12C
module configured as a slave will generate interrupts when data has been sent or requested by a
master.

12.2 Master Operation

To drive the master module, the APls need to be invoked in the following order

12C_initMaster
12C_setSlaveAddress
12C_setMode
12C_enableModule

12C_enablelnterrupt (if interrupts are being used) This may be followed by the APlIs for
transmit or receive as required

The user must first initialize the 12C module and configure it as a master with a call to
[12C_initMaster . That function will set the clock and data rates. This is followed by a call to set the
slave address with which the master intends to communicate with using 12C_setSlaveAddress .
Then the mode of operation (transmit or receive) is chosen using 12C_setMode . The 12C module
may now be enabled using [12C_enableModule . It is recommended to enable the 12C module
before enabling the interrupts. Any transmission or reception of data may be initiated at this point
after interrupts are enabled (if any).

Wed Aug 14 17:01:15 -05 2019 181

Inter-Integrated Circuit (12C)

The transaction can then be initiated on the bus by calling the transmit or receive related APIs as
listed below.

Master Single Byte Transmission
m |2C_masterSendSingleByte
Master Multiple Byte Transmission

m [2C_masterSendMultiByteStart
m [2C_masterSendMultiByteNext
m [2C_masterSendMultiByteStop

Master Single Byte Reception
m |2C_masterReceiveSingleByte

Master Multiple Byte Reception

12C_masterReceiveStart
12C_masterReceiveMultiByteNext
12C_masterReceiveMultiByteFinish
12C_masterReceiveMultiByteStop

For the interrupt-driven transaction, the user must register an interrupt handler for the 12C devices
and enable the 12C interrupt.

12.3 Slave Operation

To drive the slave module, the APls need to be invoked in the following order

I2C_initSlave

12C_setMode

12C_enableModule

m |2C_enablelnterrupt (if interrupts are being used)

The user must first call the 12C _initSlave to initialize the slave module in 12C mode and set the
slave address. This is followed by a call to set the mode of operation (transmit or receive). The 12C
module may now be enabled using I12C_enableModule . It is recommended to enable the 12C
module before enabling the interrupts. Any transmission or reception of data may be initiated at
this point after interrupts are enabled (if any).

The transaction can then be initiated on the bus by calling the transmit or receive related APls as
listed below.

Slave Transmission API
m [2C_slavePutData
Slave Reception API

m |2C_slaveGetData

Wed Aug 14 17:01:15 -05 2019 182

Inter-Integrated Circuit (12C)

For the interrupt-driven transaction, the user must register an interrupt handler for the 12C devices
and enable the 12C interrupt.

12.4 Timeout Parameters

For serial transmission APls (sending/receiving), a "timeout" API exists that will return control of
execution back to the user application if a specified duration passes. The variable that is passed
into these functions is a unit of time specified by how many "loop iterations" elapse before
unsuccessful transmission of data.

12.5 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the 12C module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a simple example of how to setup the 12C module for master operation with a 400KHz
clock.

First, below is an example of setting up the 12C module configuration structure:

Below are the actual DriverLib calls to configure/setup the 12C module:

Wed Aug 14 17:01:15 -05 2019 183

Inter-Integrated Circuit (12C)

12.6 Definitions

Data Structures
m struct _eUSCI_I2C_MasterConfig

Functions

void 12C_clearInterruptFlag (uint32_t modulelnstance, uint_fast16_t mask)

void [12C_disablelnterrupt (uint32_t modulelnstance, uint_fast16_t mask)

void [12C_disableModule (uint32_t modulelnstance)

void 12C_disableMultiMasterMode (uint32_t modulelnstance)

void 12C_enablelnterrupt (uint32_t modulelnstance, uint_fast16_t mask)

void 12C_enableModule (uint32_t modulelnstance)

void [12C_enableMultiMasterMode (uint32_t modulelnstance)

uint_fast16_t 12C_getEnabledInterruptStatus (uint32_t modulelnstance)

uint_fast16_t 12C_getlnterruptStatus (uint32_t modulelnstance, uint16_t mask)
uint_fast8_t 12C_getMode (uint32_t modulelnstance)

uint32_t 12C_getReceiveBufferAddressForDMA (uint32_t modulelnstance)

uint32_t 12C_getTransmitBufferAddressForDMA (uint32_t modulelnstance)

void I12C_initMaster (uint32_t modulelnstance, const eUSCI_I2C_MasterConfig xconfig)
void 12C_initSlave (uint32_t modulelnstance, uint_fast16_t slaveAddress, uint_fast8_t
slaveAddressOffset, uint32_t slaveOwnAddressEnable)

uint8_t 12C_isBusBusy (uint32_t modulelnstance)

bool 12C_masterlsStartSent (uint32_t modulelnstance)

uint8_t 12C_masterlsStopSent (uint32_t modulelnstance)

uint8_t 12C_masterReceiveMultiByteFinish (uint32_t modulelnstance)

bool I2C_masterReceiveMultiByteFinishWithTimeout (uint32_t modulelnstance, uint8_t
xtxData, uint32_t timeout)

uint8_t 12C_masterReceiveMultiByteNext (uint32_t modulelnstance)

void [12C_masterReceiveMultiByteStop (uint32_t modulelnstance)

uint8_t 12C_masterReceiveSingle (uint32_t modulelnstance)

uint8_t 12C_masterReceiveSingleByte (uint32_t modulelnstance)

void 12C_masterReceiveStart (uint32_t modulelnstance)

bool 12C_masterSendMultiByteFinish (uint32_t modulelnstance, uint8_t txData)

bool 12C_masterSendMultiByteFinishWithTimeout (uint32_t modulelnstance, uint8_t txData,
uint32_t timeout)

void 12C_masterSendMultiByteNext (uint32_t modulelnstance, uint8_t txData)

bool 12C_masterSendMultiByteNextWithTimeout (uint32_t modulelnstance, uint8_t txData,
uint32_t timeout)

void 12C_masterSendMultiByteStart (uint32_t modulelnstance, uint8_t txData)

bool 12C_masterSendMultiByteStartWithTimeout (uint32_t modulelnstance, uint8_t txData,
uint32_t timeout)

void 12C_masterSendMultiByteStop (uint32_t modulelnstance)

bool 12C_masterSendMultiByteStopWithTimeout (uint32_t modulelnstance, uint32_t timeout)
void 12C_masterSendSingleByte (uint32_t modulelnstance, uint8_t txData)

bool 12C_masterSendSingleByteWithTimeout (uint32_t modulelnstance, uint8_t txData,
uint32_t timeout)

void 12C_masterSendStart (uint32_t modulelnstance)

void 12C_registerInterrupt (uint32_t modulelnstance, void(xintHandler)(void))

void [12C_setMode (uint32_t modulelnstance, uint_fast8_t mode)

void [12C_setSlaveAddress (uint32_t modulelnstance, uint_fast16_t slaveAddress)

void 12C_setTimeout (uint32_t modulelnstance, uint_fast16_t timeout)

uint8_t 12C_slaveGetData (uint32_t modulelnstance)

void I12C_slavePutData (uint32_t modulelnstance, uint8_t transmitData)

void 12C_slaveSendNAK (uint32_t modulelnstance)

void 12C_unregisterinterrupt (uint32_t modulelnstance)

Wed Aug 14 17:01:15 -05 2019 184

Inter-Integrated Circuit (12C)

12.6.1 Detailed Description

The code for this module is contained in driverlib/i2c.c, with driverlib/i2c.h containing
the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 185

Inter-Integrated Circuit (12C)

12.6.2 Data Structure Documentation

12.6.2.1 struct _eUSCI_[2C_MasterConfig

Type definition for _eUSCI_I2C_MasterConfig structure.
ypedef eUSCI_I2C_MasterConfig

Configuration structure for master mode in the 12C module. See 12C_initMaster for parameter

documentation.

12.6.3 Function Documentation

12.6.3.1 void 12C_clearInterruptFlag (uint32_t modulelnstance, uint_fast16_t mask)

Clears 12C interrupt sources.

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO0
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

mask

is a bit mask of the interrupt sources to be cleared.

The 12C interrupt source is cleared, so that it no longer asserts. The highest interrupt flag is
automatically cleared when an interrupt vector generator is used.

The mask parameter has the same definition as the mask parameter to 12C_enablelnterrupt().
Modified register is UCBXIFG.

Wed Aug 14 17:01:15 -05 2019

186

Inter-Integrated Circuit (12C)

Returns

None.

12.6.3.2 void 12C_disablelnterrupt (uint32_t modulelnstance, uint_fast16_t mask)

Disables individual 12C interrupt sources.

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but

can include:
m EUSCI_BO_BASE
m EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO0
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

mask | is the bit mask of the interrupt sources to be disabled.

Disables the indicated 12C interrupt sources. Only the sources that are enabled can be reflected to
the processor interrupt; disabled sources have no effect on the processor.

The mask parameter is the logical OR of any of the following:

EUSCI_B_I2C_STOP_INTERRUPT - STOP condition interrupt
EUSCI_B_12C_START_INTERRUPT - START condition interrupt
EUSCI_B_I12C_TRANSMIT_INTERRUPTO - Transmit interrupt0
EUSCI_B_I2C_TRANSMIT_INTERRUPT1 - Transmit interrupt1
EUSCI_B_I2C_TRANSMIT_INTERRUPT2 - Transmit interrupt2
EUSCI_B_I2C_TRANSMIT_INTERRUPTS3 - Transmit interrupt3
EUSCI_B_I2C_RECEIVE_INTERRUPTO - Receive interrupt0
EUSCI_B_I2C_RECEIVE_INTERRUPT1 - Receive interrupti
EUSCI_B_I2C_RECEIVE_INTERRUPT2 - Receive interrupt2
EUSCI_B_I2C_RECEIVE_INTERRUPTS3 - Receive interrupt3
EUSCI_B_I2C_NAK_INTERRUPT - Not-acknowledge interrupt
EUSCI_B_I2C_ARBITRATIONLOST_INTERRUPT - Arbitration lost interrupt
EUSCI_B_I2C_BIT9_POSITION_INTERRUPT - Bit position 9 interrupt enable
EUSCI_B_I12C_CLOCK_LOW_TIMEOUT_INTERRUPT - Clock low timeout interrupt enable
EUSCI_B_12C_BYTE_COUNTER_INTERRUPT - Byte counter interrupt enable

Modified register is UCBXIE.

Returns

None.

Wed Aug 14 17:01:15 -05 2019 187

Inter-Integrated Circuit (12C)

12.6.3.3 void 12C_disableModule (uint32_t modulelnstance)

Disables the 12C block.

Wed Aug 14 17:01:15 -05 2019 188

Inter-Integrated Circuit (12C)

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

This will disable operation of the 12C block. Modified bits are UCSWRST of UCBXCTL1 register.

Returns
None.

12.6.3.4 void 12C_disableMultiMasterMode (uint32_t modulelnstance)

Disables Multi Master Mode

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE
EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_B0
can be used. "A" modules such as EUSCI_AO0 do not support the 12C mode.

At the end of this function, the 12C module is still disabled till I2C_enableModule is invoked
Modified bits are UCSWRST of OFS_UCBxCTLWO0, UCMM bit of UCBXxCTLWO

Returns
None.

12.6.3.5 void 12C_enablelnterrupt (uint32_t modulelnstance, uint_fast16_t mask)

Enables individual 12C interrupt sources.

Parameters

Wed Aug 14 17:01:15 -05 2019

189

Inter-Integrated Circuit (12C)

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but

can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

mask | is the bit mask of the interrupt sources to be enabled.

Enables the indicated 12C interrupt sources. Only the sources that are enabled can be reflected to
the processor interrupt; disabled sources have no effect on the processor.

The mask parameter is the logical OR of any of the following:

EUSCI_B_I2C_STOP_INTERRUPT - STOP condition interrupt
EUSCI_B_I2C_START_INTERRUPT - START condition interrupt
EUSCI_B_I2C_TRANSMIT_INTERRUPTO - Transmit interrupt0
EUSCI_B_I2C_TRANSMIT_INTERRUPT1 - Transmit interrupt1
EUSCI_B_I12C_TRANSMIT_INTERRUPT2 - Transmit interrupt2
EUSCI_B_I2C_TRANSMIT_INTERRUPTS3 - Transmit interrupt3
EUSCI_B_I2C_RECEIVE_INTERRUPTO - Receive interrupt0
EUSCI_B_I2C_RECEIVE_INTERRUPT1 - Receive interrupt1
EUSCI_B_I2C_RECEIVE_INTERRUPT2 - Receive interrupt2
EUSCI_B_I2C_RECEIVE_INTERRUPTS3 - Receive interrupt3
EUSCI_B_I2C_NAK_INTERRUPT - Not-acknowledge interrupt
EUSCI_B_I2C_ARBITRATIONLOST_INTERRUPT - Arbitration lost interrupt
EUSCI_B_I2C_BIT9_POSITION_INTERRUPT - Bit position 9 interrupt enable
EUSCI_B_I2C_CLOCK_LOW_TIMEOUT_INTERRUPT - Clock low timeout interrupt enable
EUSCI_B_I2C_BYTE_COUNTER_INTERRUPT - Byte counter interrupt enable

Modified registers are UCBxIFG and OFS_UCBKXIE.

Returns

None.

12.6.3.6 void 12C_enableModule (uint32_t modulelnstance)

Enables the 12C block.
Parameters

Wed Aug 14 17:01:15 -05 2019 190

Inter-Integrated Circuit (12C)

modulelnstance

is the instance of the eUSCI B (12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE
EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

This will enable operation of the 12C block. Modified bits are UCSWRST of UCBxXCTL1 register.

Returns
None.

12.6.3.7 void 12C_enableMultiMasterMode (uint32_t modulelnstance)

Enables Multi Master Mode

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

At the end of this function, the 12C module is still disabled till I2C_enableModule is invoked
Modified bits are UCSWRST of OFS_UCBxCTLWO0, UCMM bit of UCBxCTLWO

Returns
None.

12.6.3.8 uint_fast16_t I2C_getEnabledInterruptStatus (uint32_t modulelnstance)

Gets the current 12C interrupt status masked with the enabled interrupts. This function is useful to
call in ISRs to get a list of pending interrupts that are actually enabled and could have caused the

ISR.
Parameters

Wed Aug 14 17:01:15 -05 2019

191

Inter-Integrated Circuit (12C)

modulelnstance

is the instance of the eUSCI B (12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

Returns

the masked status of the interrupt flag
m EUSCI_B_I12C_STOP_INTERRUPT - STOP condition interrupt

enable

EUSCI_B_I2C_START_INTERRUPT - START condition interrupt
EUSCI_B_I2C_TRANSMIT_INTERRUPTO - Transmit interruptO
EUSCI_B_I2C_TRANSMIT_INTERRUPT1 - Transmit interrupt1
EUSCI_B_I2C_TRANSMIT_INTERRUPT2 - Transmit interrupt2
EUSCI_B_I2C_TRANSMIT_INTERRUPTS3 - Transmit interrupt3
EUSCI_B_I2C_RECEIVE_INTERRUPTO - Receive interrupt0
EUSCI_B_I2C_RECEIVE_INTERRUPT1 - Receive interrupt1
EUSCI_B_I2C_RECEIVE_INTERRUPT2 - Receive interrupt2
EUSCI_B_I2C_RECEIVE_INTERRUPTS3 - Receive interrupt3
EUSCI_B_I2C_NAK_INTERRUPT - Not-acknowledge interrupt
EUSCI_B_I2C_ARBITRATIONLOST_INTERRUPT - Arbitration lost interrupt
EUSCI_B_I2C_BIT9_POSITION_INTERRUPT - Bit position 9 interrupt enable
EUSCI_B_I2C_CLOCK_LOW_TIMEOUT_INTERRUPT - Clock low timeout interrupt

m EUSCI_B_I12C_BYTE_COUNTER_INTERRUPT - Byte counter interrupt enable

References 12C_getinterruptStatus().

12.6.3.9 uint_fast16_t [2C_getInterruptStatus (uint32_t modulelnstance, uint16_t mask)

Gets the current 12C interrupt status.

Wed Aug 14 17:01:15 -05 2019

192

Inter-Integrated Circuit (12C)

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE
EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

mask

is the masked interrupt flag status to be returned. Mask value is the logical OR of any of
the following:

EUSCI_B_I2C_NAK_INTERRUPT - Not-acknowledge interrupt

EUSCI_B_I2C_ARBITRATIONLOST_ INTERRUPT - Arbitration lost interrupt

EUSCI_B_I2C_STOP_INTERRUPT - STOP condition interrupt

EUSCI_B_I2C_START_INTERRUPT - START condition interrupt

EUSCI_B_I2C_TRANSMIT_INTERRUPTO - Transmit interrupt0
EUSCI_B_I2C_TRANSMIT_INTERRUPT1 - Transmit interrupt1
EUSCI_B_I2C_TRANSMIT_INTERRUPT2 - Transmit interrupt2
EUSCI_B_I2C_TRANSMIT_INTERRUPTS3 - Transmit interrupt3
EUSCI_B_I2C_RECEIVE_INTERRUPTO - Receive interrupt0
EUSCI_B_I2C_RECEIVE_INTERRUPT1 - Receive interrupti
EUSCI_B_I2C_RECEIVE_INTERRUPT2 - Receive interrupt2
EUSCI_B_I2C_RECEIVE_INTERRUPTS3 - Receive interrupt3

EUSCI_B_I2C_BIT9_POSITION_INTERRUPT - Bit position 9 interrupt
EUSCI_B_I2C_CLOCK_LOW_TIMEOUT_INTERRUPT - Clock low timeout interrupt

enable

EUSCI_B_I2C_BYTE_COUNTER_INTERRUPT - Byte counter interrupt enable

Returns

the masked status of the interrupt flag

EUSCI_B_I2C_STOP_INTERRUPT - STOP condition interrupt
EUSCI_B_I2C_START_INTERRUPT - START condition interrupt
EUSCI_B_I2C_TRANSMIT_INTERRUPTO - Transmit interruptO
EUSCI_B_I2C_TRANSMIT_INTERRUPT1 - Transmit interrupt1
EUSCI_B_I2C_TRANSMIT_INTERRUPT2 - Transmit interrupt2
EUSCI_B_I2C_TRANSMIT_INTERRUPTS3 - Transmit interrupt3
EUSCI_B_I2C_RECEIVE_INTERRUPTO - Receive interrupt0
EUSCI_B_I2C_RECEIVE_INTERRUPT1 - Receive interrupt1
EUSCI_B_I2C_RECEIVE_INTERRUPT2 - Receive interrupt2
EUSCI_B_I2C_RECEIVE_INTERRUPTS3 - Receive interrupt3
EUSCI_B_I2C_NAK_INTERRUPT - Not-acknowledge interrupt

EUSCI_B_I2C_ARBITRATIONLOST_INTERRUPT - Arbitration lost interrupt

Wed Aug 14 17:01:15 -05 2019

193

Inter-Integrated Circuit (12C)

m EUSCI_B_I2C_BIT9_POSITION_INTERRUPT - Bit position 9 interrupt enable
m EUSCI_B_I12C_CLOCK_LOW_TIMEOUT_INTERRUPT - Clock low timeout interrupt

enable

m EUSCI_B_I2C_BYTE_COUNTER_INTERRUPT - Byte counter interrupt enable

Referenced by 12C_getEnabledInterruptStatus().

12.6.3.10 uint_fast8 t 12C_getMode (uint32_t modulelnstance)

Gets the mode of the 12C device.

Current 12C transmit/receive mode.

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AQ do not support the I12C mode.

Modified bits are UCTR of UCBxCTLA1 register.

Returns

None Return one of the following:
m EUSCI_B_12C_TRANSMIT_MODE

m EUSCI_B_I2C_

RECEIVE_MODE

indicating the current mode

12.6.3.11 uint32_t I12C_getReceiveBufferAddressForDMA (uint32_t modulelnstance)

Returns the address of the RX Buffer of the 12C for the DMA module.

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO0
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

Returns the address of the 12C RX Buffer. This can be used in conjunction with the DMA to store
the received data directly to memory.

Wed Aug 14 17:01:15 -05 2019

194

Inter-Integrated Circuit (12C)

Returns
NONE

12.6.3.12 uint32_t I12C_getTransmitBufferAddressForDMA (uint32_t modulelnstance)

Returns the address of the TX Buffer of the 12C for the DMA module.

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_B0_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_B0
can be used. "A" modules such as EUSCI_AO0 do not support the 12C mode.

Returns the address of the 12C TX Buffer. This can be used in conjunction with the DMA to obtain
transmitted data directly from memory.

Returns
NONE

12.6.3.13 void 12C_initMaster (uint32_t modulelnstance, const eUSCI_I2C_MasterConfig

x config)

Initializes the 12C Master block.

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_B0_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE

m EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO0
can be used. "A" modules such as EUSCI_AOQ do not support the I12C mode.

config

Configuration structure for 12C master mode

Configuration options for eUSCI_I2C_MasterConfig structure.

Wed Aug 14 17:01:15 -05 2019

195

Inter-Integrated Circuit (12C)

Parameters

selectClock- | is the clock source. Valid values are
Source m EUSCI_ B 12C_ CLOCKSOURCE_ACLK
m EUSCI_B 12C_CLOCKSOURCE_SMCLK

i2cClk | is the rate of the clock supplied to the 12C module (the frequency in Hz of the clock source
specified in selectClockSource).

dataRate | set up for selecting data transfer rate. Valid values are
m EUSCI_B_12C_SET_DATA_RATE_1MBPS

m EUSCI_B_12C_SET_DATA_RATE_400KBPS

m EUSCI_B 12C_SET_DATA_RATE_100KBPS

byteCoun- | sets threshold for automatic STOP or UCSTPIFG
terThreshold

autoSTOPGen- | sets up the STOP condition generation. Valid values are
eration | g EYSCI_B_I2C_NO_AUTO_STOP
m EUSCI_B 12C_SET BYTECOUNT_THRESHOLD_FLAG
m EUSCI_B_12C_SEND_STOP_AUTOMATICALLY_ON_BYTECOUNT_THRESHOLD

This function initializes operation of the 12C Master block. Upon successful initialization of the 12C
block, this function will have set the bus speed for the master; however 12C module is still disabled
till ”2C_enableModule is invoked

Modified bits are UCMST, UCMODE_3, UCSYNC of UCBxXCTLO register UCSSELx, UCSWRST,
of UCBxCTL1 register UCBxBRO and UCBxBR1 registers

Returns
None.

12.6.3.14 void 12C_initSlave (uint32_t modulelnstance, uint_fast16_t slaveAddress,
uint_fast8_t slaveAddressOffset, uint32_t slaveOwnAddressEnable)

Initializes the 12C Slave block.

Wed Aug 14 17:01:15 -05 2019 196

Inter-Integrated Circuit (12C)

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

m EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

slaveAddress | 7-bit or 10-bit slave address

slaveAddres- | Own address Offset referred to- 'x’ value of UCBxI2COAXx. Valid values are:
sOffset | w EUSCI_B_I2C_OWN_ADDRESS_OFFSETO,

EUSCI_B_12C_OWN_ADDRESS_OFFSETI,

EUSCI_B_I2C_OWN_ADDRESS_OFFSET2,

EUSCI_B 12C_OWN_ADDRESS_ OFFSET3

slaveOwnAd- | selects if the specified address is enabled or disabled. Valid values are:
dressEnable | w EYSCI_B_I2C_OWN_ADDRESS_DISABLE,
m EUSCI_B _12C_OWN_ADDRESS_ENABLE

This function initializes operation of the 12C as a Slave mode. Upon successful initialization of the
12C blocks, this function will have set the slave address but the 12C module is still disabled till
12C_enableModule is invoked.

The parameter slaveAddress is the value that will be compared against the slave address sent by
an 12C master.

Modified bits are UCMODE_3, UCSYNC of UCBXCTLO register UCSWRST of UCBxCTLA1
register UCBxI2COA register

Returns
None.

12.6.3.15 uint8_t 12C_isBusBusy (uint32_t modulelnstance)

Indicates whether or not the 12C bus is busy.

Wed Aug 14 17:01:15 -05 2019 197

Inter-Integrated Circuit (12C)

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE

m EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

This function returns an indication of whether or not the 12C bus is busy.This function checks the
status of the bus via UCBBUSY bit in UCBxSTAT register.

Returns
Returns EUSCI_B _12C_BUS_BUSY if the 12C Master is busy; otherwise, returns
EUSCI_B 12C_BUS NOT_BUSY.

12.6.3.16 bool 12C_masterlsStartSent (uint32_t modulelnstance)

Indicates whether Start got sent.

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE

= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

This function returns an indication of whether or not Start got sent This function checks the status
of the bus via UCTXSTT bit in UCBxCTL1 register.

Returns
Returns EUSCI_B_I2C_BUS_BUSY if the 12C Master is busy; otherwise, returns
EUSCI_B _12C_BUS_NOT_BUSY.

12.6.3.17 uint8_t 12C_masterlsStopSent (uint32_t modulelnstance)

Indicates whether STOP got sent.

Wed Aug 14 17:01:15 -05 2019 198

Inter-Integrated Circuit (12C)

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

This function returns an indication of whether or not STOP got sent This function checks the status
of the bus via UCTXSTP bit in UCBxCTL1 register.

Returns
Returns EUSCI_B _12C_STOP_SEND_COMPLETE if the I12C Master finished sending
STOP; otherwise, returns EUSCI_B_I12C_SENDING_STOP.

12.6.3.18 uint8_t 12C_masterReceiveMultiByteFinish (uint32_t modulelnstance)

Finishes multi-byte reception at the Master end
Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_B0_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_B0
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

This function is used by the Master module to initiate completion of a multi-byte reception This
function

m Receives the current byte and initiates the STOP from Master to Slave

Modified bits are UCTXSTP bit of UCBxCTLA1.

Returns
Received byte at Master end.

12.6.3.19 bool 12C_masterReceiveMultiByteFinishWithTimeout (uint32_t modulelnstance,
uint8_t * txData, uint32_t timeout)

Finishes multi-byte reception at the Master end with timeout

Wed Aug 14 17:01:15 -05 2019 199

Inter-Integrated Circuit (12C)

Parameters
modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:
m EUSCI_B0_BASE
= EUSCI_B1_BASE
m EUSCI_B2_BASE
m EUSCI_B3_BASE
It is important to note that for eUSCI modules, only "B" modules such as EUSCI_B0
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.
txData | is a pointer to the location to store the received byte at master end
timeout | is the amount of time to wait until giving up

This function is used by the Master module to initiate completion of a multi-byte reception This

function

m Receives the current byte and initiates the STOP from Master to Slave

Modified bits are UCTXSTP bit of UCBxCTLA1.

Returns

0x01 or OXOOURE of the transmission process.

12.6.3.20 uint8_t 12C_masterReceiveMultiByteNext (uint32_t modulelnstance)

Starts multi-byte reception at the Master end one byte at a time

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_B0_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

This function is used by the Master module to receive each byte of a multi-byte reception This
function reads currently received byte

Modified register is UCBxRXBUF.

Returns

Received byte at Master end.

12.6.3.21 void 12C_masterReceiveMultiByteStop (uint32_t modulelnstance)

Sends the STOP at the end of a multi-byte reception at the Master end

Wed Aug 14 17:01:15 -05 2019

200

Inter-Integrated Circuit (12C)

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

This function is used by the Master module to initiate STOP
Modified bits are UCTXSTP bit of UCBxCTLA1.

Returns
None.

12.6.3.22 uint8_t 12C_masterReceiveSingle (uint32_t modulelnstance)

Receives a byte that has been sent to the 12C Master Module.

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE
EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO0
can be used. "A" modules such as EUSCI_AOQ do not support the I12C mode.

This function reads a byte of data from the 12C receive data Register.

Wed Aug 14 17:01:15 -05 2019

201

Inter-Integrated Circuit (12C)

Returns

Returns the byte received from by the 12C module, cast as an uint8_t.

12.6.3.23 uint8_t 12C_masterReceiveSingleByte (uint32_t modulelnstance)

Does single byte reception from the slave

Parameters

modulelnstance

is the instance of the eUSCI B (12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_B0_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE

= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the 12C mode.

This function is used by the Master module to receive a single byte. This function:

m Sends START and STOP
m Waits for data reception

m Receives one byte from the Slave

Modified registers are UCBXIE, UCBxCTL1, UCBxIFG, UCBxTXBUF, UCBXIE

Returns

The byte that has been received from the slave

12.6.3.24 void 12C_masterReceiveStart (uint32_t modulelnstance)

Starts reception at the Master end

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO0 do not support the 12C mode.

This function is used by the Master module initiate reception of a single byte. This function

® Sends START

Wed Aug 14 17:01:15 -05 2019

202

Inter-Integrated Circuit (12C)

Modified bits are UCTXSTT bit of UCBxXCTL1.

Returns
None.

12.6.3.25 bool 12C_masterSendMultiByteFinish (uint32_t modulelnstance, uint8_t txData

)
Finishes multi-byte transmission from Master to Slave
Parameters
modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but

can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE
EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_B0
can be used. "A" modules such as EUSCI_AO0 do not support the 12C mode.

txData

is the last data byte to be transmitted in a multi-byte transmsission

This function is used by the Master module to send the last byte and STOP. This function

m Transmits the last data byte of a multi-byte transmission to the Slave

m Sends STOP

Modified registers are UCBXxTXBUF and UCBxCTL1.

Wed Aug 14 17:01:15 -05 2019

203

Inter-Integrated Circuit (12C)

Returns
false if NAK occurred, false otherwise

12.6.3.26 bool 12C_masterSendMultiByteFinishWithTimeout (uint32_t modulelnstance,
uint8_t txData, uint32_t timeout)

Finishes multi-byte transmission from Master to Slave with timeout
Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_B0
can be used. "A" modules such as EUSCI_AO0 do not support the 12C mode.

txData | is the last data byte to be transmitted in a multi-byte transmission

timeout | is the amount of time to wait until giving up

This function is used by the Master module to send the last byte and STOP. This function

m Transmits the last data byte of a multi-byte transmission to the Slave
m Sends STOP

Modified registers are UCBXxTXBUF and UCBxCTL1.

Returns
0x01 or OXOOURE of the transmission process.

12.6.3.27 void 12C_masterSendMultiByteNext (uint32_t modulelnstance, uint8_t txData)

Continues multi-byte transmission from Master to Slave
Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

txData | is the next data byte to be transmitted

Wed Aug 14 17:01:15 -05 2019 204

Inter-Integrated Circuit (12C)

This function is used by the Master module continue each byte of a multi-byte trasmission. This
function

m Transmits each data byte of a multi-byte transmission to the Slave
Modified registers are UCBXTXBUF

Returns
None.

12.6.3.28 bool 12C_masterSendMultiByteNextWithTimeout (uint32_t modulelnstance,
uint8_t txData, uint32_t timeout)

Continues multi-byte transmission from Master to Slave with timeout
Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE

= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO0
can be used. "A" modules such as EUSCI_AO0 do not support the 12C mode.

txData | is the next data byte to be transmitted

timeout | is the amount of time to wait until giving up

This function is used by the Master module continue each byte of a multi-byte transmission. This
function

m Transmits each data byte of a multi-byte transmission to the Slave

Modified registers are UCBXxTXBUF

Wed Aug 14 17:01:15 -05 2019 205

Inter-Integrated Circuit (12C)

Returns
0x01 or OXOOURE of the transmission process.

12.6.3.29 void 12C_masterSendMultiByteStart (uint32_t modulelnstance, uint8_t txData)

Starts multi-byte transmission from Master to Slave
Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_B0
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

txData | is the first data byte to be transmitted

This function is used by the Master module to send a single byte. This function

m Sends START
m Transmits the first data byte of a multi-byte transmission to the Slave

Modified registers are UCBXIE, UCBxCTL1, UCBxIFG, UCBxTXBUF, UCBXIE

Returns
None.

12.6.3.30 bool 12C_masterSendMultiByteStartWithTimeout (uint32_t modulelnstance,
uint8_t txData, uint32_t timeout)

Starts multi-byte transmission from Master to Slave with timeout
Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO0
can be used. "A" modules such as EUSCI_AO0 do not support the 12C mode.

txData | is the first data byte to be transmitted

timeout | is the amount of time to wait until giving up

This function is used by the Master module to send a single byte. This function

Wed Aug 14 17:01:15 -05 2019 206

Inter-Integrated Circuit (12C)

m Sends START
m Transmits the first data byte of a multi-byte transmission to the Slave

Modified registers are UCBXIE, UCBxCTL1, UCBXxIFG, UCBxTXBUF, UCBXIE

Returns
0x01 or OXOOURE of the transmission process.

12.6.3.31 void 12C_masterSendMultiByteStop (uint32_t modulelnstance)

Send STOP byte at the end of a multi-byte transmission from Master to Slave

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE

= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

This function is used by the Master module send STOP at the end of a multi-byte transmission

This function
m Send a STOP after current transmission is complete

Modified bits are UCTXSTP bit of UCBxCTLA1.

Wed Aug 14 17:01:15 -05 2019 207

Inter-Integrated Circuit (12C)

Returns
None.

12.6.3.32 bool 12C_masterSendMultiByteStopWithTimeout (uint32_t modulelnstance,
uint32_t timeout)

Send STOP byte at the end of a multi-byte transmission from Master to Slave with timeout

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_B0
can be used. "A" modules such as EUSCI_AO0 do not support the 12C mode.

timeout

is the amount of time to wait until giving up

This function is used by the Master module send STOP at the end of a multi-byte transmission

This function

m Send a STOP after current transmission is complete

Modified bits are UCTXSTP bit of UCBxCTLA1.

Returns

0x01 or OXOOURE of the transmission process.

12.6.3.33 void 12C_masterSendSingleByte (uint32_t modulelnstance, uint8_t txData)

Does single byte transmission from Master to Slave

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE
EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AOQ do not support the 12C mode.

txData

is the data byte to be transmitted

This function is used by the Master module to send a single byte. This function

Wed Aug 14 17:01:15 -05 2019

208

Inter-Integrated Circuit (12C)

m Sends START

m Transmits the byte to the Slave

m Sends STOP

Modified registers are UCBXIE, UCBxCTL1, UCBxIFG, UCBxTXBUF, UCBXIE

Returns
none

12.6.3.34 bool 12C_masterSendSingleByteWithTimeout (uint32_t modulelnstance, uint8 t
txData, uint32_t timeout)

Does single byte transmission from Master to Slave with timeout

Parameters

modulelnstance

is the instance of the eUSCI B (12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO0
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

txData

is the data byte to be transmitted

timeout

is the amount of time to wait until giving up

This function is used by the Master module to send a single byte. This function

m Sends START

m Transmits the byte to the Slave

m Sends STOP

Modified registers are UCBXIE, UCBxCTL1, UCBXxIFG, UCBxTXBUF, UCBXIE

Returns

0x01 or OXOOURE of the transmission process.

12.6.3.35 void 12C_masterSendStart (uint32_t modulelnstance)

This function is used by the Master module to initiate START

Wed Aug 14 17:01:15 -05 2019

209

Inter-Integrated Circuit (12C)

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

This function is used by the Master module to initiate STOP
Modified bits are UCTXSTT bit of UCBxCTLWO.

Returns
None.

12.6.3.36 void 12C_registerinterrupt (uint32_t modulelnstance, void(x)(void) intHandler)

Registers an interrupt handler for 12C interrupts.
Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO0
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

intHandler | is a pointer to the function to be called when the timer capture compare interrupt occurs.

This function registers the handler to be called when an 12C interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific 12C interrupts must be enabled via
I12C_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt source via
12C_clearlnterruptFlag().

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

Wed Aug 14 17:01:15 -05 2019 210

Inter-Integrated Circuit (12C)

12.6.3.37 void 12C_setMode (uint32_t modulelnstance, uint_fast8 t mode)

Sets the mode of the 12C device

Wed Aug 14 17:01:15 -05 2019 211

Inter-Integrated Circuit (12C)

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
EUSCI_B1_BASE
EUSCI_B2_ BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

mode | indicates whether module is in transmit/receive mode
m EUSCI_B 12C_TRANSMIT_MODE
m EUSCI_B_12C_RECEIVE_MODE [Default value]

Modified bits are UCTR of UCBXCTL1 register

Returns
None.

12.6.3.38 void 12C_setSlaveAddress (uint32_t modulelnstance, uint_fast16 t
slaveAddress)

Sets the address that the 12C Master will place on the bus.

Parameters

modulelnstance | is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

m EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO0
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

slaveAddress | 7-bit or 10-bit slave address

This function will set the address that the 12C Master will place on the bus when initiating a
transaction. Modified register is UCBxI2CSA register

Returns
None.

12.6.3.39 void 12C_setTimeout (uint32_t modulelnstance, uint_fast16_t timeout)

Sets the timeout of the 12C device

Wed Aug 14 17:01:15 -05 2019 212

Inter-Integrated Circuit (12C)

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

timeout

indicates desired timeout

EUSCI_B_I2C_TIMEOUT_DISABLE [Default value]
EUSCI_B_I2C_TIMEOUT_28_MS
EUSCI_B_I2C_TIMEOUT_31_MS
EUSCI_B_I2C_TIMEOUT_34_MS

Modified bits are UCSWRST of UCBxCTLO and UCCLTO of UCBXCTL1 registers

Returns
None.

12.6.3.40 uint8_t 12C_slaveGetData (uint32_t modulelnstance)

Receives a byte that has been sent to the 12C Module.

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO0
can be used. "A" modules such as EUSCI_AOQ do not support the I12C mode.

This function reads a byte of data from the 12C receive data Register.

Returns

Returns the byte received from by the 12C module, cast as an uint8_t. Modified bit is
UCBxRXBUF register

12.6.3.41 void 12C_slavePutData (uint32_t modulelnstance, uint8_t transmitData)

Transmits a byte from the 12C Module.

Wed Aug 14 17:01:15 -05 2019

213

Inter-Integrated Circuit (12C)

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

transmitData

data to be transmitted from the 12C module

This function will place the supplied data into 12C transmit data register to start transmission
Modified register is UCBXTXBUF register

Returns
None.

12.6.3.42 void 12C_slaveSendNAK (uint32_t modulelnstance)

This function is used by the slave to send a NAK out over the 12C line

Parameters

modulelnstance

is the instance of the eUSCI B (I12C) module. Valid parameters vary from part to part, but
can include:

= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE

= EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the I12C mode.

Wed Aug 14 17:01:15 -05 2019

214

Inter-Integrated Circuit (12C)

Returns
None.

12.6.3.43 void 12C_unregisterinterrupt (uint32_t modulelnstance)

Unregisters the interrupt handler for the timer

Parameters

modulelnstance

is the instance of the eUSCI B (12C) module. Valid parameters vary from part to part, but
can include:

EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE

It is important to note that for eUSCI modules, only "B" modules such as EUSCI_BO
can be used. "A" modules such as EUSCI_AO do not support the 12C mode.

This function unregisters the handler to be called when timer interrupt occurs. This function also
masks off the interrupt in the interrupt controller so that the interrupt handler no longer is called.

See Also

Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019

215

Nested Vector Interrupt Controller (NVIC)

13 Nested Vector Interrupt Controller (NVIC)

MOAUIE OPEIAtIONttt e et e e e e e e 213
Basic Operation MOGESt e 214
Programming EXample o 214
D iNIEIONS .. e 215

13.1 Module Operation

The interrupt controller API provides a set of functions for dealing with the Nested Vectored
Interrupt Controller (NVIC). Functions are provided to enable and disable interrupts, register
interrupt handlers, and set the priority of interrupts.

The NVIC provides global interrupt masking, prioritization, and handler dispatching. Individual
interrupt sources can be masked, and the processor interrupt can be globally masked as well
(without affecting the individual source masks).

The NVIC is tightly coupled with the Cortex-M microprocessor. When the processor responds to
an interrupt, the NVIC supplies the address of the function to handle the interrupt directly to the
processor. This action eliminates the need for a global interrupt handler that queries the interrupt
controller to determine the cause of the interrupt and branch to the appropriate handler, reducing
interrupt response time.

The interrupt prioritization in the NVIC allows higher priority interrupts to be handled before lower
priority interrupts, as well as allowing preemption of lower priority interrupt handlers by higher
priority interrupts. Again, this helps reduce interrupt response time (for example, a 1 ms system
control interrupt is not held off by the execution of a lower priority 1 second housekeeping interrupt
handler).

Sub-prioritization is also possible; instead of having N bits of preemptable prioritization, the NVIC
can be configured (via software) for N - M bits of preemptable prioritization and M bits of
sub-priority. In this scheme, two interrupts with the same preemptable prioritization but different
sub-priorities do not cause a preemption; tail chaining is used instead to process the two interrupts
back-to-back.

If two interrupts with the same priority (and sub-priority if so configured) are asserted at the same
time, the one with the lower interrupt number is processed first. The NVIC keeps track of the
nesting of interrupt handlers, allowing the processor to return from interrupt context only once all
nested and pending interrupts have been handled.

Interrupt handlers can be configured in one of two ways; statically at compile time or dynamically
at run time. Static configuration of interrupt handlers is accomplished by editing the interrupt
handler table in the application’s startup code. When statically configured, the interrupts must be
explicitly enabled in the NVIC via Interrupt_enablelnterrupt() before the processor can respond to
the interrupt (in addition to any interrupt enabling required within the peripheral itself). Statically
configuring the interrupt table provides the fastest interrupt response time because the stacking
operation (a write to SRAM) can be performed in parallel with the interrupt handler table fetch (a
read from Flash), as well as the prefetch of the interrupt handler itself (assuming it is also in Flash).

Alternatively, interrupts can be configured at run-time using Interrupt_registerinterrupt(). When
using Interrupt_registerinterrupt(), the interrupt must also be enabled as before; when using the
analogue in each individual driver, Interrupt_enablelnterrupt() is called by the driver and does not
need to be called by the application. Run-time configuration of interrupts adds a small latency to

Wed Aug 14 17:01:15 -05 2019 216

Nested Vector Interrupt Controller (NVIC)

the interrupt response time because the stacking operation (a write to SRAM) and the interrupt
handler table fetch (a read from SRAM) must be performed sequentially.

Run-time configuration of interrupt handlers requires that the interrupt handler table be placed on
a 1-kB boundary in SRAM (typically this is at the beginning of SRAM). Failure to do so results in
an incorrect vector address being fetched in response to an interrupt. The vector table is in a
section called “vtable” and should be placed appropriately with a linker script.

13.2 Basic Operation Modes

The primary function of the interrupt controller API is to manage the interrupt vector table used by
the NVIC to dispatch interrupt requests. Registering an interrupt handler is a simple matter of
inserting the handler address into the table. By default, the table is filled with pointers to an
internal handler that loops forever; it is an error for an interrupt to occur when there is no interrupt
handler registered to process it. Therefore, interrupt sources should not be enabled before a
handler has been registered, and interrupt sources should be disabled before a handler is
unregistered. Interrupt handlers are managed with Interrupt_registerinterrupt() and
Interrupt_unregisterinterrupt().

Each interrupt source can be individually enabled and disabled via Interrupt_enablelnterrupt() and
Interrupt_disablelnterrupt(). The processor interrupt can be enabled and disabled via
Interrupt_enableMaster() and Interrupt_disableMaster(); this does not affect the individual interrupt
enable states. Masking of the processor interrupt can be used as a simple critical section (only an
NMI can interrupt the processor while the processor interrupt is disabled), although masking the
processor interrupt can have adverse effects on the interrupt response time.

The priority of each interrupt source can be set and examined via Interrupt_setPriority() and
Interrupt_getPriority(). The priority assignments are defined by the hardware; the upper N bits of
the 8-bit priority are examined to determine the priority of an interrupt (for the MSP432 family, N is
3). This protocol allows priorities to be defined without knowledge of the exact number of
supported priorities; moving to a device with more or fewer priority bits is made easier as the
interrupt source continues to have a similar level of priority. Smaller priority numbers correspond to
higher interrupt priority, so 0 is the highest priority.

13.3 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the Interrupt module. These code examples are accessible under the examples/ folder of the
SDK release as well as through Tl Resource Explorer if using Code Composer Studio. These
code examples provide a comprehensive list of use cases as well as practical applications
involving each module.

Below is a very brief code example showing how to configure interrupt priorities. For a set of more
detailed code examples, please refer to the code examples in the examples/ directory of the SDK
release:

Wed Aug 14 17:01:15 -05 2019 217

Nested Vector Interrupt Controller (NVIC)

13.4 Definitions

Functions

void Interrupt_disablelnterrupt (uint32_t interruptNumber)

bool Interrupt_disableMaster (void)

void Interrupt_disableSleepOnlsrExit (void)

void Interrupt_enablelnterrupt (uint32_t interruptNumber)

bool Interrupt_enableMaster (void)

void Interrupt_enableSleepOnlsrExit (void)

uint8_t Interrupt_getPriority (uint32_t interruptNumber)

uint32_t Interrupt_getPriorityGrouping (void)

uint8_t Interrupt_getPriorityMask (void)

uint32_t Interrupt_getVectorTableAddress (void)

bool Interrupt_isEnabled (uint32_t interruptNumber)

void Interrupt_pendInterrupt (uint32_t interruptNumber)

void Interrupt_registerinterrupt (uint32_t interruptNumber, void(xintHandler)(void))
void Interrupt_setPriority (uint32_t interruptNumber, uint8_t priority)
void Interrupt_setPriorityGrouping (uint32_t bits)

void Interrupt_setPriorityMask (uint8_t priorityMask)

void Interrupt_setVectorTableAddress (uint32_t addr)

void Interrupt_unpendinterrupt (uint32_t interruptNumber)

void Interrupt_unregisterinterrupt (uint32_t interruptNumber)

13.4.1 Detailed Description

The code for this module is contained in driverlib/interrupt.c, with
driverlib/interrupt .h containing the APl declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 218

Nested Vector Interrupt Controller (NVIC)

13.4.2 Function Documentation

13.4.2.1 void Interrupt_disablelnterrupt (uint32_t interruptNumber)

Disables an interrupt.

Parameters

] interruptNumber \ specifies the interrupt to be disabled.

The specified interrupt is disabled in the interrupt controller. Other enables for the interrupt (such
as at the peripheral level) are unaffected by this function.

See Interrupt_enablelnterrupt for details about the interrupt parameter

Returns
None.

Referenced by ADC14_unregisterinterrupt(), AES256_unregisterinterrupt(),
COMP_E_unregisterinterrupt(), CS_unregisterinterrupt(), DMA_unregisterinterrupt(),
FlashCtl_A_unregisterinterrupt(), FlashCtl_unregisterinterrupt(), GPIO_unregisterinterrupt(),
12C_unregisterinterrupt(), LCD_F_unregisterinterrupt(), MPU_disablelnterrupt(),
PCM_unregisterinterrupt(), PSS_unregisterinterrupt(), RTC_C_unregisterinterrupt(),
SPI_unregisterinterrupt(), Timer32_unregisterinterrupt(), Timer_A_unregisterinterrupt(),
UART_unregisterinterrupt(), and WDT_A_unregisterinterrupt().

13.4.2.2 bool Interrupt_disableMaster (void)

Disables the processor interrupt.

This function prevents the processor from receiving interrupts. This function does not affect the set
of interrupts enabled in the interrupt controller; it just gates the single interrupt from the controller
to the processor.

Returns
Returns true if interrupts were already disabled when the function was called or false if they
were initially enabled.

Referenced by FlashCtl_A_eraseSector(), FlashCtl_A_performMassErase(),
FlashCtl_A_programMemory(), FlashCtl_A_verifyMemory(), FlashCtl_eraseSector(),
FlashCtl_performMassErase(), FlashCtl_programMemory(), FlashCtl_verifyMemory(),
PCM_gotoLPMOInterruptSafe(), PCM_gotoLPM3InterruptSafe(), and
PCM_gotoLPM4InterruptSafe().

13.4.2.3 void Interrupt_disableSleepOnlsrExit (void)

Disables the processor to sleep when exiting an ISR.

Returns
None

Wed Aug 14 17:01:15 -05 2019 219

Nested Vector Interrupt Controller (NVIC)

13.4.2.4 void Interrupt_enablelnterrupt (uint32_t interruptNumber)

Enables an interrupt.

Wed Aug 14 17:01:15 -05 2019 220

Nested Vector Interrupt Controller (NVIC)

Parameters

] interruptNumber \ specifies the interrupt to be enabled.

The specified interrupt is enabled in the interrupt controller. Other enables for the interrupt (such

as at the peripheral level) are unaffected by this function.

Valid values will vary from part to part, so it is important to check the device specific datasheet,
however for MSP432 101 the following values can be provided:

FAULT_NMI

FAULT_HARD

FAULT_MPU
FAULT BUS

FAULT_USAGE
FAULT_SVCALL
FAULT_DEBUG
FAULT_PENDSV
FAULT_SYSTICK

INT_PSS
INT_CS
INT_PCM
INT_WDT_A
INT_FPU
INT_FLCTL
INT_COMPO
INT_COMP1
INT_TAO 0
INT_TAO_N
INT_TA1_0
INT_TA1_N
INT_TA2_0
INT_TA2_N
INT_TA3_0
INT_TA3_N

INT_EUSCIAO
INT_EUSCIA1
INT_EUSCIA2
INT_EUSCIA3
INT_EUSCIBO
INT_EUSCIB1
INT_EUSCIB2
INT_EUSCIB3

INT_ADC14

Wed Aug 14 17:01:15 -05 2019

221

Nested Vector Interrupt Controller (NVIC)

= INT_T32_INT1

= INT_T32_INT2

= INT_T32_INTC
= INT_AES

= INT_RTCC

= INT_DMA_ERR
= INT_DMA_INT3
= INT_DMA_INT2
= INT_DMA_INT1
= INT_DMA_INTO
= INT_PORT1

= INT_PORT2

= INT_PORT3

= INT_PORT4

= INT_PORT5

= INT_PORT6

Returns
None.

Referenced by ADC14_registerinterrupt(), AES256_registerinterrupt(),
COMP_E_registerinterrupt(), CS_registerinterrupt(), DMA_registerinterrupt(),
FlashCtl_A_registerinterrupt(), FlashCil_registerInterrupt(), GPIO_registerinterrupt(),
I12C_registerinterrupt(), LCD_F_registerinterrupt(), MPU_enablelnterrupt(),
PCM_registerinterrupt(), PSS_registerinterrupt(), RTC_C_registerinterrupt(),
SPI_registerInterrupt(), Timer32_registerinterrupt(), Timer_A_registerinterrupt(),
UART _registerinterrupt(), and WDT_A_registerinterrupt().

13.4.2.5 bool Interrupt_enableMaster (void)

Enables the processor interrupt.

This function allows the processor to respond to interrupts. This function does not affect the set of
interrupts enabled in the interrupt controller; it just gates the single interrupt from the controller to
the processor.

Returns
Returns true if interrupts were disabled when the function was called or false if they were
initially enabled.

Referenced by FlashCtl_A_eraseSector(), FlashCtl_A_performMassErase(),
FlashCtl_A_programMemory(), FlashCtl_A_verifyMemory(), FlashCtl_eraseSector(),
FlashCtl_performMassErase(), FlashCtl_programMemory(), FlashCtl_verifyMemory(),
PCM_gotoLPMOInterruptSafe(), PCM_gotoLPM3InterruptSafe(), and
PCM_gotoLPM4InterruptSafe().

Wed Aug 14 17:01:15 -05 2019 222

Nested Vector Interrupt Controller (NVIC)

13.4.2.6 void Interrupt_enableSleepOnlsrExit (void)

Enables the processor to sleep when exiting an ISR. For low power operation, this is ideal as
power cycles are not wasted with the processing required for waking up from an ISR and going
back to sleep.

Returns
None
13.4.2.7 uint8_t Interrupt_getPriority (uint32_t interruptNumber)

Gets the priority of an interrupt.

Parameters

] interruptNumber \ specifies the interrupt in question.

This function gets the priority of an interrupt. See Interrupt_setPriority() for a definition of the
priority value.

See Interrupt_enablelnterrupt for details about the interrupt parameter

Returns
Returns the interrupt priority, or -1 if an invalid interrupt was specified.

13.4.2.8 uint32_t Interrupt_getPriorityGrouping (void)

Gets the priority grouping of the interrupt controller.
This function returns the split between preemptable priority levels and sub-priority levels in the
interrupt priority specification.

Returns
The number of bits of preemptable priority.

13.4.2.9 uint8_t Interrupt_getPriorityMask (void)

Gets the priority masking level

This function gets the current setting of the interrupt priority masking level. The value returned is
the priority level such that all interrupts of that and lesser priority are masked. A value of 0 means
that priority masking is disabled.

Smaller numbers correspond to higher interrupt priorities. So for example a priority level mask of 4
allows interrupts of priority level 0-3, and interrupts with a numerical priority of 4 and greater are
blocked.

The hardware priority mechanism only looks at the upper N bits of the priority level (where N is 3
for the MSP432 family), so any prioritization must be performed in those bits.

Returns
Returns the value of the interrupt priority level mask.

Wed Aug 14 17:01:15 -05 2019 223

Nested Vector Interrupt Controller (NVIC)

13.4.2.10

13.4.2.11

13.4.2.12

13.4.2.13

uint32_t Interrupt_getVectorTableAddress (void)

Returns the address of the interrupt vector table.

Returns
Address of the vector table.

bool Interrupt_isEnabled (uint32_t interruptNumber ')

Returns if a peripheral interrupt is enabled.

Parameters

| interruptNumber | specifies the interrupt to check.

This function checks if the specified interrupt is enabled in the interrupt controller.

See Interrupt_enablelnterrupt for details about the interrupt parameter

Returns
A non-zero value if the interrupt is enabled.

void Interrupt_pendIinterrupt (uint32_t interruptNumber)

Pends an interrupt.

Parameters

] interruptNumber \ specifies the interrupt to be pended.

The specified interrupt is pended in the interrupt controller. Pending an interrupt causes the
interrupt controller to execute the corresponding interrupt handler at the next available time, based
on the current interrupt state priorities. For example, if called by a higher priority interrupt handler,
the specified interrupt handler is not called until after the current interrupt handler has completed
execution. The interrupt must have been enabled for it to be called.

See Interrupt_enablelnterrupt for details about the interrupt parameter

Returns
None.

void Interrupt_registerinterrupt (uint32_t interruptNumber, void(x)(void)
intHandler)

Registers a function to be called when an interrupt occurs.

Parameters

Wed Aug 14 17:01:15 -05 2019 224

Nested Vector Interrupt Controller (NVIC)

interruptNumber | specifies the interrupt in question.

intHandler | is a pointer to the function to be called.

Note
The use of this function (directly or indirectly via a peripheral driver interrupt register
function) moves the interrupt vector table from flash to SRAM. Therefore, care must be taken
when linking the application to ensure that the SRAM vector table is located at the beginning
of SRAM; otherwise the NVIC does not look in the correct portion of memory for the vector
table (it requires the vector table be on a 1 kB memory alignment). Normally, the SRAM
vector table is so placed via the use of linker scripts. See the discussion of compile-time
versus run-time interrupt handler registration in the introduction to this chapter.
This function is only used if the customer wants to specify the interrupt handler at run time.
In most cases, this is done through means of the user setting the ISR function pointer in the
startup file. Refer Refer to the Module Operation section for more details.

See Interrupt_enablelnterrupt for details about the interrupt parameter

Returns
None.

Referenced by ADC14_registerinterrupt(), AES256_registerinterrupt(),
COMP_E_registerinterrupt(), CS_registerinterrupt(), DMA_registerInterrupt(),
FlashCtl_A_registerinterrupt(), FlashCtl_registerinterrupt(), GPIO_registerinterrupt(),
12C_registerinterrupt(), LCD_F_registerinterrupt(), MPU_registerinterrupt(),
PCM_registerinterrupt(), PSS_registerinterrupt(), RTC_C_registerinterrupt(),
SPI_registerinterrupt(), SysTick_registerinterrupt(), Timer32_registerinterrupt(),
Timer_A_registerinterrupt(), UART _registerinterrupt(), and WDT_A_registerInterrupt().

13.4.2.14 void Interrupt_setPriority (uint32_t interruptNumber, uint8_t priority)

Sets the priority of an interrupt.

Parameters

interruptNumber | specifies the interrupt in question.

priority | specifies the priority of the interrupt.

This function is used to set the priority of an interrupt. When multiple interrupts are asserted
simultaneously, the ones with the highest priority are processed before the lower priority interrupts.
Smaller numbers correspond to higher interrupt priorities; priority 0 is the highest interrupt priority.

The hardware priority mechanism only looks at the upper N bits of the priority level (where N is 3
for the MSP432 family), so any prioritization must be performed in those bits.

See Interrupt_enablelnterrupt for details about the interrupt parameter

Returns
None.

13.4.2.15 void Interrupt_setPriorityGrouping (uint32_t bits)

Sets the priority grouping of the interrupt controller.

Wed Aug 14 17:01:15 -05 2019 225

Nested Vector Interrupt Controller (NVIC)

Parameters

] bits | specifies the number of bits of preemptable priority.

This function specifies the split between preemptable priority levels and sub-priority levels in the
interrupt priority specification. The range of the grouping values are dependent upon the hardware
implementation; on the MSP432 family, three bits are available for hardware interrupt prioritization
and therefore priority grouping values of three through seven have the same effect.

Returns
None.

13.4.2.16 void Interrupt_setPriorityMask (uint8_t priorityMask)

Sets the priority masking level

Parameters

] priorityMask | is the priority level that is masked.

This function sets the interrupt priority masking level so that all interrupts at the specified or lesser
priority level are masked. Masking interrupts can be used to globally disable a set of interrupts
with priority below a predetermined threshold. A value of 0 disables priority masking.

Smaller numbers correspond to higher interrupt priorities. So for example a priority level mask of 4
allows interrupts of priority level 0-3, and interrupts with a numerical priority of 4 and greater are
blocked.

The hardware priority mechanism only looks at the upper N bits of the priority level (where N is 3
for the MSP432 family), so any prioritization must be performed in those bits.

Returns
None.

13.4.2.17 void Interrupt_setVectorTableAddress (uint32_t addr)

Sets the address of the vector table. This function is for advanced users who might want to switch
between multiple instances of vector tables (perhaps between flash/ram).

Parameters

] addr | is the new address of the vector table.

Returns
None.

13.4.2.18 void Interrupt_unpendinterrupt (uint32_t interruptNumber ')

Un-pends an interrupt.

Wed Aug 14 17:01:15 -05 2019 226

Nested Vector Interrupt Controller (NVIC)

Parameters

] interruptNumber \ specifies the interrupt to be un-pended.

The specified interrupt is un-pended in the interrupt controller. This will cause any previously
generated interrupts that have not been handled yet (due to higher priority interrupts or the
interrupt no having been enabled yet) to be discarded.

See Interrupt_enablelnterrupt for details about the interrupt parameter

Returns
None.

13.4.2.19 void Interrupt_unregisterinterrupt (uint32_t interruptNumber)

Unregisters the function to be called when an interrupt occurs.

Parameters

] interruptNumber \ specifies the interrupt in question.

This function is used to indicate that no handler should be called when the given interrupt is
asserted to the processor. The interrupt source is automatically disabled (via
Interrupt_disablelnterrupt()) if necessary.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

See Interrupt_enablelnterrupt for details about the interrupt parameter

Returns
None.

Referenced by ADC14_unregisterinterrupt(), AES256_unregisterinterrupt(),
COMP_E_unregisterinterrupt(), CS_unregisterinterrupt(), DMA_unregisterinterrupt(),
FlashCtl_A_unregisterinterrupt(), FlashCtl_unregisterinterrupt(), GPIO_unregisterinterrupt(),
I12C_unregisterinterrupt(), LCD_F_unregisterinterrupt(), MPU_unregisterinterrupt(),
PCM_unregisterInterrupt(), PSS_unregisterinterrupt(), RTC_C_unregisterinterrupt(),
SPI_unregisterInterrupt(), SysTick_unregisterinterrupt(), Timer32_unregisterinterrupt(),
Timer_A_unregisterInterrupt(), UART_unregisterinterrupt(), and WDT_A_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 227

LCD Module (LCD_F)

14 LCD Module (LCD F)

MOAUIE OPEIAtIONttt e et e e e e e e 225
D iNItIONS .. e 226
14.1 Module Operation
228

Wed Aug 14 17:01:15 -05 2019

LCD Module (LCD_F)

14.2 Definitions

Functions

void LCD_F_clearAllAnimationMemory (void)

void LCD_F_clearAllBlinkingMemory (void)

void LCD_F_clearAllMemory (void)

void LCD_F_clearInterrupt (uint32_t mask)

void LCD_F_disableAnimation (void)

void LCD_F_disablelnterrupt (uint32_t mask)

void LCD_F_enableAnimation (void)

void LCD_F_enablelnterrupt (uint32_t mask)

uint32_t LCD_F_getEnabledInterruptStatus (void)

uint32_t LCD_F_getInterruptStatus (void)

void LCD_F_initModule (LCD_F_Config xinitParams)

void LCD_F_registerinterrupt (void(xintHandler)(void))

void LCD_F_selectBias (uint_fast16_t bias)

void LCD_F_selectDisplayMemory (uint_fast16_t displayMemory)

void LCD_F_setAnimationControl (uint_fast16_t clockPrescalar, uint_fast16_t divider,
uint_fast16_t frames)

void LCD_F_setBlinkingControl (uint_fast16_t clockPrescalar, uint_fast16_t divider,
uint_fast16_t mode)

void LCD_F_setPinAsCOM (uint8_t pin, uint_fast8_t com)

void LCD_F_setPinAsLCDFunction (uint_fast8_t pin)

void LCD_F_setPinAsPortFunction (uint_fast8_t pin)

void LCD_F_setPinAsSEG (uint_fast8_t pin)

void LCD_F_setPinsAsLCDFunction (uint_fast8 t startPin, uint8_t endPin)

void LCD_F_setVLCDSource (uint_fast16_t v2v3v4Source, uint_fast16_t v5Source)
void LCD_F_turnOff (void)

void LCD_F_turnOn (void)

void LCD_F_unregisterinterrupt (void)

14.2.1 Detailed Description

The code for this module is contained in 1cd_f.c, with 1cd_£ . h containing the API declarations
for use by applications.

Wed Aug 14 17:01:15 -05 2019 229

LCD Module (LCD_F)

14.2.2 Function Documentation

14.2.2.1 void LCD_F_clearAllAnimationMemory (void)

Clears all LCD_F animation memory registers.

This function clears all LCD_F animation memory registers.

Returns
None

14.2.2.2 void LCD_F_clearAllBlinkingMemory (void)

Clears all LCD_F blinking memory registers.

This function clears all LCD_F blinking memory registers.

Returns
None

14.2.2.3 void LCD_F_clearAllMemory (void)

Clears all LCD_F memory registers.

This function clears all LCD_F memory registers.

Returns
None

14.2.2.4 void LCD_F_clearinterrupt (uint32_t mask)

Clears the LCD_F selected interrupt flags.

This function clears the specified interrupt flags.

Parameters

mask

is the masked interrupt flag to be cleared. Mask value is the logical OR of any of the
following:

LCD_F_BLINKING_SEGMENTS_ON_INTERRUPT
LCD_F_BLINKING_SEGMENTS_OFF_INTERRUPT
LCD_F_FRAME_INTERRUPT
LCD_F_ANIMATION_LOOP_INTERRUPT
LCD_F_ANIMATION_STEP_INTERRUPT

Returns
None

Wed Aug 14 17:01:15 -05 2019

230

LCD Module (LCD_F)

14.2.2.5

14.2.2.6

14.2.2.7

14.2.2.8

void LCD_F_disableAnimation (void)

Enables animation on the LCD _F controller.

This function turns on animation for the LCD_F controller.

Returns
None

void LCD_F_disablelnterrupt (uint32_t mask)

Disables the LCD_F selected interrupts.
This function disables the specified interrupts.

Parameters

of the following:

LCD_F_FRAME_INTERRUPT

m LCD_F_BLINKING_SEGMENTS_ON_INTERRUPT
LCD_F_BLINKING_SEGMENTS_OFF_INTERRUPT

LCD_F_ANIMATION_LOOP_INTERRUPT
LCD_F_ANIMATION_STEP_INTERRUPT

mask | is the variable containing interrupt flags to be disabled Mask value is the logical OR of any

Returns
None

void LCD_F_enableAnimation (void)

Enables animation on the LCD_F controller.

This function turns on animation for the LCD_F controller.

Returns
None

void LCD_F_enablelnterrupt (uint32_t mask)

Enables the LCD_F selected interrupts.

This function enables the specified interrupts

Wed Aug 14 17:01:15 -05 2019

231

LCD Module (LCD_F)

Parameters

any of the following:

m LCD_F BLINKING_SEGMENTS_ON_INTERRUPT
LCD_F_BLINKING_SEGMENTS_OFF_INTERRUPT
LCD_F_FRAME_INTERRUPT
LCD_F_ANIMATION_LOOP_INTERRUPT
LCD_F_ANIMATION_STEP_INTERRUPT

mask | is the variable containing interrupt flags to be enabled. Mask value is the logical OR of

Returns
None

14.2.2.9 uint32_t LCD_F_getEnabledInterruptStatus (void)

Returns the status of the selected interrupt flags masked with the currently enabled interrupts.

Returns

The current interrupt flag status. Can be a logical OR of:
LCD_F_BLINKING_SEGMENTS_ON_INTERRUPT
LCD_F_BLINKING_SEGMENTS_OFF_INTERRUPT
LCD_F_FRAME_INTERRUPT
LCD_F_ANIMATION_LOOP_INTERRUPT
LCD_F_ANIMATION_STEP_INTERRUPT

14.2.2.10 uint32_t LCD_F_getInterruptStatus (void)

Returns the status of the selected interrupt flags.

This function returns the status of the selected interrupt flags.

Returns
The current interrupt flag status. Can be a logical OR of:

LCD_F_BLINKING_SEGMENTS_ON_INTERRUPT
LCD_F_BLINKING_SEGMENTS_OFF_INTERRUPT
LCD_F_FRAME_INTERRUPT
LCD_F_ANIMATION_LOOP_INTERRUPT
LCD_F_ANIMATION_STEP_INTERRUPT

14.2.2.11 void LCD_F _initModule (LCD_F_Config = initParams)

Initializes the LCD_F Module.

This function initializes the LCD_F but without turning on. It bascially setup the clock source, clock
divider, mux rate, low-power waveform and segments on/off. After calling this function, user can
enable/disable internal reference voltage or pin SEG/COM configurations.

Wed Aug 14 17:01:15 -05 2019 232

LCD Module (LCD_F)

Parameters

] initParams | is the pointer to LCD_F_Config structure.

Returns
None
14.2.2.12 void LCD_F_registeriInterrupt (void(x)(void) intHandler)

Registers an interrupt handler for LCD_F interrupt.

Parameters

] intHandler \ is a pointer to the function to be called when the LCD_F interrupt occurs.

This function registers the handler to be called when a LCD_F interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific LCD_F interrupts must be enabled
via LCD_F_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt source
through LCD_F_clearInterruptFlag().

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

14.2.2.13 void LCD_F_selectBias (uint_fast16_t bias)

Selects the bias level.

Parameters
bias | is the select for bias level. Valid values are:
m LCD_F _BIAS_1_3 [Default] - 1/3 bias
m LCD _F BIAS 1 4 -1/4 bias
m LCD_F BIAS 1_2-1/2 bias
Note

Quarter (1/4) BIAS mode is only available in 5-mux to 8-mux. In 2-mux to 4-mux modes, this
value will result in a third BIAS (1/3)

Returns
None
14.2.2.14 void LCD_F_selectDisplayMemory (uint_fast16_t displayMemory)

Selects display memory.

This function selects display memory either from memory or blinking memory. Please note if the
blinking mode is selected as LCD_F_BLINKMODE_INDIVIDUALSEGMENTS or

Wed Aug 14 17:01:15 -05 2019 233

LCD Module (LCD_F)

LCD_F_BLINKMODE_ALLSEGMENTS or mux rate >=5, display memory can not be changed. If
LCD_F_BLINKMODE_SWITCHDISPLAYCONTENTS is selected, display memory bit reflects
current displayed memory.

Parameters
displayMemory | is the desired displayed memory. Valid values are:
m LCD_F_DISPLAYSOURCE_MEMORY [Default]
m LCD_F_DISPLAYSOURCE_BLINKINGMEMORY
Returns
None

14.2.2.15 void LCD_F_setAnimationControl (uint_fast16_t clockPrescalar, uint_fast16 t
divider, uint_fast16_t frames)

Sets the animation control register.

This function sets the animation control related parameter, including animation clock frequency
prescalar, divider, and frame settings

Parameters

clockPrescalar

is the clock pre-scalar for animation frequency. Valid values are:

LCD_F_ANIMATION_FREQ_CLOCK_PRESCALAR_512 [Default]
LCD_F_ANIMATION_FREQ_CLOCK_PRESCALAR_1024
LCD_F_ANIMATION_FREQ_CLOCK_PRESCALAR_2048
LCD_F_ANIMATION_FREQ_CLOCK_PRESCALAR_4096
LCD_F_ANIMATION_FREQ_CLOCK_PRESCALAR_8162
LCD_F_ANIMATION_FREQ_CLOCK_PRESCALAR_16384
LCD_F_ANIMATION_FREQ_CLOCK_PRESCALAR_32768
LCD_F_ANIMATION_FREQ_CLOCK_PRESCALAR_65536

Wed Aug 14 17:01:15 -05 2019

234

LCD Module (LCD_F)

clockDivider | is the clock divider for animation frequency. Valid values are:

m LCD_F_ANIMATION_FREQ_CLOCK_DIVIDER_1 [Default]
m LCD_F_ANIMATION_FREQ_CLOCK_DIVIDER_2

m LCD_F_ANIMATION_FREQ_CLOCK_DIVIDER_3

m LCD_F_ANIMATION_FREQ_CLOCK_DIVIDER_4

m LCD_F_ANIMATION_FREQ_CLOCK_DIVIDER_5

m LCD_F_ANIMATION_FREQ_CLOCK_DIVIDER_6

m LCD_F_ANIMATION_FREQ_CLOCK_DIVIDER_7

m LCD_F_ANIMATION_FREQ_CLOCK_DIVIDER_8

frames | is number of animations frames to be repeated Valid values are:
m LCD_F_ANIMATION_FRAMES_TO0_TO_T7

m LCD_F_ANIMATION_FRAMES_TO0 _TO_T6

m LCD_F_ANIMATION_FRAMES_TO0 _TO_T5

m LCD_F_ANIMATION_FRAMES_TO0_TO_T4

m LCD_F_ANIMATION_FRAMES_TO0 TO_ T3

m LCD_F_ANIMATION_FRAMES_TO0_TO_T2

m LCD_F_ANIMATION_FRAMES_T0 _TO_T1

m LCD_F_ANIMATION_FRAMES_TO

Returns
None

14.2.2.16 void LCD_F_setBlinkingControl (uint_fast16_t clockPrescalar, uint_fast16_t
divider, uint_fast16_t mode)

Sets the blinking control register.

This function sets the blink control related parameter, including blink clock frequency prescalar
and blink mode.

Wed Aug 14 17:01:15 -05 2019 235

LCD Module (LCD_F)

Parameters

clockPrescalar | is the clock pre-scalar for blinking frequency. Valid values are:

m LCD_F BLINK_FREQ_CLOCK_PRESCALAR_512 [Default]
m LCD_F BLINK_FREQ_CLOCK_PRESCALAR_1024

m LCD_F_BLINK_FREQ_CLOCK_PRESCALAR_2048

m LCD_F_BLINK_FREQ_CLOCK_PRESCALAR_4096

m LCD_F_BLINK_FREQ_CLOCK_PRESCALAR_8162

m LCD_F_BLINK_FREQ_CLOCK_PRESCALAR_16384

m LCD_F_BLINK_FREQ_CLOCK_PRESCALAR_32768

m LCD_F BLINK_FREQ_CLOCK_PRESCALAR_65536

clockDivider | is the clock divider for blinking frequency. Valid values are:
m LCD_F_BLINK_FREQ_CLOCK_DIVIDER_1 [Default]
m LCD_F_BLINK_FREQ_CLOCK_DIVIDER_2
m LCD_F_BLINK_FREQ_CLOCK_DIVIDER_3
m LCD_F_BLINK_FREQ_CLOCK_DIVIDER_4
m LCD_F_BLINK_FREQ_CLOCK_DIVIDER_5
m LCD_F_BLINK_FREQ_CLOCK_DIVIDER_6
m LCD_F_BLINK_FREQ_CLOCK_DIVIDER_7
m LCD_F_BLINK_FREQ_CLOCK_DIVIDER_8

mode | is the select for blinking mode. Valid values are:
LCD_F_BLINK_MODE_DISABLED [Defauli]
LCD_F_BLINK_MODE_INDIVIDUAL_SEGMENTS
LCD_F_BLINK_MODE_ALL_SEGMENTS
LCD_F_BLINK_MODE_SWITCHING_BETWEEN_DISPLAY_CONTENTS

Returns
None

14.2.2.17 void LCD_F_setPinAsCOM (uint8_t pin, uint_fast8 t com)

Sets the LCD_F pin as a common line.

This function sets the LCD_F pin as a common line and assigns the corresponding memory pin to
a specific COM line.

Parameters

Wed Aug 14 17:01:15 -05 2019 236

LCD Module (LCD_F)

pin

is the selected pin to be configured as common line. Valid values are:

LCD_F_SEGMENT_LINE_0

LCD_F_SEGMENT_LINE_1

LCD_F_SEGMENT_LINE_2

LCD_F_SEGMENT_LINE_3

LCD_F_SEGMENT_LINE_4

LCD_F_SEGMENT_LINE_5

LCD_F_SEGMENT_LINE_6

LCD_F_SEGMENT_LINE_7

LCD_F_SEGMENT_LINE_8

LCD_F_SEGMENT_LINE_9

LCD_F_SEGMENT_LINE_10
LCD_F_SEGMENT_LINE_11
LCD_F_SEGMENT_LINE_12
LCD_F_SEGMENT_LINE_13
LCD_F_SEGMENT_LINE_14
LCD_F_SEGMENT_LINE_15
LCD_F_SEGMENT_LINE_16
LCD_F_SEGMENT_LINE_17
LCD_F_SEGMENT_LINE_18
LCD_F_SEGMENT_LINE_19
LCD_F_SEGMENT_LINE_20
LCD_F_SEGMENT_LINE_21
LCD_F_SEGMENT_LINE_22
LCD_F_SEGMENT_LINE_23
LCD_F_SEGMENT_LINE_24
LCD_F_SEGMENT_LINE_25
LCD_F_SEGMENT_LINE_26
LCD_F_SEGMENT_LINE_27
LCD_F_SEGMENT_LINE_28
LCD_F_SEGMENT_LINE_29
LCD_F_SEGMENT_LINE_30
LCD_F_SEGMENT_LINE_31
LCD_F_SEGMENT_LINE_32
LCD_F_SEGMENT_LINE_33
LCD_F_SEGMENT_LINE_34
LCD_F_SEGMENT_LINE_35
LCD_F_SEGMENT_LINE_36
LCD_F_SEGMENT_LINE_37
LCD_F_SEGMENT_LINE_38
LCD_F_SEGMENT_LINE_39

Wed Aug 14 1

7:01:15-05 2019

LCD_F_SEGMENT_LINE_40
LCD_F_SEGMENT_LINE_41
LCD_F_SEGMENT_LINE_42

237

LCD Module (LCD_F)

com | is the selected COM number for the common line. Valid values are:
m LCD_F_MEMORY_COMO

= LCD_F_MEMORY_COM1

= LCD F_MEMORY_COM2

m LCD_F_MEMORY_COM3

m LCD_F_MEMORY_COM4 - only for 5-Mux/6-Mux/7-Mux/8-Mux
m LCD_F_MEMORY_COMS - only for 5-Mux/6-Mux/7-Mux/8-Mux
m LCD_F_MEMORY_COMS6 - only for 5-Mux/6-Mux/7-Mux/8-Mux
m LCD_F_MEMORY_COM?7 - only for 5-Mux/6-Mux/7-Mux/8-Mux

Returns
None

14.2.2.18 void LCD_F_setPinAsLCDFunction (uint_fast8 t pin)

Sets the LCD_F pins as LCD function pin.
This function sets the LCD_F pins as LCD function pin.

Wed Aug 14 17:01:15 -05 2019 238

LCD Module (LCD_F)

Parameters

pin

is the select pin set as LCD function. Valid values are:

m LCD_F SEGMENT_LINE_O

m LCD_F_SEGMENT_LINE_1

m LCD_F _SEGMENT_LINE_2

m LCD_F _SEGMENT_LINE_3

m LCD_F_SEGMENT_LINE_4

m LCD_F_SEGMENT_LINE_5

m LCD_F _SEGMENT_LINE_6

m LCD_F_SEGMENT_LINE_7

m LCD_F_SEGMENT_LINE_8

m LCD_F _SEGMENT_LINE_9

m LCD_F_SEGMENT_LINE_10
m LCD_F_SEGMENT_LINE_11
m LCD_F SEGMENT_LINE_12
m LCD_F_SEGMENT_LINE_13
m LCD_F_SEGMENT_LINE_14
m LCD_F_SEGMENT_LINE_15
m LCD_F_SEGMENT_LINE_16
m LCD_F_SEGMENT_LINE_17
m LCD_F _SEGMENT_LINE_18
m LCD_F_SEGMENT_LINE_19
m LCD_F_SEGMENT_LINE_20
m LCD_F_SEGMENT_LINE_21
m LCD_F_SEGMENT_LINE_22
m LCD_F_SEGMENT_LINE_23
m LCD_F _SEGMENT_LINE_24
m LCD_F_SEGMENT_LINE_25
m LCD_F_SEGMENT_LINE_26
m LCD_F_SEGMENT_LINE_27
m LCD_F_SEGMENT_LINE_28
m LCD_F_SEGMENT_LINE_29
m LCD_F_SEGMENT_LINE_30
m LCD_F_SEGMENT_LINE_31
m LCD_F_SEGMENT_LINE_32
m LCD_F_SEGMENT_LINE_33
m LCD_F_SEGMENT_LINE_34
m LCD_F_SEGMENT_LINE_35
m LCD_F _SEGMENT_LINE_36
m LCD_F _SEGMENT_LINE_37
m LCD_F_SEGMENT_LINE_38

Wed Aug 14 1

7:01:15-05 2019

m LCD_F_SEGMENT_LINE_39
m LCD_F_SEGMENT_LINE_40
m LCD_F_SEGMENT_LINE_41

239

LCD Module (LCD_F)

Returns
None

14.2.2.19 void LCD_F_setPinAsPortFunction (uint_fast8 t pin)

Sets the LCD_F pins as port function pin.

Wed Aug 14 17:01:15 -05 2019 240

LCD Module (LCD_F)

Parameters

baseAddress

is the base address of the LCD_F module.

pin

is the select pin set as Port function. Valid values are:
m LCD_F_SEGMENT_LINE_O
m LCD_F SEGMENT_LINE_1
m LCD_F _SEGMENT_LINE_2
m LCD_F_SEGMENT_LINE_3
m LCD_F SEGMENT_LINE_4
m LCD_F_SEGMENT_LINE_5
m LCD_F_SEGMENT_LINE_6
m LCD_F_SEGMENT_LINE_7
m LCD_F_SEGMENT_LINE_8
m LCD_F SEGMENT_LINE_9
m LCD_F_SEGMENT_LINE_10
m LCD_F_SEGMENT_LINE_11
m LCD_F_SEGMENT_LINE_12
m LCD_F _SEGMENT_LINE_13
m LCD_F SEGMENT_LINE_14
m LCD_F_SEGMENT_LINE_15
m LCD_F SEGMENT_LINE_16
m LCD_F_SEGMENT_LINE_17
m LCD_F SEGMENT_LINE_18
m LCD_F_SEGMENT_LINE_19
m LCD_F_SEGMENT_LINE_20
m LCD_F_SEGMENT_LINE_21
m LCD_F_SEGMENT_LINE_22
m LCD_F SEGMENT_LINE_23
m LCD_F_SEGMENT_LINE_24
m LCD_F_SEGMENT_LINE_25
m LCD_F _SEGMENT_LINE_26
m LCD_F_SEGMENT_LINE_27
m LCD_F SEGMENT_LINE_28
m LCD_F_SEGMENT_LINE_29
m LCD_F_SEGMENT_LINE_30
m LCD_F_SEGMENT_LINE_31
m LCD_F_SEGMENT_LINE_32
m LCD_F _SEGMENT_LINE_33
LCD_F_SEGMENT_LINE_34
LCD_F_SEGMENT_LINE_35
LCD_F_SEGMENT_LINE_36
LCD_F_SEGMENT_LINE_37

Wed Aug 14 1

7:01:15-05 2019

LCD_F_SEGWENT_LINE_38
LCD_F SEGMENT LINE 39
m LCD_F_SEGMENT_LINE_40

241

LCD Module (LCD_F)

Returns
None

14.2.2.20 void LCD_F_setPinAsSEG (uint_fast8 t pin)

Sets the LCD_F pin as a segment line.

This function sets the LCD_F pin as segment line.

Wed Aug 14 17:01:15 -05 2019 242

LCD Module (LCD_F)

Parameters

pin

is the selected pin to be configed as segment line. Valid values are:

LCD_F_SEGMENT_LINE_0

LCD_F_SEGMENT_LINE_1

LCD_F_SEGMENT_LINE_2

LCD_F_SEGMENT_LINE_3

LCD_F_SEGMENT_LINE_4

LCD_F_SEGMENT_LINE_5

LCD_F_SEGMENT_LINE_6

LCD_F_SEGMENT _LINE_7

LCD_F_SEGMENT_LINE_8

LCD_F_SEGMENT_LINE_9

LCD_F_SEGMENT_LINE_10
LCD_F_SEGMENT_LINE_11
LCD_F_SEGMENT_LINE_12
LCD_F_SEGMENT_LINE_13
LCD_F_SEGMENT_LINE_14
LCD_F_SEGMENT_LINE_15
LCD_F_SEGMENT_LINE_16
LCD_F_SEGMENT_LINE_17
LCD_F_SEGMENT_LINE_18
LCD_F_SEGMENT_LINE_19
LCD_F_SEGMENT_LINE_20
LCD_F_SEGMENT_LINE_21
LCD_F_SEGMENT_LINE_22
LCD_F_SEGMENT_LINE_23
LCD_F_SEGMENT_LINE_24
LCD_F_SEGMENT_LINE_25
LCD_F_SEGMENT_LINE_26
LCD_F_SEGMENT_LINE_27
LCD_F_SEGMENT_LINE_28
LCD_F_SEGMENT_LINE_29
LCD_F_SEGMENT_LINE_30
LCD_F_SEGMENT_LINE_31
LCD_F_SEGMENT_LINE_32
LCD_F_SEGMENT_LINE_33
LCD_F_SEGMENT_LINE_34
LCD_F_SEGMENT_LINE_35
LCD_F_SEGMENT_LINE_36
LCD_F_SEGMENT_LINE_37
LCD_F_SEGMENT_LINE_38

Wed Aug 14 1

7:01:15-05 2019

LCD_F_SEGMENT_LINE_39
LCD_F_SEGMENT_LINE_40
LCD_F_SEGMENT_LINE_41

243

LCD Module (LCD_F)

Returns
None

14.2.2.21 void LCD_F_setPinsAsLCDFunction (uint _fast8 t startPin, uint8_t endPin)

Sets the LCD_F pins as LCD function pin.

This function sets the LCD_F pins as LCD function pin. Instead of passing the all the possible
pins, it just requires the start pin and the end pin.

Wed Aug 14 17:01:15 -05 2019 244

LCD Module (LCD_F)

Parameters

startPin

is the starting pin to be configured as LCD function pin. Valid values are:

LCD_F_SEGMENT_LINE_0

LCD_F_SEGMENT_LINE_1

LCD_F_SEGMENT_LINE_2

LCD_F_SEGMENT_LINE_3

LCD_F_SEGMENT_LINE_4

LCD_F_SEGMENT_LINE_5

LCD_F_SEGMENT_LINE_6

LCD_F_SEGMENT _LINE_7

LCD_F_SEGMENT_LINE_8

LCD_F_SEGMENT_LINE_9

LCD_F_SEGMENT_LINE_10
LCD_F_SEGMENT_LINE_11
LCD_F_SEGMENT_LINE_12
LCD_F_SEGMENT_LINE_13
LCD_F_SEGMENT_LINE_14
LCD_F_SEGMENT_LINE_15
LCD_F_SEGMENT_LINE_16
LCD_F_SEGMENT_LINE_17
LCD_F_SEGMENT_LINE_18
LCD_F_SEGMENT_LINE_19
LCD_F_SEGMENT_LINE_20
LCD_F_SEGMENT_LINE_21
LCD_F_SEGMENT_LINE_22
LCD_F_SEGMENT_LINE_23
LCD_F_SEGMENT_LINE_24
LCD_F_SEGMENT_LINE_25
LCD_F_SEGMENT_LINE_26
LCD_F_SEGMENT_LINE_27
LCD_F_SEGMENT_LINE_28
LCD_F_SEGMENT_LINE_29
LCD_F_SEGMENT_LINE_30
LCD_F_SEGMENT_LINE_31
LCD_F_SEGMENT_LINE_32
LCD_F_SEGMENT_LINE_33
LCD_F_SEGMENT_LINE_34
LCD_F_SEGMENT_LINE_35
LCD_F_SEGMENT_LINE_36
LCD_F_SEGMENT_LINE_37
LCD_F_SEGMENT_LINE_38

Wed Aug 14 1

7:01:15-05 2019

LCD_F_SEGMENT_LINE_39
LCD_F_SEGMENT_LINE_40
LCD_F_SEGMENT_LINE_41

245

LCD Module (LCD_F)

Returns
None

14.2.2.22 void LCD_F_setVLCDSource (uint_fast16_t v2v3v4Source, uint fast16 t

v5Source)

Sets the voltage source for V2/V3/V4 and V5.

Parameters

v2v3v4Source | is the V2/V3/V4 source select. Valid values are:

[Default]

= LCD_F_V2V3V4_SOURCED_EXTERNALLY

m LCD_F_V2V3V4_GENERATED_INTERNALLY_NOT_SWITCHED_TO_PINS

m LCD_F_V2V3V4_GENERATED_INTERNALLY_SWITCHED_TO_PINS

v5Source | is the V5 source select. Valid values are:
m LCD_F_V5_VSS [Default]
m LCD_F V5 SOURCED_FROM_R03

Returns
None

14.2.2.23 void LCD_F_turnOff (void)

Turns the LCD_F off.
This function turns the LCD_F off.

Returns
None
14.2.2.24 void LCD_F_turnOn (void)

Turns on the LCD_F module.
This function turns the LCD_F on.

Returns
None

14.2.2.25 void LCD_F_unregisterinterrupt (void)

Unregisters the interrupt handler for the LCD_F interrupt

This function unregisters the handler to be called when LCD_F interrupt occurs. This function also
masks off the interrupt in the interrupt controller so that the interrupt handler no longer is called.

Wed Aug 14 17:01:15 -05 2019

246

LCD Module (LCD_F)

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 247

Memory Protection Unit (MPU)

15 Memory Protection Unit (MPU)

MOAUIE OPEIAtIONttt e et e e e e e e 245
Basic Operation MOGESt e 245
REPEAt MOGES . ..ottt e 246
D iNIEIONS .. e 247

15.1 Module Operation

The Memory Protection Unit (MPU) API provides functions to configure the MPU. The MPU is
tightly coupled to the Cortex-M processor core and provides a means to establish access
permissions on regions of memory.

Up to eight memory regions can be defined. Each region has a base address and a size. The size
is specified as a power of 2 between 32 bytes and 4 GB, inclusive. The region’s base address
must be aligned to the size of the region. Each region also has access permissions. Code
execution can be allowed or disallowed for a region. A region can be configured for read-only
access, read/write access, or no access for both privileged and user modes. Access permissions
can be used to create an environment where only kernel or system code can access certain
hardware registers or sections of code.

The MPU creates 8 sub-regions within each region. Any sub-region or combination of sub-regions
can be disabled, allowing creation of “holes” or complex overlaying regions with different
permissions. The sub-regions can also be used to create an unaligned beginning or ending of a
region by disabling one or more of the leading or trailing sub-regions.

Once the regions are defined and the MPU is enabled, any access violation of a region causes a
memory management fault, and the fault handler is acted.

15.2 Module Operation

The MPU APIs provide a means to enable and configure the MPU and memory protection regions.

Generally, the memory protection regions should be defined before enabling the MPU. The
regions can be configured by calling MPU_setRegion() once for each region to be configured.

A region that is defined by MPU_setRegion() can be initially enabled or disabled. If the region is
not initially enabled, it can be enabled later by calling MPU_enableRegion(). An enabled region
can be disabled by calling MPU_disableRegion(). When a region is disabled, its configuration is
preserved as long as it is not overwritten. In this case, it can be enabled again with
MPU_enableRegion() without the need to reconfigure the region.

Care must be taken when setting up a protection region using MPU_setRegion(). The function
writes to multiple registers and is not protected from interrupts. Therefore, it is possible that an
interrupt which accesses a region may occur while that region is in the process of being changed.
The safest way to protect against this is to make sure that a region is always disabled before
making any changes. Otherwise, it is up to the caller to ensure that MPU_setRegion() is always
called from within code that cannot be interrupted, or from code that is not be affected if an
interrupt occurs while the region attributes are being changed.

The attributes of a region that have already been programmed can be retrieved and saved using

Wed Aug 14 17:01:15 -05 2019 248

Memory Protection Unit (MPU)

the MPU_getRegionCount() function. This function is intended to save the attributes in a format
that can be used later to reload the region using the MPU_setRegion() function. Note that the
enable state of the region is saved with the attributes and takes effect when the region is reloaded.

When one or more regions are defined, the MPU can be enabled by calling MPU_enableModule().
This function turns on the MPU and also defines the behavior in privileged mode and in the Hard
Fault and NMI fault handlers. The MPU can be configured so that when in privileged mode and no
regions are enabled, a default memory map is applied. If this feature is not enabled, then a
memory management fault is generated if the MPU is enabled and no regions are configured and
enabled. The MPU can also be set to use a default memory map when in the Hard Fault or NMI
handlers, instead of using the configured regions. All of these features are selected when calling
MPU_enableModule(). When the MPU is enabled, it can be disabled by calling
MPU_disableModule().

Finally, if the application is using run-time interrupt registration (see Interrupt_registerinterrupt()),
then the function MPU_registerinterrupt() can be used to install the fault handler which is called
whenever a memory protection violation occurs. This function also enables the fault handler. If
compile-time interrupt registration is used, then the Interrupt_enablelnterrupt() function with the
parameter FAULT_MPU must be used to enable the memory management fault handler. When
the memory management fault handler has been installed with MPU_disableModule(), it can be
removed by calling MPU_unregisterInterrupt().

15.3 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the MPU module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a very brief code example showing how to configure the MPU module to define a new
memory region and set it as read only:

Wed Aug 14 17:01:15 -05 2019 249

Memory Protection Unit (MPU)

15.4 Definitions

Functions

void MPU_disablelnterrupt (void)

void MPU_disableModule (void)

void MPU_disableRegion (uint32_t region)

void MPU_enablelnterrupt (void)

void MPU_enableModule (uint32_t mpuConfig)

void MPU_enableRegion (uint32_t region)

void MPU_getRegion (uint32_t region, uint32_t xaddr, uint32_t «pflags)
uint32_t MPU_getRegionCount (void)

void MPU_registerInterrupt (void(xintHandler)(void))

void MPU_setRegion (uint32_t region, uint32_t addr, uint32_t flags)
void MPU_unregisterinterrupt (void)

15.4.1 Detailed Description

The code for this module is contained in driverlib/mpu.c, with driverlib/mpu.h containing
the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 250

Memory Protection Unit (MPU)

15.4.2 Function Documentation

15.4.2.1 void MPU_disablelnterrupt (void)

Disables the interrupt for the memory management fault.

Returns
None.

References Interrupt_disablelnterrupt().

15.4.2.2 void MPU_disableModule (void)

Disables the MPU for use.

This function disables the Cortex-M memory protection unit. When the MPU is disabled, the
default memory map is used and memory management faults are not generated.

Returns
None.

15.4.2.3 void MPU_disableRegion (uint32_t region)

Disables a specific region.

Parameters

] region \ is the region number to disable. Valid values are between 0 and 7 inclusively.

This function is used to disable a previously enabled memory protection region. The region
remains configured if it is not overwritten with another call to MPU_setRegion(), and can be
enabled again by calling MPU_enableRegion().

Returns
None.

15.4.2.4 void MPU_enablelnterrupt (void)

Enables the interrupt for the memory management fault.

Returns
None.

References Interrupt_enablelnterrupt().

15.4.2.5 void MPU_enableModule (uint32_t mpuConfig)

Enables and configures the MPU for use.

Wed Aug 14 17:01:15 -05 2019 251

Memory Protection Unit (MPU)

Parameters

] mpuConfig \ is the logical OR of the possible configurations.

This function enables the Cortex-M memory protection unit. It also configures the default behavior
when in privileged mode and while handling a hard fault or NMI. Prior to enabling the MPU, at
least one region must be set by calling MPU_setRegion() or else by enabling the default region for
privileged mode by passing the MPU_CONFIG_PRIV_DEFAULT flag to MPU_enableModule().
Once the MPU is enabled, a memory management fault is generated for memory access
violations.

The mpuConfig parameter should be the logical OR of any of the following:

m MPU_CONFIG_PRIV_DEFAULT enables the default memory map when in privileged mode
and when no other regions are defined. If this option is not enabled, then there must be at
least one valid region already defined when the MPU is enabled.

m MPU_CONFIG_HARDFLT_NMI enables the MPU while in a hard fault or NMI exception
handler. If this option is not enabled, then the MPU is disabled while in one of these
exception handlers and the default memory map is applied.

m MPU_CONFIG_NONE chooses none of the above options. In this case, no default memory
map is provided in privileged mode, and the MPU is not enabled in the fault handlers.
Returns
None.

15.4.2.6 void MPU_enableRegion (uint32_t region)

Enables a specific region.

Parameters

] region | is the region number to enable. Valid values are between 0 and 7 inclusively.

This function is used to enable a memory protection region. The region should already be
configured with the MPU_setRegion() function. Once enabled, the memory protection rules of the
region are applied and access violations cause a memory management fault.

Returns
None.

15.4.2.7 void MPU_getRegion (uint32_t region, uint32_t x addr, uint32_t x pflags)

Gets the current settings for a specific region.

Parameters

region | is the region number to get. Valid values are between 0 and 7 inclusively.

addr | points to storage for the base address of the region.

Wed Aug 14 17:01:15 -05 2019 252

Memory Protection Unit (MPU)

15.4.2.8

15.4.2.9

15.4.2.10

] pflags | points to the attribute flags for the region.

This function retrieves the configuration of a specific region. The meanings and format of the
parameters is the same as that of the MPU_setRegion() function.

This function can be used to save the configuration of a region for later use with the
MPU_setRegion() function. The region’s enable state is preserved in the attributes that are saved.

Returns
None.

uint32_t MPU_getRegionCount (void)

Gets the count of regions supported by the MPU.

This function is used to get the total number of regions that are supported by the MPU, including
regions that are already programmed.

Returns

The number of memory protection regions that are available for programming using
MPU_setRegion().

void MPU_registerInterrupt (void(x)(void) intHandler)

Registers an interrupt handler for the memory management fault.

Parameters

] intHandler \ is a pointer to the function to be called when the memory management fault occurs.

This function sets and enables the handler to be called when the MPU generates a memory
management fault due to a protection region access violation.

See Also
Interrupt_registerInterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_registerinterrupt().

void MPU_setRegion (uint32_t region, uint32_t addr, uint32_t flags)

Sets up the access rules for a specific region.

Parameters

] region | is the region number to set up.

Wed Aug 14 17:01:15 -05 2019 253

Memory Protection Unit (MPU)

addr | is the base address of the region. It must be aligned according to the size of the region
specified in flags.

flags | is a set of flags to define the attributes of the region.

This function sets up the protection rules for a region. The region has a base address and a set of
attributes including the size. The base address parameter, addr, must be aligned according to the

size, and the size must be a power of 2.

Parameters

|

region \ is the region number to set. Valid values are between 0 and 7 inclusively.

The flags parameter is the logical OR of all of the attributes of the region. It is a combination of
choices for region size, execute permission, read/write permissions, disabled sub-regions, and a

flag to determine if the region is enabled.

The size flag determines the size of a region and must be one of the following:

MPU_RGN_SIZE_32B
MPU_RGN_SIZE_64B
MPU_RGN_SIZE_128B
MPU_RGN_SIZE_256B
MPU_RGN_SIZE_512B
MPU_RGN_SIZE_1K
MPU_RGN_SIZE_2K
MPU_RGN_SIZE_4K
MPU_RGN_SIZE_8K
MPU_RGN_SIZE_16K
MPU_RGN_SIZE_32K
MPU_RGN_SIZE_64K
MPU_RGN_SIZE_128K
MPU_RGN_SIZE_256K
MPU_RGN_SIZE_512K
MPU_RGN_SIZE_1M
MPU_RGN_SIZE_2M
MPU_RGN_SIZE_4M
MPU_RGN_SIZE_8M
MPU_RGN_SIZE_16M
MPU_RGN_SIZE_32M
MPU_RGN_SIZE_64M
MPU_RGN_SIZE_128M
MPU_RGN_SIZE_256M
MPU_RGN_SIZE_512M
MPU_RGN_SIZE_1G
MPU_RGN_SIZE_2G
MPU_RGN_SIZE_4G

Wed Aug 14 17:01:15 -05 2019

254

Memory Protection Unit (MPU)

The execute permission flag must be one of the following:

= MPU_RGN_PERM_EXEC enables the region for execution of code
= MPU_RGN_PERM_NOEXEC disables the region for execution of code

The read/write access permissions are applied separately for the privileged and user modes. The
read/write access flags must be one of the following:

MPU_RGN_PERM_PRV_NO_USR_NO - no access in privileged or user mode
MPU_RGN_PERM_PRV_RW_USR_NO - privileged read/write, user no access
MPU_RGN_PERM_PRV_RW_USR_RO - privileged read/write, user read-only
MPU_RGN_PERM_PRV_RW_USR_RW - privileged read/write, user read/write
MPU_RGN_PERM_PRV_RO_USR_NO - privileged read-only, user no access
MPU_RGN_PERM_PRV_RO_USR_RO - privileged read-only, user read-only

The region is automatically divided into 8 equally-sized sub-regions by the MPU. Sub-regions can
only be used in regions of size 256 bytes or larger. Any of these 8 sub-regions can be disabled,
allowing for creation of “holes” in a region which can be left open, or overlaid by another region
with different attributes. Any of the 8 sub-regions can be disabled with a logical OR of any of the
following flags:

= MPU_SUB_RGN_DISABLE_0
MPU_SUB_RGN_DISABLE_1
MPU_SUB_RGN_DISABLE_2
MPU_SUB_RGN_DISABLE_3
MPU_SUB_RGN_DISABLE_4
MPU_SUB_RGN_DISABLE_5
MPU_SUB_RGN_DISABLE_6
MPU_SUB_RGN_DISABLE_7

Finally, the region can be initially enabled or disabled with one of the following flags:

= MPU_RGN_ENABLE
= MPU_RGN_DISABLE

As an example, to set a region with the following attributes: size of 32 KB, execution enabled,
read-only for both privileged and user, one sub-region disabled, and initially enabled; the flags
parameter would have the following value:

(MPU_RGN_SIZE_32K | MPU_RGN_PERM_EXEC | MPU_RGN_PERM_PRV_RO_USR_RO |
MPU_SUB_RGN_DISABLE_2 | MPU_RGN_ENABLE)

Note
This function writes to multiple registers and is not protected from interrupts. It is possible
that an interrupt which accesses a region may occur while that region is in the process of
being changed. The safest way to handle this is to disable a region before changing it. Refer
to the discussion of this in the API Detailed Description section.

Returns
None.

Wed Aug 14 17:01:15 -05 2019 255

Memory Protection Unit (MPU)

15.4.2.11 void MPU_unregisterinterrupt (void)

Unregisters an interrupt handler for the memory management fault.

This function disables and clears the handler to be called when a memory management fault
occurs.

See Also
Interrupt_registerInterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 256

Power Control Module (PCM)

16 Power Control Module (PCM)

MOAUIE OPEIAtIONttt e et e e e e e e 254
SWItCRING Stat S ...t e 254
SWItChiNg MOAES/LEVEIS e e e e e e e s 254
Low Power Mode and State Retentiont 255
Enabling/Disabling Rude MOde o 255
Programming EXamipleo 256
D NIt ONS .. e e ??

16.1 Module Operation

The Power Control Manager (PCM) module for DriverLib is meant to simplify the management of
power states and provide a level of intelligence to users for switching between power states.

16.2 Switching States

One of the most useful features of the PCM module is the ability for the user to switch between
power states without having to worry about the logic requirements of the state transitions. By
using the PCM_setPowerState function, DriverLib will take in a parameter for the power state and
automatically handle all of the state transitions. Say that the user wants to switch to use the DCDC
converter with a voltage level of VCORE1 (PCM_AM_DCDC_VCOREH1). Say that that same user
is currently in the default mode of using the LDO with a voltage level of VCOREOQ
(PCM_AM_LDO_VCOREOQ). Normally, the user would have to take into account that there is a
state transition that must happen to PCM_AM_LDO_VCORE1, however with the
PCM_setPowerState API the user does not need to worry about this. The call to change the power
state in this example would be:

PCM_setPowerState (PCM_AM_DCDC_VCOREL) ;

16.3 Switching Modes/Levels

In addition to being able to switch between individual power states, the PCM DriverLib APl module
also gives the user the ability to switch between different power modes and levels. This gives the
user a more granular approach to power management and allows for a more refined customization
of the power driver.

For changing between power levels, the user will be able to switch back and forth between
PCM_VCOREO and PCM_VCORE1 using the PCM_setCoreVoltageLevel function. While using
this function it is important to note that the underlying power mode will be preserved. For example,
if PCM_setCoreVoltagelevel is called with the PCM_VCORE1 parameter while the devices is in
PCM_AM_LDO_VCOREO mode, the power state will be changed to PCM_AM_LDO_VCORE1. If
the same APl is called with the same parameter in PCM_AM_DCDC_VCOREO mode, the power
state will be changed to PCM_AM_DCDC_VCORE1 mode.

Wed Aug 14 17:01:15 -05 2019 257

Power Control Module (PCM)

The same preservation logic also applies while switching between power modes. If the
PCM_setPowerMode function is called with the PCM_DCDC_MODE parameter while the device is
in PCM_AM_LDO_VCOREO mode, the device will change to PCM_AM_DCDC_VCOREO mode
(leaving the voltage level unchanged).

16.4 Low Power Mode and State Retention

In addition to being able to manipulate individual states/modes/levels, APIs are also provided to
simplify entry into the low power modes of MSP432.

Low Power Entry Functions:

= PCM_gotoLPMO
m PCM_gotoLPM3
m PCM_shutdownDevice

When using these low power modes entry functions, it is important to note that the original state of
the device before low power mode entry is retained. After the devices wakes up from low power
mode, the original power mode is restored. For example, say that the device is in
PCM_AM_DCDC_VCOREO mode and then the user calls the PCM_gotoLPM3 API. Since
MSP432 devices are not allowed to go into LMP3 while in a DCDC power mode, the APl will have
the intelligence to first change into PCM_AM_LDO_VCOREO0 mode, and then go to LPM3. When
the device wakes up, the API will automatically switch back to PCM_AM_DCDC_VCOREO mode.
If the user wants to go into DSL in the previous example without the state preservation, the
PCM_setPowerState function should be used with the PCM_LPM3 parameter.

16.5 Enabling/Disabling Rude Mode

If the user calls a low power entry function that disables a clock source while an active peripheral
is accessing the clock source, by default MSP432 will not allow the transition. This can be
enabled/disabled by using the PCM_enableRudeMode and PCM_disableRudeMode functions
respectively. By using these functions, the user can set the device to "force" its way into the low
power mode by forcibly halting any dependent clock resource.

Wed Aug 14 17:01:15 -05 2019 258

Power Control Module (PCM)

16.6 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the PCM module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a very brief code example showing how to change power levels with the PCM module.
This is done in order to facilitate a higher frequency of 48Mhz. For a set of more detailed code
examples, please refer to the code examples in the examples/ directory of the SDK release:

Wed Aug 14 17:01:15 -05 2019 259

Power Control Module (PCM)

16.7 Definitions

Functions

void PCM_clearInterruptFlag (uint32_t flags)

void PCM_disablelnterrupt (uint32_t flags)

void PCM_disableRudeMode (void)

void PCM_enablelnterrupt (uint32_t flags)

void PCM_enableRudeMode (void)

uint8_t PCM_getCoreVoltagelLevel (void)

uint32_t PCM_getEnabledInterruptStatus (void)

uint32_t PCM_getinterruptStatus (void)

uint8_t PCM_getPowerMode (void)

uint8_t PCM_getPowerState (void)

bool PCM_gotoLPMO (void)

bool PCM_gotoLPMOInterruptSafe (void)

bool PCM_gotoLPMS3 (void)

bool PCM_gotoLPMS3InterruptSafe (void)

bool PCM_gotoLPM4 (void)

bool PCM_gotoLPM4InterruptSafe (void)

void PCM_registerInterrupt (void(xintHandler)(void))

bool PCM_setCoreVoltagelLevel (uint_fast8_t voltageLevel)

bool PCM_setCoreVoltageLevelNonBlocking (uint_fast8_t voltagelLevel)

bool PCM_setCoreVoltagelLevelWithTimeout (uint_fast8_t voltagelLevel, uint32_t timeOut)
bool PCM_setPowerMode (uint_fast8_t powerMode)

bool PCM_setPowerModeNonBlocking (uint_fast8_t powerMode)

bool PCM_setPowerModeWithTimeout (uint_fast8_t powerMode, uint32_t timeOut)
bool PCM_setPowerState (uint_fast8_t powerState)

bool PCM_setPowerStateNonBlocking (uint_fast8_t powerState)

bool PCM_setPowerStateWithTimeout (uint_fast8_t powerState, uint32_t timeout)
bool PCM_shutdownDevice (uint32_t shutdownMode)

void PCM_unregisterinterrupt (void)

16.7.1 Detailed Description

The code for this module is contained in driverlib/pcm.c, with driverlib/pcm.h containing
the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 260

Power Control Module (PCM)

16.7.2

16.7.2.1

Function Documentation

void PCM_clearinterruptFlag (uint32_t flags)

Clears power system interrupt sources.

The specified power system interrupt sources are cleared, so that they no longer assert. This
function must be called in the interrupt handler to keep it from being called again immediately
upon exit.

Note
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the
interrupt source be cleared early in the interrupt handler (as opposed to the very last action)
to avoid returning from the interrupt handler before the interrupt source is actually cleared.
Failure to do so may result in the interrupt handler being immediately reentered (because the
interrupt controller still sees the interrupt source asserted).

Parameters
flags | is a bit mask of the interrupt sources to be cleared. Must be a logical OR of
= PCM_DCDCERROR,
= PCM_AM_INVALIDTRANSITION,
m PCM_SM_INVALIDCLOCK,
m PCM_SM_INVALIDTRANSITION
Note

The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns
None.

16.7.2.2 void PCM_disablelnterrupt (uint32_t flags)

Disables individual power control interrupt sources.

Parameters

flags | is a bit mask of the interrupt sources to be enabled. Must be a logical OR of:
= PCM_DCDCERROR,

= PCM_AM_INVALIDTRANSITION,

= PCM_SM_INVALIDCLOCK,

m PCM_SM_INVALIDTRANSITION

This function disables the indicated power control interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

Wed Aug 14 17:01:15 -05 2019 261

Power Control Module (PCM)

16.7.2.3

16.7.2.4

16.7.2.5

Note
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns
None.

void PCM_disableRudeMode (void)

Disables "rude mode" entry into LPM3 and shutdown modes. With this mode disabled, an entry
into shutdown or LPM3 will wait for any active clock requests to free up before going into LPM3 or
shutdown.

Returns
None
void PCM_enablelnterrupt (uint32_t flags)

Enables individual power control interrupt sources.
Parameters

flags | is a bit mask of the interrupt sources to be enabled. Must be a logical OR of:
= PCM_DCDCERROR,

= PCM_AM_INVALIDTRANSITION,

= PCM_SM_INVALIDCLOCK,

= PCM_SM_INVALIDTRANSITION

This function enables the indicated power control interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

Note
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns
None.

void PCM_enableRudeMode (void)

Enables "rude mode" entry into LPM3 and shutdown modes. With this mode enabled, an entry
into shutdown or LPM3 will occur even if there are clock systems active. The system will forcibly
turn off all clock/systems when going into these modes.

Returns
None

Wed Aug 14 17:01:15 -05 2019 262

Power Control Module (PCM)

16.7.2.6 uint8_t PCM_getCoreVoltagelLevel (void)

Returns the current powers state of the system see the PCM_setCoreVoltagelLevel function for
specific information about the modes.

Returns
The current voltage of the system

Possible return values include:

= PCM_VCOREO
= PCM_VCORE1
= PCM_VCORELPM3

References PCM_getPowerState().

16.7.2.7 uint32_t PCM_getEnabledInterruptStatus (void)

Gets the current interrupt status masked with the enabled interrupts. This function is useful to call
in ISRs to get a list of pending interrupts that are actually enabled and could have caused the ISR.

Returns
The current interrupt status, enumerated as a bit field of:

PCM_DCDCERROR,
PCM_AM_INVALIDTRANSITION,
PCM_SM_INVALIDCLOCK,
PCM_SM_INVALIDTRANSITION

Note
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

References PCM_getinterruptStatus().

16.7.2.8 uint32_t PCM_getInterruptStatus (void)

Gets the current interrupt status.

Returns
The current interrupt status, enumerated as a bit field of:

PCM_DCDCERROR,
PCM_AM_INVALIDTRANSITION,
PCM_SM_INVALIDCLOCK,
PCM_SM_INVALIDTRANSITION

Note
The interrupt sources vary based on the part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Referenced by PCM_getEnabledinterruptStatus().

Wed Aug 14 17:01:15 -05 2019 263

Power Control Module (PCM)

16.7.2.9 uint8_t PCM_getPowerMode (void)

Returns the current powers state of the system see the PCM_setPowerState function for specific
information about the modes.

Returns
The current power mode of the system

References PCM_getPowerState().
Referenced by PCM_gotoLPM3().

16.7.2.10 uint8_t PCM_getPowerState (void)

Returns the current powers state of the system see the PCMChangePowerState function for
specific information about the states.

Refer to PCM_setPowerState for possible return values.

Returns
The current power state of the system

Referenced by PCM_getCoreVoltageLevel(), PCM_getPowerMode(), and PCM_gotoLPM3().

16.7.2.11 bool PCM_gotoLPMO (void)

Transitions the device into LPMO.

Refer to the device specific data sheet for specifics about low power modes.

Returns
false if LPMO state cannot be entered, true otherwise.

Referenced by PCM_gotoLPMOInterruptSafe().

16.7.2.12 bool PCM_gotoLPMOlInterruptSafe (void)

Transitions the device into LPMO while maintaining a safe interrupt handling mentality. This
function is meant to be used in situations where the user wants to go to LPMO, however does not
want to go to "miss" any interrupts due to the fact that going to LPMO is not an atomic operation.
This function will modify the PRIMASK and on exit of the program the master interrupts will be
disabled.

Refer to the device specific data sheet for specifics about low power modes.

Returns
false if LPMO state cannot be entered, true otherwise.

References Interrupt_disableMaster(), Interrupt_enableMaster(), and PCM_gotoLPMO().

Wed Aug 14 17:01:15 -05 2019 264

Power Control Module (PCM)

16.7.2.13 bool PCM_gotoLPMS3 (void)

Transitions the device into LPM3

Refer to the device specific data sheet for specifics about low power modes. Note that since LPM3
cannot be entered from a DCDC power modes, the power mode is first switched to LDO operation
(if in DCDC mode), LPMS is entered, and the DCDC mode is restored on wake up.

Returns
false if LPM3 state cannot be entered, true otherwise.

References PCM_getPowerMode(), PCM_getPowerState(), PCM_setPowerMode(), and
PCM_setPowerState().
Referenced by PCM_gotoLPM3InterruptSafe(), and PCM_gotoLPM4().

16.7.2.14 bool PCM_gotoLPM3InterruptSafe (void)

Transitions the device into LPM3 while maintaining a safe interrupt handling mentality. This
function is meant to be used in situations where the user wants to go to LPM3, however does not
want to go to "miss" any interrupts due to the fact that going to LPM3 is not an atomic operation.
This function will modify the PRIMASK and on exit of the program the master interrupts will be
disabled.

Refer to the device specific data sheet for specifics about low power modes. Note that since LPM3
cannot be entered from a DCDC power modes, the power mode is first switched to LDO operation
(if in DCDC mode), the LPM3 is entered, and the DCDC mode is restored on wake up.

Returns
false if LPM3 cannot be entered, true otherwise.

References Interrupt_disableMaster(), Interrupt_enableMaster(), and PCM_gotoLPM3().

16.7.2.15 bool PCM_gotoLPM4 (void)

Transitions the device into LPM4. LPM4 is the exact same with LPM3, just with RTC_C and
WDT_A disabled. When waking up, RTC_C and WDT_A will remain disabled until reconfigured by
the user.

Returns
false if LPM4 state cannot be entered, true otherwise.

References PCM_gotoLPM3(), RTC_C_holdClock(), and WDT_A_holdTimer().
Referenced by PCM_gotoLPM4InterruptSafe().

16.7.2.16 bool PCM_gotoLPM4InterruptSafe (void)

Transitions the device into LPM4 while maintaining a safe interrupt handling mentality. This
function is meant to be used in situations where the user wants to go to LPM4, however does not
want to go to "miss" any interrupts due to the fact that going to LPM4 is not an atomic operation.

Wed Aug 14 17:01:15 -05 2019 265

Power Control Module (PCM)

This function will modify the PRIMASK and on exit of the program the master interrupts will be
disabled.

Refer to the device specific data sheet for specifics about low power modes. Note that since LPM3
cannot be entered from a DCDC power modes, the power mode is first switched to LDO operation
(if in DCDC mode), LPM4 is entered, and the DCDC mode is restored on wake up.

Returns
false if LPM4 state cannot be entered, true otherwise.

References Interrupt_disableMaster(), Interrupt_enableMaster(), and PCM_gotoLPM4().

16.7.2.17 void PCM_registerinterrupt (void(x)(void) intHandler)

Registers an interrupt handler for the power system interrupt.

Parameters

] intHandler \ is a pointer to the function to be called when the power system interrupt occurs.

This function registers the handler to be called when a clock system interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific PCM interrupts must be enabled via
PCM_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt source via
PCM_clearInterruptFlag .

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

16.7.2.18 bool PCM_setCoreVoltagelLevel (uint_fast8 t voltagelLevel)

Sets the core voltage level (Vcore). The function will take care of all power state transitions
needed to shift between core voltage levels. Because transitions between voltage levels may
require changes power modes, the power mode might temporarily be change. The power mode
will be returned to the original state (with the new voltage level) at the end of a successful
execution of this function.

Refer to the device specific data sheet for specifics about core voltage levels.

Parameters

voltageLevel | The voltage level to be shifted to.
= PCM_VCOREQ,
= PCM_VCORE1

Returns
true if voltage level set, false otherwise.

Wed Aug 14 17:01:15 -05 2019 266

Power Control Module (PCM)

16.7.2.19

bool PCM_setCoreVoltageLevelNonBlocking (uint_fast8 t voltageLevel)

Sets the core voltage level (Vcore). This function is similar to PCM_setCoreVoltagelevel, however
there are no polling flags to ensure a state has changed. Execution is returned back to the calling
program correctly. For MSP432, changing into different power modes/states require very specific
logic. This function will initiate only one state transition and then return. It is up to the user to keep
calling this function until the correct power state has been achieved.

Refer to the device specific data sheet for specifics about core voltage levels.

Parameters

voltageLevel | The voltage level to be shifted to.
= PCM_VCOREQ,
= PCM_VCORE1

Returns
true if voltage level set, false otherwise.

16.7.2.20 bool PCM_setCoreVoltageLevelWithTimeout (uint_fast8_t voltageLevel, uint32_t

16.7.2.21

timeQut)

Sets the core voltage level (Vcore). This function will take care of all power state transitions
needed to shift between core voltage levels. Because transitions between voltage levels may
require changes power modes, the power mode might temporarily be change. The power mode
will be returned to the original state (with the new voltage level) at the end of a successful
execution of this function.

This function is similar to PCMSetCoreVoltagelLevel, however a timeout mechanism is used.
Refer to the device specific data sheet for specifics about core voltage levels.

Parameters

voltageLevel | The voltage level to be shifted to.
= PCM_VCOREQO,
= PCM_VCORE1

timeOut | Number of loop iterations to timeout when checking for power state transitions. This
should be used for debugging initial power/hardware configurations. After a stable hard-
ware base is established, the PCMSetCoreVoltagelLevel function should be used

Returns
true if voltage level set, false otherwise.

bool PCM_setPowerMode (uint_fast8 t powerMode)
Switches between power modes. This function will take care of all power state transitions needed

to shift between power modes. Note for changing to DCDC mode, specific hardware
considerations are required.

Wed Aug 14 17:01:15 -05 2019 267

Power Control Module (PCM)

Refer to the device specific data sheet for specifics about power modes.

Wed Aug 14 17:01:15 -05 2019 268

Power Control Module (PCM)

Parameters

powerMode | The voltage modes to be shifted to. Valid values are:
= PCM_LDO_MODE,

= PCM_DCDC_MODE,

= PCM_LF_MODE

Returns
true if power mode is set, false otherwise.

Referenced by PCM_gotoLPMS3().

16.7.2.22 bool PCM_setPowerModeNonBlocking (uint_fast8_t powerMode)

Sets the core voltage level (Vcore). This function is similar to PCM_setPowerMode, however there
are no polling flags to ensure a state has changed. Execution is returned back to the calling
program correctly. For MSP432, changing into different power modes/states require very specific
logic. This function will initiate only one state transition and then return. It is up to the user to keep
calling this function until the correct power state has been achieved.

Refer to the device specific data sheet for specifics about core voltage levels.

Parameters

powerMode | The voltage modes to be shifted to. Valid values are:
= PCM_LDO_MODE,

= PCM_DCDC_MODE,

= PCM_LF_MODE

Returns
true if power mode change was initiated, false otherwise

16.7.2.23 bool PCM_setPowerModeWithTimeout (uint_fast8 t powerMode, uint32_t
timeQut)

Switches between power modes. This function will take care of all power state transitions needed
to shift between power modes. Note for changing to DCDC mode, specific hardware
considerations are required.

This function is similar to PCMSetPowerMode, however a timeout mechanism is used.

Refer to the device specific data sheet for specifics about power modes.

Wed Aug 14 17:01:15 -05 2019 269

Power Control Module (PCM)

Parameters

powerMode | The voltage modes to be shifted to. Valid values are:
= PCM_LDO_MODE,

= PCM_DCDC_MODE,

= PCM_LF_MODE

timeOut | Number of loop iterations to timeout when checking for power state transitions. This
should be used for debugging initial power/hardware configurations. After a stable hard-
ware base is established, the PCMSetPowerMode function should be used

Returns
true if power mode is set, false otherwise.

16.7.2.24 bool PCM_setPowerState (uint_fast8 t powerState)
Switches between power states. This is a convenience function that combines the functionality of
PCM_setPowerMode and PCM_setCoreVoltagelevel as well as the LPMO/LPM3 functions.

Refer to the device specific data sheet for specifics about power states.

Parameters

powerState | The voltage modes to be shifted to. Valid values are:

= PCM_AM_LDO_VCOREQO, [Active Mode, LDO, VCOREQ]

m PCM_AM_LDO_VCOREHT1, [Active Mode, LDO, VCORE1]

= PCM_AM_DCDC_VCOREQO, [Active Mode, DCDC, VCOREQ]

m PCM_AM_DCDC_VCOREHT1, [Active Mode, DCDC, VCORE1]

= PCM_AM_LF_VCOREQ, [Active Mode, Low Frequency, VCOREQ]
m PCM_AM_LF_VCORE1, [Active Mode, Low Frequency, VCORE1]
= PCM_LPMO_LDO_VCOREQO, [LMPO, LDO, VCOREOQ]

= PCM_LPMO_LDO_VCORE1, [LMPO, LDO, VCORE1]

= PCM_LPM0_DCDC_VCOREQO, [LMP0, DCDC, VCOREQ]

= PCM_LPM0_DCDC_VCOREH1, [LMP0O, DCDC, VCORE(1]

m PCM_LPMO_LF_VCOREQO, [LMPO, Low Frequency, VCOREQ]

m PCM_LPMO_LF_VCOREH1, [LMPO, Low Frequency, VCORE1]

= PCM_LPM3, [LPM3]

m PCM_LPM35_VCOREO, [LPM3.5 VCORE 0]

m PCM_LPM4, [LPM4]

= PCM_LPM45, [LPM4.5]

Returns
true if power state is set, false otherwise.

Referenced by PCM_gotoLPMS3().

Wed Aug 14 17:01:15 -05 2019 270

Power Control Module (PCM)

16.7.2.25 bool PCM_setPowerStateNonBlocking (uint_fast8 t powerState)

Sets the power state of the part. This function is similar to PCM_getPowerState, however there
are no polling flags to ensure a state has changed. Execution is returned back to the calling
program correctly. For MSP432, changing into different power modes/states require very specific
logic. This function will initiate only one state transition and then return. It is up to the user to keep
calling this function until the correct power state has been achieved.

Refer to the device specific data sheet for specifics about core voltage levels.
Parameters

powerState | The voltage modes to be shifted to. Valid values are:

m PCM_AM_LDO_VCOREQO, [Active Mode, LDO, VCOREQ]

m PCM_AM_LDO_VCOREI1, [Active Mode, LDO, VCORE1]

m PCM_AM_DCDC_VCOREQO, [Active Mode, DCDC, VCOREQ]

= PCM_AM_DCDC_VCOREH1, [Active Mode, DCDC, VCORE1]

m PCM_AM_LF_VCOREQ, [Active Mode, Low Frequency, VCOREQ]
m PCM_AM_LF_VCORE(1, [Active Mode, Low Frequency, VCORE1]
= PCM_LPMO_LDO_VCOREQ, [LMPO, LDO, VCOREQ]

= PCM_LPMO_LDO_VCOREH1, [LMPO, LDO, VCORE1]

= PCM_LPMO0_DCDC_VCOREQO, [LMP0, DCDC, VCOREQ]

= PCM_LPMO0_DCDC_VCORE1, [LMP0, DCDC, VCORE1]

= PCM_LPMO_LF_VCOREQO, [LMPO, Low Frequency, VCOREQ]

m PCM_LPMO_LF_VCOREH1, [LMPO, Low Frequency, VCORE1]

m PCM_LPMS3, [LPM3]

m PCM_LPM35_VCOREQ, [LPM3.5 VCORE 0]

m PCM_LPM45, [LPM4.5]

Returns
true if power state change was initiated, false otherwise

16.7.2.26 bool PCM_setPowerStateWithTimeout (uint_fast8_t powerState, uint32_t
timeout ')

Switches between power states. This is a convenience function that combines the functionality of
PCM_setPowerMode and PCM_setCoreVoltagelevel as well as the LPM modes.
This function is similar to PCM_setPowerState, however a timeout mechanism is used.

Refer to the device specific data sheet for specifics about power states.

Parameters

Wed Aug 14 17:01:15 -05 2019 271

Power Control Module (PCM)

powerState

The voltage modes to be shifted to. Valid values are:
m PCM_AM_LDO_VCOREQO, [Active Mode, LDO, VCOREQ]
m PCM_AM_LDO_VCOREHT1, [Active Mode, LDO, VCORE1]
= PCM_AM_DCDC_VCOREQO, [Active Mode, DCDC, VCOREQ]
m PCM_AM_DCDC_VCOREHT1, [Active Mode, DCDC, VCORE1]
= PCM_AM_LF_VCOREQ, [Active Mode, Low Frequency, VCOREQ]
m PCM_AM_LF_VCOREH1, [Active Mode, Low Frequency, VCORE1]
= PCM_LPMO_LDO_VCOREO, [LMPO, LDO, VCOREO]
= PCM_LPMO_LDO_VCOREH1, [LMPO, LDO, VCORE1]
= PCM_LPM0_DCDC_VCOREQ, [LMP0, DCDC, VCOREQ]
= PCM_LPM0_DCDC_VCOREH1, [LMP0, DCDC, VCORE(1]
m PCM_LPMO_LF_VCOREQO, [LMPO, Low Frequency, VCOREQ]
= PCM_LPMO_LF_VCOREH1, [LMPO, Low Frequency, VCORE1]
m PCM_LPM3, [LPM3]
= PCM_LPM35_VCOREO, [LPM3.5 VCORE 0]
= PCM_LPM4, [LPM4]
m PCM_LPM45, [LPM4.5]

timeout

Number of loop iterations to timeout when checking for power state transitions. This
should be used for debugging initial power/hardware configurations. After a stable hard-
ware base is established, the PCMSetPowerMode function should be used

Returns

true if power state is set, false otherwise. It is important to note that if a timeout occurs, false
will be returned, however the power state at this point is not guaranteed to be the same as
the state prior to the function call

16.7.2.27 bool PCM_shutdownDevice (uint32_t shutdownMode)

Transitions the device into LPM3.5/LPM4.5 mode.

Refer to the device specific data sheet for specifics about shutdown modes.

The following events will cause a wake up from LPM3.5 mode:

m Device reset

m External reset RST

m Enabled RTC, WDT, and wake-up 1/O only interrupt events

The following events will cause a wake up from the LPM4.5 mode:

m Device reset

m External reset RST

m Wake-up I/O only interrupt events

Wed Aug 14 17:01:15 -05 2019

272

Power Control Module (PCM)

Parameters

shutdownMode | Specific mode to go to. Valid values are:
= PCM_LPM35_VCOREO
= PCM_LPM45

Returns
false if LPM state cannot be entered, true otherwise.

16.7.2.28 void PCM_unregisterinterrupt (void)

Unregisters the interrupt handler for the power system.

This function unregisters the handler to be called when a power system interrupt occurs. This
function also masks off the interrupt in the interrupt controller so that the interrupt handler no
longer is called.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 273

Port Mapper (PMAP)

17 Port Mapper (PMAP)

MOAUIE OPEIALIONttt ettt et et e e et e e e e e 272
Programming EXampleo 272
DB NI ONS e 273

17.1 Module Operation

The port mapping controller allows the flexible and reconfigurable mapping of digital functions to
port pins.

The port mapping controller features are:

m Configuration protected by write access key.

m Default mapping provided for each port pin (device-dependent, the device pinout in the
device-specific data sheet).

m Mapping can be reconfigured during runtime.
m Each output signal can be mapped to several output pins.

17.2 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the PMAP module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a very brief code example showing how to use the PMAP module to redirect the output of
a TimerA CCR register.

First is the array configuration to remap the port:

Next is the call to the actual PMAP API that persists the configuration:

Wed Aug 14 17:01:15 -05 2019 274

Port Mapper (PMAP)

17.3 Definitions

Functions

m void PMAP_configurePorts (const uint8_t xportMapping, uint8_t pxMAPYy, uint8_t
numberOfPorts, uint8_t portMapReconfigure)

17.3.1 Detailed Description

The code for this module is contained in driverlib/pmap.c, with driverlib/pmap.h
containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 275

Port Mapper (PMAP)

17.3.2 Function Documentation

17.3.2.1 void PMAP_configurePorts (const uint8_t x portMapping, uint8 t pxMAPYy,
uint8_t numberOfPorts, uint8_t portMapReconfigure)

This function configures the MSP432 Port Mapper

Parameters
portMapping | is the pointer to init Data
PxMAPy | is the Port Mapper to initialize
numberOfPorts | is the number of Ports to initialize
portMapRecon- | is used to enable/disable reconfiguration Valid values are
figure | PMAP_ENABLE_RECONFIGURATION PMAP_DISABLE_RECONFIGURATION
[Default value] Modified registers are PMAPKEYID, PMAPCTL
Returns
None

Wed Aug 14 17:01:15 -05 2019

276

Power Supply System (PSS)

18 Power Supply System (PSS)

MOAUIE OPEIAtIONttt e et e e e e e e 275
Programming EXampleo 275
DB NI ONS e 276

18.1 Module Operation

The PSS module for the DriverLib allows the user to fully configure/setup the various analog
power sources on the MSP432 device. This mainly involves enabling and disabling the high side
supervisor/monitor. Performance modes of both the high side power supply can be configured and
manipulated in order to optimize power efficiency. Additionally, the PSS interrupt can be
configured to fire an interrupt on a power supply violation.

18.2 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the PSS module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a very brief code example showing how to disable the high side power supervisor:

Wed Aug 14 17:01:15 -05 2019 277

Power Supply System (PSS)

18.3 Definitions

Functions

void PSS_clearInterruptFlag (void)

void PSS_disableForcedDCDCOperation (void)

void PSS_disableHighSide (void)

void PSS_disableHighSideMonitor (void)

void PSS_disableHighSidePinToggle (void)

void PSS_disablelnterrupt (void)

void PSS_enableForcedDCDCOperation (void)

void PSS_enableHighSide (void)

void PSS_enableHighSideMonitor (void)

void PSS_enableHighSidePinToggle (bool activeLow)

void PSS_enablelnterrupt (void)

uint_fast8_t PSS_getHighSidePerformanceMode (void)
uint_fast8 t PSS _getHighSideVoltageTrigger (void)

uint32_t PSS_getInterruptStatus (void)

void PSS_registerinterrupt (void(xintHandler)(void))

void PSS_setHighSidePerformanceMode (uint_fast8_t powerMode)
void PSS_setHighSideVoltageTrigger (uint_fast8_t triggerVoltage)
void PSS_unregisterInterrupt (void)

18.3.1 Detailed Description

The code for this module is contained in driverlib/pss.c, wWith driverlib/pss.h containing
the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 278

Power Supply System (PSS)

18.3.2

18.3.2.1

18.3.2.2

18.3.2.3

18.3.2.4

18.3.2.5

18.3.2.6

Function Documentation

void PSS_clearInterruptFlag (void)

Clears power supply system interrupt source.

Returns
None.

void PSS_disableForcedDCDCOperation (void)

Disables the "forced" mode of the DCDC regulator. In this mode, the fail safe mechanism that
disables the regulator to LDO mode when the supply voltage falls below the minimum supply
voltage required for DCDC operation is turned on.

Returns
None.

void PSS_disableHighSide (void)

Disables high side voltage supervisor/monitor.

Returns
None.

void PSS_disableHighSideMonitor (void)

Switches the high side of the power supply system to be a supervisor instead of a monitor

Returns
None.

void PSS_disableHighSidePinToggle (void)

Disables output of the High Side interrupt flag on the device SVMHOUT pin

Returns
None.

void PSS_disablelnterrupt (void)

Disables the power supply system interrupt source.

Returns
None.

Wed Aug 14 17:01:15 -05 2019 279

Power Supply System (PSS)

18.3.2.7 void PSS_enableForcedDCDCOperation (void)

Enables the "forced" mode of the DCDC regulator. In this mode, the fail safe mechanism that
disables the regulator to LDO mode when the supply voltage falls below the minimum supply
voltage required for DCDC operation is turned off.

Returns
None.

18.3.2.8 void PSS_enableHighSide (void)

Enables high side voltage supervisor/monitor.

Returns
None.

18.3.2.9 void PSS_enableHighSideMonitor (void)

Sets the high side voltage supervisor to monitor mode

Returns
None.

18.3.2.10 void PSS_enableHighSidePinToggle (bool activeLow)

Enables output of the High Side interrupt flag on the device SVMHOUT pin

Parameters

activeLow | True if the signal should be logic low when SVSMHIFG is set. False if signal should be
high when SVSMHIFG is set.

Returns
None.

18.3.2.11 void PSS_enablelnterrupt (void)

Enables the power supply system interrupt source.

Returns
None.

Wed Aug 14 17:01:15 -05 2019 280

Power Supply System (PSS)

18.3.2.12 uint_fast8 t PSS_getHighSidePerformanceMode (void)

Gets the performance mode of the high side voltage regulator. Refer to the user’s guide for
specific information about information about the different performance modes.

Returns
Performance mode of the voltage regulator

18.3.2.13 uint_fast8 t PSS_getHighSideVoltageTrigger (void)

Returns the voltage level at which the high side of the device voltage regulator triggers a reset.
Returns
The voltage level that the high side voltage supervisor/monitor triggers a reset. This value is

represented as an unsigned eight bit integer where only the lowest three bits are most
significant. See PSS_setHighSideVoltageTrigger for information regarding the return value

18.3.2.14 uint32_t PSS_getInterruptStatus (void)

Gets the current interrupt status.

Returns
The current interrupt status (PSS_SVSMH)

18.3.2.15 void PSS _registerinterrupt (void(x)(void) intHandler)

Registers an interrupt handler for the power supply system interrupt.

Parameters

] intHandler \ is a pointer to the function to be called when the power supply system interrupt occurs.

This function registers the handler to be called when a power supply system interrupt occurs. This
function enables the global interrupt in the interrupt controller; specific PSS interrupts must be
enabled via PSS_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt
source via PSS_clearInterruptFlag().

See Also
Interrupt_registerInterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

Wed Aug 14 17:01:15 -05 2019 281

Power Supply System (PSS)

18.3.2.16 void PSS_setHighSidePerformanceMode (uint_fast8 t powerMode)

Sets the performance mode of the high side regulator. Full performance mode allows for the best
response times while normal performance mode is optimized for the lowest possible current
consumption.

Wed Aug 14 17:01:15 -05 2019 282

Power Supply System (PSS)

Parameters

powerMode | is the performance mode to set. Valid values are one of the following:
m PSS_FULL_PERFORMANCE_MODE,
m PSS NORMAL_PERFORMANCE_MODE

Returns
None.

18.3.2.17 void PSS_setHighSideVoltageTrigger (uint_fast8_t triggerVoltage)

Sets the voltage level at which the high side of the device voltage regulator triggers a reset. This
value is represented as an unsigned eight bit integer where only the lowest three bits are most
significant.

Parameters

triggerVoltage | Voltage level in which high side supervisor/monitor triggers a reset. See the device specific
data sheet for details on these voltage levels.

Typical values will vary from part to part (so it is very important to check the SVSH section of the
data sheet. For reference only, the typical MSP432 101 values are listed below:

0—>1.57V
1—>1.62V
2—>1.83V
3—>2V

4 —> 2.25V
5-—>24V
6 —> 2.6V
7—> 2.8V

Returns
None.

18.3.2.18 void PSS_unregisterinterrupt (void)

Unregisters the interrupt handler for the power supply system

This function unregisters the handler to be called when a power supply system interrupt occurs.
This function also masks off the interrupt in the interrupt controller so that the interrupt handler no
longer is called.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 283

Reference Module (REF_A)

19 Reference Module (REF_A)

MOAUIE OPEIAtIONttt e et e e e e e e 282
Programming EXampleo 282
DB NI ONS e 283

19.1 Module Operation

The Internal Reference (REF_A) API provides a set of functions for using the SDK REF_A
modules. Functions are provided to setup and enable use of the Reference voltage, enable or
disable the internal temperature sensor, and view the status of the inner workings of the REF
module.

The reference module (REF_A) is responsible for generation of all critical reference voltages that
can be used by various analog peripherals in a given device. The heart of the reference system is
the bandgap from which all other references are derived by unity or non-inverting gain stages. The
REFGEN sub-system consists of the bandgap, the bandgap bias, and the non-inverting buffer
stage which generates the three primary voltage reference available in the system, namely 1.2 V,
1.45,2.0 V, and 2.5 V. In addition, when enabled, a buffered bandgap voltage is available.

19.2 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the REF_A module. These code examples are accessible under the examples/ folder of the
SDK release as well as through Tl Resource Explorer if using Code Composer Studio. These
code examples provide a comprehensive list of use cases as well as practical applications
involving each module.

Below is a very brief code example showing how to enable the REF_A module for a 2.5v reference:

Wed Aug 14 17:01:15 -05 2019 284

Reference Module (REF_A)

19.3 Definitions

Functions

void REF_A_disableReferenceVoltage (void)

void REF_A_disableReferenceVoltageOutput (void)

void REF_A_disableTempSensor (void)

void REF_A_enableReferenceVoltage (void)

void REF_A_enableReferenceVoltageOutput (void)

void REF_A_enableTempSensor (void)

uint_fast8_t REF_A_getBandgapMode (void)

bool REF_A_getBufferedBandgapVoltageStatus (void)

bool REF_A_getVariableReferenceVoltageStatus (void)

bool REF_A_isBandgapActive (void)

bool REF_A_isRefGenActive (void)

bool REF_A_isRefGenBusy (void)

void REF_A_setBufferedBandgapVoltageOneTimeTrigger (void)
void REF_A_setReferenceVoltage (uint_fast8_t referenceVoltageSelect)
void REF_A_setReferenceVoltageOneTimeTrigger (void)

19.3.1 Detailed Description

The code for this module is contained in driverlib/ref_a.c,withdriverlib/ref_a.h
containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 285

Reference Module (REF_A)

19.3.2 Function Documentation

19.3.2.1 void REF_A_disableReferenceVoltage (void)

Disables the reference voltage.

This function is used to disable the generated reference voltage. Please note, if the
REF_A_isRefGenBusy() returns REF_A_BUSY, this function will have no effect.

Modified bits are REFON of REFCTLDO register.

Returns
none

19.3.2.2 void REF_A_disableReferenceVoltageOutput (void)

Disables the reference voltage as an output to a pin.

This function is used to disables the reference voltage being generated to be given to an output
pin. Please note, if the REF_A_isRefGenBusy() returns REF_A_BUSY, this function will have no
effect.

Modified bits are REFOUT of REFCTLO register.

Returns
none

19.3.2.3 void REF_A_disableTempSensor (void)

Disables the internal temperature sensor to save power consumption.

This function is used to turn off the internal temperature sensor to save on power consumption.
The temperature sensor is enabled by default. Please note, that giving ADC12 module control
over the REF module, the state of the temperature sensor is dependent on the controls of the
ADC12 module. Please note, if the REF_A_isRefGenBusy() returns REF_A_BUSY, this function
will have no effect.

Modified bits are REFTCOFF of REFCTLDO register.

Returns
none

19.3.2.4 void REF_A_enableReferenceVoltage (void)

Enables the reference voltage to be used by peripherals.

This function is used to enable the generated reference voltage to be used other peripherals or by
an output pin, if enabled. Please note, that giving ADC12 module control over the REF module,
the state of the reference voltage is dependent on the controls of the ADC12 module. Please note,
if the REF_A_isRefGenBusy() returns REF_A_BUSY, this function will have no effect.

Modified bits are REFON of REFCTLDO register.

Wed Aug 14 17:01:15 -05 2019 286

Reference Module (REF_A)

Returns
none

19.3.2.5 void REF_A_enableReferenceVoltageOutput (void)

Outputs the reference voltage to an output pin.

This function is used to output the reference voltage being generated to an output pin. Please
note, the output pin is device specific. Please note, that giving ADC12 module control over the
REF module, the state of the reference voltage as an output to a pin is dependent on the controls
of the ADC12 module. Please note, if the REF_A_isRefGenBusy() returns REF_A_BUSY, this
function will have no effect.

Modified bits are REFOUT of REFCTLO register.

Returns
none

19.3.2.6 void REF_A enableTempSensor (void)

Enables the internal temperature sensor.

This function is used to turn on the internal temperature sensor to use by other peripherals. The
temperature sensor is enabled by default. Please note, if the REF_A_isRefGenBusy() returns
REF_A_BUSY, this function will have no effect.

Modified bits are REFTCOFF of REFCTLDO register.

Returns
none

19.3.2.7 uint_fast8 t REF_A_getBandgapMode (void)

Returns the bandgap mode of the REF module.

This function is used to return the bandgap mode of the REF module, requested by the
peripherals using the bandgap. If a peripheral requests static mode, then the bandgap mode will
be static for all modules, whereas if all of the peripherals using the bandgap request sample mode,
then that will be the mode returned. Sample mode allows the bandgap to be active only when
necessary to save on power consumption, static mode requires the bandgap to be active until no
peripherals are using it anymore.

Returns
The bandgap mode of the REF module:

m REF_A_STATICMODE if the bandgap is operating in static mode
m REF_A_SAMPLEMODE if the bandgap is operating in sample mode

Wed Aug 14 17:01:15 -05 2019 287

Reference Module (REF_A)

19.3.2.8 bool REF_A_getBufferedBandgapVoltageStatus (void)

Returns the busy status of the reference generator in the REF module.

This function is used to return the buys status of the buffered bandgap voltage in the REF module.
If the ref. generator is on and ready to use, then the status will be seen as active.

Returns
true if the buffered bandgap voltage is ready to be used, false otherwise

19.3.2.9 bool REF_A_getVariableReferenceVoltageStatus (void)

Returns the busy status of the variable reference voltage in the REF module.

This function is used to return the buys status of the variable reference voltage in the REF module.
If the ref. generator is on and ready to use, then the status will be seen as active.

Returns
true if the variable bandgap voltage is ready to be used, false otherwise

19.3.2.10 bool REF_A_isBandgapActive (void)

Returns the active status of the bandgap in the REF module.

This function is used to return the active status of the bandgap in the REF module. If the bandgap
is in use by a peripheral, then the status will be seen as active.

Returns
true if the bandgap is being used, false otherwise

19.3.2.11 bool REF_A_isRefGenActive (void)

Returns the active status of the reference generator in the REF module.

This function is used to return the active status of the reference generator in the REF module. If
the ref. generator is on and ready to use, then the status will be seen as active.

Returns
true if the reference generator is active, false otherwise.

19.3.2.12 bool REF_A_isRefGenBusy (void)

Returns the busy status of the reference generator in the REF module.

This function is used to return the busy status of the reference generator in the REF module. If the
ref. generator is in use by a peripheral, then the status will be seen as busy.

Returns
true if the reference generator is being used, false otherwise.

Wed Aug 14 17:01:15 -05 2019 288

Reference Module (REF_A)

19.3.2.13 void REF_A_setBufferedBandgapVoltageOneTimeTrigger (void)

Enables the one-time trigger of the buffered bandgap voltage.

Triggers the one-time generation of the buffered bandgap voltage. Once the buffered bandgap
voltage request is set, this bit is cleared by hardware

Modified bits are RefGOT of REFCTLO register.

Returns
none

19.3.2.14 void REF_A_setReferenceVoltage (uint_fast8_t referenceVoltageSelect)

Sets the reference voltage for the voltage generator.

Parameters

referenceVolt- | is the desired voltage to generate for a reference voltage. Valid values are:
ageSelect | g REF_A_VREF1_2V [Default]

m REF_A_VREF1_45V

m REF_A_VREF2_5V Modified bits are REFVSEL of REFCTLO register.

This function sets the reference voltage generated by the voltage generator to be used by other
peripherals. This reference voltage will only be valid while the REF module is in control. Please
note, if the REF_A_isRefGenBusy() returns REF_BUSY, this function will have no effect.

Returns
none

19.3.2.15 void REF_A_setReferenceVoltageOneTimeTrigger (void)

Enables the one-time trigger of the reference voltage.

Triggers the one-time generation of the variable reference voltage. Once the reference voltage
request is set, this bit is cleared by hardware

Modified bits are REFGENOT of REFCTLO register.

Returns
none

Wed Aug 14 17:01:15 -05 2019 289

Reset Controller (ResetCtl)

20

20.1

20.2

20.3

Reset Controller (ResetCtl)

MOAUIE OPEIAtIONttt e et e e e e e e 288
RSt SOUICES .. it e e 288
Programming EXample o 288
D iNIEIONS .. e 290

Module Operation

The DriverLib APls for the MSP432 Reset Control are a set of power functions that enables
programmers to manipulate all aspects of a system reset. The user is able to initiate both hard and
soft resets as well as determine the cause of a prior system reset.

Reset Sources

Reset sources will vary from device to device (see the device specific datasheet for the reset
source mappings relevant to your device). The ResetCtl for DriverLib defines a set of generic reset
sources (such as RESET_SRC_0). In practice, it is a good idea to use a define statement to
match these to a specific reset source. For example, MSP432’s mapping could look something
similar to the following:

#define
#define
#define
#define
#define

ol s B v B B vl o)

#define

By defining these extra set of macros, the user code that accesses the DriverLib ResetCtl APls
are more legible. For example, when checking to see if a device was reset because of a CS
violation (such as a XTAL fault), the user could write code similar to the following:

(ResetCtl_getSoftResetSource () == RESET_CS_SRC)
{
// Do reset handling here
}

Programming Example

Wed Aug 14 17:01:15 -05 2019 290

Reset Controller (ResetCtl)

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the ResetCtl module. These code examples are accessible under the examples/ folder of the
SDK release as well as through Tl Resource Explorer if using Code Composer Studio. These

code examples provide a comprehensive list of use cases as well as practical applications
involving each module.

Below is a very brief code example showing an ISR that initiates a software reset of the device.
The idea here is that a push button could cause a software initiated reset.

Wed Aug 14 17:01:15 -05 2019 291

Reset Controller (ResetCtl)

20.4 Definitions

Functions

void ResetCtl_clearHardResetSource (uint32_t mask)

void ResetCtl_clearPCMFlags (void)

void ResetCtl_clearPSSFlags (void)

void ResetCtl_clearSoftResetSource (uint32_t mask)
uint32_t ResetCtl_getHardResetSource (void)

uint32_t ResetCtl_getPCMSource (void)

uint32_t ResetCtl_getPSSSource (void)

uint32_t ResetCtl_getSoftResetSource (void)

void ResetCtl_initiateHardReset (void)

void ResetCtl_initiateHardResetWithSource (uint32_t source)
void ResetCtl_initiateSoftReset (void)

void ResetCtl_initiateSoftResetWithSource (uint32_t source)

20.4.1 Detailed Description

The code for this module is contained in driverlib/reset.c, withdriverlib/reset.h
containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 292

Reset Controller (ResetCtl)

20.4.2 Function Documentation

20.4.2.1 void ResetCtl_clearHardResetSource (uint32_t mask)

Clears the reset sources associated with at hard reset
Parameters

mask | - Bitwise OR of any of the following values:
m RESET_SRC_0,
m RESET_SRC_1,
m RESET_SRC_2,
m RESET_SRC_3,
m RESET_SRC_4,
m RESET_SRC_5,
= RESET_SRC_6,
m RESET_SRC_7,
m RESET_SRC_8,
m RESET_SRC_9,
m RESET_SRC_10,
m RESET_SRC_11,
m RESET_SRC_12,
m RESET_SRC_13,
= RESET_SRC_14,
m RESET_SRC_15

Returns
none

20.4.2.2 void ResetCtl_clearPCMFlags (void)

Clears the corresponding PCM reset source flags

Returns
none

20.4.2.3 void ResetCtl_clearPSSFlags (void)

Clears the PSS reset source flags

Returns
none

Wed Aug 14 17:01:15 -05 2019 293

Reset Controller (ResetCtl)

20.4.2.4 void ResetCtl_clearSoftResetSource (uint32_t mask)

Clears the reset sources associated with at soft reset

Wed Aug 14 17:01:15 -05 2019 294

Reset Controller (ResetCtl)

Parameters

mask | - Bitwise OR of any of the following values:
m RESET_SRC_0,
m RESET_SRC_1,
m RESET_SRC_2,
m RESET_SRC_3,
m RESET_SRC_4,
m RESET_SRC_5,
m RESET_SRC_6,
= RESET_SRC_7,
m RESET_SRC_8,
m RESET_SRC_9,
= RESET_SRC_10,
m RESET_SRC_11,
m RESET_SRC_12,
m RESET_SRC_13,
m RESET_SRC_14,
m RESET_SRC_15

Returns
none

20.4.2.5 uint32_t ResetCtl_getHardResetSource (void)

Retrieves previous hard reset sources

Returns

the bitwise or of previous reset sources. These sources must be cleared using the
ResetCtl_clearHardResetSource function to be cleared. Possible values include:

= RESET_SRC_0,
RESET_SRC_1,
RESET_SRC_2,
RESET_SRC_3,
RESET_SRC_4,
RESET_SRC_5,
RESET_SRC_6,
RESET_SRC_7,
RESET_SRC_8,
RESET_SRC_)9,
RESET_SRC_10,
RESET_SRC_11,
RESET_SRC_12,

Wed Aug 14 17:01:15 -05 2019

295

Reset Controller (ResetCtl)

m RESET_SRC_13,
m RESET_SRC_14,
= RESET_SRC_15

20.4.2.6 uint32_t ResetCtl_getPCMSource (void)

Indicates the last cause of a power-on reset (POR) due to PCM operation.

Returns
Bitwise OR of any of the following values:

m RESET_LPM35,
m RESET_LPM45

20.4.2.7 uint32_t ResetCtl_getPSSSource (void)

Indicates the last cause of a power-on reset (POR) due to PSS operation. Note that the bits
returned from this function may be set in different combinations. When a cold power up occurs,
the value of all the values ORed together could be returned as a cold power up causes these
conditions.

Returns
Bitwise OR of any of the following values:

m RESET_VCCDET,
m RESET_SVSH_TRIP,
m RESET_BGREF_BAD

20.4.2.8 uint32_t ResetCtl_getSoftResetSource (void)

Retrieves previous soft reset sources

Returns
the bitwise or of previous reset sources. These sources must be cleared using the
ResetCtl_clearSoftResetSource function to be cleared. Possible values include:

= RESET_SRC_0,
RESET_SRC_1,
RESET_SRC_2,
RESET_SRC_3,
RESET_SRC_4,
RESET_SRC_5,
RESET_SRC_6,
RESET_SRC_7,
RESET_SRC_8,
RESET_SRC_9,
RESET_SRC_10,
RESET_SRC_11,

Wed Aug 14 17:01:15 -05 2019 296

Reset Controller (ResetCtl)

RESET_SRC_12,
RESET_SRC_13,
RESET_SRC_14,
RESET_SRC_15

20.4.2.9 void ResetCtl_initiateHardReset (void)

Initiates a hard system reset.

Returns
none

20.4.2.10 void ResetCtl_initiateHardResetWithSource (uint32_t source)

Initiates a hard system reset with a particular source given. This source is generic and can be

assigned by the user.

Parameters

source | - Valid values are one the following values:
m RESET_SRC_0,
m RESET_SRC_1,
m RESET_SRC_2,
m RESET_SRC_3,
m RESET_SRC_4,
m RESET_SRC_5,
m RESET_SRC_6,
m RESET_SRC_7,
m RESET_SRC_8,
m RESET_SRC_9,
m RESET_SRC_10,
m RESET_SRC_11,
m RESET_SRC_12,
m RESET_SRC_13,
= RESET_SRC_14,
m RESET_SRC_15

Returns
none

Wed Aug 14 17:01:15 -05 2019

297

Reset Controller (ResetCtl)

20.4.2.11 void ResetCtl_initiateSoftReset (void)

Initiates a soft system reset.

Returns
none

20.4.2.12 void ResetCtl_initiateSoftResetWithSource (uint32_t source)

Initiates a soft system reset with a particular source given. This source is generic and can be

assigned by the user.

Parameters

source | Source of the reset. Valid values are:
m RESET_SRC_0,
m RESET_SRC 1,
m RESET_SRC_2,
m RESET_SRC_3,
m RESET_SRC 4,
m RESET_SRC_5,
m RESET_SRC_6,
m RESET_SRC_7,
m RESET_SRC_8,
m RESET_SRC_9,
m RESET_SRC_10,
m RESET_SRC_11,
m RESET_SRC_12,
m RESET_SRC_13,
m RESET_SRC_14,
m RESET_SRC_15

Returns
none

Wed Aug 14 17:01:15 -05 2019

298

Real Time Clock (RTC_C)

21 Real Time Clock (RTC_C)

MOAUIE OPEIAtIONttt e et e e e e e e 298
Programming EXampleo 299
DB NI ONS e 300

21.1 Module Operation

The Real Time Clock (RTC_C) API provides a set of functions for using the SDK L RTC_C
modules. Functions are provided to calibrate the clock, initialize the RTC_C modules in Calendar
mode, and setup conditions for, and enable, interrupts for the RTC_C modules.

The RTC_C module provides the ability to keep track of the current time and date in calendar
mode.

The RTC_C module generates multiple interrupts. There are 2 interrupts that can be defined in
calendar mode, and 1 interrupt in counter mode for counter overflow, as well as an interrupt for
each prescaler.

Wed Aug 14 17:01:15 -05 2019 299

Real Time Clock (RTC_C)

21.2 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the RTC_C module. These code examples are accessible under the examples/ folder of the
SDK release as well as through Tl Resource Explorer if using Code Composer Studio. These
code examples provide a comprehensive list of use cases as well as practical applications
involving each module.

Below is a very brief code example showing how to configure the RTC_C module and create a
calendar event.

The following is the configuration structure that sets the date:

Next are the actual calls to DriverLib that configure the module:

Wed Aug 14 17:01:15 -05 2019 300

Real Time Clock (RTC_C)

21.3 Definitions

Functions

void RTC_C_clearInterruptFlag (uint_fast8_t interruptFlagMask)

uint16_t RTC_C_convertBCDToBinary (uint16_t valueToConvert)

uint16_t RTC_C_convertBinaryToBCD (uint16_t valueToConvert)

void RTC_C_definePrescaleEvent (uint_fast8_t prescaleSelect, uint_fast8_t

prescaleEventDivider)

void RTC_C_disablelnterrupt (uint8_t interruptMask)

void RTC_C_enablelnterrupt (uint8_t interruptMask)

RTC_C_Calendar RTC_C_getCalendarTime (void)

uint_fast8_t RTC_C_getEnabledInterruptStatus (void)

uint_fast8_t RTC_C_getlInterruptStatus (void)

uint_fast8 t RTC_C_getPrescaleValue (uint_fast8_t prescaleSelect)

void RTC_C_holdClock (void)

void RTC_C_initCalendar (const RTC_C_Calendar xcalendarTime, uint_fast16_t

formatSelect)

void RTC_C_registerInterrupt (void(xintHandler)(void))

void RTC_C_setCalendarAlarm (uint_fast8_t minutesAlarm, uint_fast8_t hoursAlarm,

uint_fast8_t dayOfWeekAlarm, uint_fast8_t dayOfmonthAlarm)

void RTC_C_setCalendarEvent (uint_fast16_t eventSelect)

void RTC_C_setCalibrationData (uint_fast8_t offsetDirection, uint_fast8_t offsetValue)

void RTC_C_setCalibrationFrequency (uint_fast16_t frequencySelect)

void RTC_C_setPrescaleValue (uint_fast8 t prescaleSelect, uint_fast8 t

prescaleCounterValue)

m bool RTC_C_setTemperatureCompensation (uint_fast16_t offsetDirection, uint_fast8_t
offsetValue)

m void RTC_C_startClock (void)

m void RTC_C_unregisterinterrupt (void)

21.3.1 Detailed Description

The code for this module is contained in driverlib/rtc_c.c, withdriverlib/rtc_c.h
containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 301

Real Time Clock (RTC_C)

21.3.2 Function Documentation

21.3.2.1 void RTC_C_clearInterruptFlag (uint_fast8_t interruptFlagMask)

Clears selected RTC interrupt flags.

Parameters

interruptFlag-
Mask

is a bit mask of the interrupt flags to be cleared. Mask Value is the logical OR of any of
the following

RTC_C_TIME_EVENT_INTERRUPT - asserts when counter overflows in counter
mode or when Calendar event condition defined by setCalendarEvent() is met.

RTC_C_CLOCK_ALARM_INTERRUPT - asserts when alarm condition in Calendar
mode is met.

RTC_C_CLOCK_READ_READY_INTERRUPT - asserts when Calendar registers
are settled.

RTC_C_PRESCALE_TIMERO_INTERRUPT - asserts when Prescaler 0 event con-
dition is met.
RTC_C_PRESCALE_TIMER1_INTERRUPT - asserts when Prescaler 1 event con-
dition is met.

RTC_C_OSCILLATOR_FAULT_INTERRUPT - asserts if there is a problem with the
32kHz oscillator, while the RTC is running.

This function clears the RTC interrupt flag is cleared, so that it no longer asserts.

Returns
None

21.3.2.2 uint16_t RTC_C_convertBCDToBinary (uint16_t valueToConvert)

Returns the given BCD value in Binary Format

Parameters

| valueToConvert | is the raw value in BCD format to convert to Binary.

This function converts BCD values to Binary format.

Returns

The Binary version of the valueToConvert parameter.

21.3.2.3 uint16_t RTC_C_convertBinaryToBCD (uint16_t valueToConvert)

Returns the given Binary value in BCD Format

Wed Aug 14 17:01:15 -05 2019

302

Real Time Clock (RTC_C)

Parameters

| valueToConvert | is the raw value in Binary format to convert to BCD.

This function converts Binary values to BCD format.

Returns
The BCD version of the valueToConvert parameter.

21.3.2.4 void RTC_C_definePrescaleEvent (uint_fast8_t prescaleSelect, uint fast8 t
prescaleEventDivider)

Sets up an interrupt condition for the selected Prescaler.

Parameters

prescaleSelect | is the prescaler to define an interrupt for. Valid values are
m RTC_C_PRESCALE_0
m RTC_C_PRESCALE_1

prescaleEvent- | is a divider to specify when an interrupt can occur based on the clock source of the se-
Divider | lected prescaler. (Does not affect timer of the selected prescaler). Valid values are

= RTC_C_PSEVENTDIVIDER_2 [Default]
= RTC_C_PSEVENTDIVIDER 4
RTC_C_PSEVENTDIVIDER_8
RTC_C_PSEVENTDIVIDER_16
RTC_C_PSEVENTDIVIDER_32
RTC_C_PSEVENTDIVIDER_64
RTC_C_PSEVENTDIVIDER_128
RTC_C_PSEVENTDIVIDER_256

This function sets the condition for an interrupt to assert based on the individual prescalers.

Wed Aug 14 17:01:15 -05 2019 303

Real Time Clock (RTC_C)

Returns
None

21.3.2.5 void RTC_C_disablelnterrupt (uint8_t interruptMask)

Disables selected RTC interrupt sources.

Parameters

interruptMask

is a

bit mask of the interrupts to disable. Mask Value is the logical OR of any of the

following

RTC_C_TIME_EVENT_INTERRUPT - asserts when counter overflows in counter
mode or when Calendar event condition defined by setCalendarEvent() is met.

RTC_C_CLOCK_ALARM_INTERRUPT - asserts when alarm condition in Calendar
mode is met.

RTC_CLOCK_READ_READY_INTERRUPT - asserts when Calendar registers are
settled.

RTC_C_PRESCALE_TIMERO_INTERRUPT - asserts when Prescaler 0 event con-
dition is met.
RTC_C_PRESCALE_TIMER1_INTERRUPT - asserts when Prescaler 1 event con-
dition is met.

RTC_C_OSCILLATOR_FAULT_INTERRUPT - asserts if there is a problem with the
32kHz oscillator, while the RTC is running.

This function disables the selected RTC interrupt source. Only the sources that are enabled can
be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns
None

21.3.2.6 void RTC_C_enablelnterrupt (uint8_t interruptMask)

Enables selected RTC interrupt sources.

Wed Aug 14 17:01:15 -05 2019

304

Real Time Clock (RTC_C)

21.3.2.7

21.3.2.8

Parameters

interruptMask | is a bit mask of the interrupts to enable. Mask Value is the logical OR of any of the
following

m RTC_C_TIME_EVENT INTERRUPT - asserts when counter overflows in counter
mode or when Calendar event condition defined by setCalendarEvent() is met.

m RTC_C CLOCK ALARM INTERRUPT - asserts when alarm condition in Calendar
mode is met.

m RTC_C_CLOCK_READ_READY_INTERRUPT - asserts when Calendar registers
are settled.

m RTC_C_PRESCALE_TIMERO_INTERRUPT - asserts when Prescaler 0 event con-
dition is met.

m RTC_C_PRESCALE_TIMER1_INTERRUPT - asserts when Prescaler 1 event con-
dition is met.

m RTC_C_OSCILLATOR_FAULT_INTERRUPT - asserts if there is a problem with the
32kHz oscillator, while the RTC is running.

This function enables the selected RTC interrupt source. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns
None

RTC_C_Calendar RTC_C_getCalendarTime (void)

Returns the Calendar Time stored in the Calendar registers of the RTC.

This function returns the current Calendar time in the form of a Calendar structure.

Returns
A Calendar structure containing the current time.

uint_fast8_t RTC_C_getEnabledInterruptStatus (void)

Returns the status of the interrupts flags masked with the enabled interrupts. This function is
useful to call in ISRs to get a list of pending interrupts that are actually enabled and could have
caused the ISR.

Returns
A bit mask of the selected interrupt flag’s status. Mask Value is the logical OR of any of the
following
m RTC_TIME_EVENT INTERRUPT - asserts when counter overflows in counter mode or
when Calendar event condition defined by setCalendarEvent() is met.
m RTC_CLOCK_ALARM_INTERRUPT - asserts when alarm condition in Calendar mode
is met.
m RTC_CLOCK_READ_ READY_INTERRUPT - asserts when Calendar registers are
settled.

Wed Aug 14 17:01:15 -05 2019 305

Real Time Clock (RTC_C)

m RTC_C_PRESCALE_TIMERO_INTERRUPT - asserts when Prescaler 0 event condition
is met.

m RTC_C_PRESCALE_TIMER1_INTERRUPT - asserts when Prescaler 1 event condition
is met.

m RTC_OSCILLATOR_FAULT INTERRUPT - asserts if there is a problem with the 32kHz
oscillator, while the RTC is running.

References RTC_C_getInterruptStatus().

21.3.2.9 uint_fast8 t RTC_C_getinterruptStatus (void)

Returns the status of the interrupts flags.

Returns
A bit mask of the selected interrupt flag’s status. Mask Value is the logical OR of any of the
following

m RTC_C_TIME_EVENT_INTERRUPT - asserts when counter overflows in counter mode
or when Calendar event condition defined by setCalendarEvent() is met.

m RTC_C_CLOCK_ALARM_INTERRUPT - asserts when alarm condition in Calendar
mode is met.

m RTC_C_CLOCK_READ_READY_INTERRUPT - asserts when Calendar registers are
settled.

m RTC_C_PRESCALE_TIMERO_INTERRUPT - asserts when Prescaler 0 event condition
is met.

m RTC_C_PRESCALE_TIMER1_INTERRUPT - asserts when Prescaler 1 event condition
is met.

m RTC_C_OSCILLATOR_FAULT_INTERRUPT - asserts if there is a problem with the
32kHz oscillator, while the RTC is running.

Referenced by RTC_C_getEnabledinterruptStatus().

21.3.2.10 uint_fast8_t RTC_C_getPrescaleValue (uint_fast8 t prescaleSelect)

Returns the selected Prescaler value.
Parameters

prescaleSelect | is the prescaler to obtain the value of. Valid values are
m RTC_C_PRESCALE_0
m RTC_C_PRESCALE_1

This function returns the value of the selected prescale counter register. The counter should be
held before reading. If in counter mode, the individual prescaler can be held, while in Calendar
mode the whole RTC must be held.

Returns
The value of the specified Prescaler count register

Wed Aug 14 17:01:15 -05 2019 306

Real Time Clock (RTC_C)

21.3.2.11 void RTC_C_holdClock (void)
Holds the RTC.
This function sets the RTC main hold bit to disable RTC functionality.

Returns
None

Referenced by PCM_gotoLPM4().
21.3.2.12 void RTC_C initCalendar (const RTC_C_Calendar x calendarTime,
uint_fast16_t formatSelect)

Initializes the settings to operate the RTC in Calendar mode.

Parameters

calendarTime | is the structure containing the values for the Calendar to be initialized to. Valid values
should be of type Calendar and should contain the following members and corresponding
values:

m seconds between 0-59

= minutes between 0-59

m hours between 0-23

m dayOfWeek between 0-6
m dayOfmonth between 1-31
= month between 1-12

m year between 0-4095

Note
Values beyond the ones specified may result in erratic behavior.

Parameters

formatSelect | is the format for the Calendar registers to use. Valid values are
m RTC_C_FORMAT_BINARY [Default]
m RTC_C_FORMAT_BCD

This function initializes the Calendar mode of the RTC module.

Returns
None

21.3.2.13 void RTC_C_registerinterrupt (void(x)(void) intHandler)

Registers an interrupt handler for the RTC interrupt.

Wed Aug 14 17:01:15 -05 2019 307

Real Time Clock (RTC_C)

Parameters

] intHandler | is a pointer to the function to be called when the RTC interrupt occurs.

This function registers the handler to be called when a RTC interrupt occurs. This function enables
the global interrupt in the interrupt controller; specific AES interrupts must be enabled via
RTC_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt source via
RTC_clearInterruptFlag().

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

21.3.2.14 void RTC_C_setCalendarAlarm (uint_fast8 t minutesAlarm, uint_fast8 t
hoursAlarm, uint_fast8 t dayOfWeekAlarm, uint_fast8 t dayOfmonthAlarm)

Sets and Enables the desired Calendar Alarm settings.

Parameters
minutesAlarm | is the alarm condition for the minutes. Valid values are
m An integer between 0-59, OR
m RTC_C_ALARMCONDITION_OFF [Default]
hoursAlarm | is the alarm condition for the hours. Valid values are
m An integer between 0-24, OR
m RTC_C_ALARMCONDITION_OFF [Default]
day- | is the alarm condition for the day of week. Valid values are
OfWeekAlarm = An integer between 0-6, OR
m RTC_C_ALARMCONDITION_OFF [Default]
dayOfmon- | is the alarm condition for the day of the month. Valid values are
thAlarm m An integer between 0-31, OR
m RTC_C_ALARMCONDITION_OFF [Default]

This function sets a Calendar interrupt condition to assert the RTCAIFG interrupt flag. The
condition is a logical and of all of the parameters. For example if the minutes and hours alarm is
set, then the interrupt will only assert when the minutes AND the hours change to the specified
setting. Use the RTC_ALARM_OFF for any alarm settings that should not be apart of the alarm

condition.

Returns
None

21.3.2.15 void RTC_C_setCalendarEvent (uint_fast16_t eventSelect)

Sets a single specified Calendar interrupt condition.

Wed Aug 14 17:01:15 -05 2019

308

Real Time Clock (RTC_C)

Parameters

eventSelect | is the condition selected. Valid values are

m RTC_C_CALENDAREVENT_HOURCHANGE - assert interrupt on every hour
m RTC_C_CALENDAREVENT_NOON - assert interrupt when hour is 12
m RTC_C_CALENDAREVENT_MIDNIGHT - assert interrupt when hour is 0

m RTC_C_CALENDAREVENT_MINUTECHANGE - assert interrupt on every minute

This function sets a specified event to assert the RTCTEVIFG interrupt. This interrupt is
independent from the Calendar alarm interrupt.

Returns
None

21.3.2.16 void RTC_C_setCalibrationData (uint_fast8 t offsetDirection, uint_fast8 t
offsetValue)

Sets the specified calibration for the RTC.

Parameters

offsetDirection | is the direction that the calibration offset will go. Valid values are
m RTC_C_CALIBRATION_DOWN1PPM - calibrate at steps of -1
m RTC_C_CALIBRATION_UP1PPM - calibrat at steps of +1

offsetValue | is the value that the offset will be a factor of; a valid value is any integer from 1-240.

This function sets the calibration offset to make the RTC as accurate as possible. The
offsetDirection can be either +1-ppm or -1-ppm, and the offsetValue should be from 1-240 and is
multiplied by the direction setting (i.e. +1-ppm = 8 (offsetValue) = +8-ppm).

Returns
None

21.3.2.17 void RTC_C_setCalibrationFrequency (uint_fast16_t frequencySelect)

Allows and Sets the frequency output to RTCLK pin for calibration measurement.

Parameters

frequencySelect | is the frequency output to RTCLK. Valid values are

m RTC_C_CALIBRATIONFREQ_OFF - turn off calibration output [Default]

m RTC_C_CALIBRATIONFREQ_512HZ - output signal at 512Hz for calibration
m RTC_C_CALIBRATIONFREQ_256HZ - output signal at 256Hz for calibration
m RTC_C_CALIBRATIONFREQ_1HZ - output signal at 1Hz for calibration

This function sets a frequency to measure at the RTCLK output pin. After testing the set
frequency, the calibration could be set accordingly.

Wed Aug 14 17:01:15 -05 2019 309

Real Time Clock (RTC_C)

Returns
None

21.3.2.18 void RTC_C_setPrescaleValue (uint _fast8 t prescaleSelect, uint fast8 t
prescaleCounterValue)

Sets the selected Prescaler value.
Parameters

prescaleSelect | is the prescaler to set the value for. Valid values are
m RTC_C_PRESCALE_0
m RTC_C_PRESCALE_1

prescaleCoun- | is the specified value to set the prescaler to; a valid value is any integer from 0-255.
terValue

This function sets the prescale counter value. Before setting the prescale counter, it should be
held.

Returns
None

21.3.2.19 bool RTC_C_setTemperatureCompensation (uint_fast16_t offsetDirection,
uint_fast8_t offsetValue)

Sets the specified temperature compensation for the RTC.

Parameters

offsetDirection | is the direction that the calibration offset will go. Valid values are
m RTC_C_COMPENSATION_DOWN1PPM - calibrate at steps of -1
m RTC_C_COMPENSATION_UP1PPM - calibrate at steps of +1

offsetValue | is the value that the offset will be a factor of; a value is any integer from 1-240.

This function sets the calibration offset to make the RTC as accurate as possible. The
offsetDirection can be either +1-ppm or -1-ppm, and the offsetValue should be from 1-240 and is
multiplied by the direction setting (i.e. +1-ppm = 8 (offsetValue) = +8-ppm).

Returns
true if calibration was set, false if it could not be set

21.3.2.20 void RTC_C_startClock (void)

Starts the RTC.

This function clears the RTC main hold bit to allow the RTC to function.

Wed Aug 14 17:01:15 -05 2019 310

Real Time Clock (RTC_C)

Returns
None

21.3.2.21 void RTC_C_unregisterinterrupt (void)

Unregisters the interrupt handler for the RTC interrupt

This function unregisters the handler to be called when RTC interrupt occurs. This function also
masks off the interrupt in the interrupt controller so that the interrupt handler no longer is called.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 311

Serial Peripheral Interface (SPI)

22

22.1

22.2

Serial Peripheral Interface (SPI)

MOAUIE OPEIAtIONttt e et e e e e e e 313
Basic Operation MOGESt e 313
Programming EXample o 314
D iNIEIONS .. e 315

Module Operation

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard named
by Motorola that operates in full duplex mode. Devices communicate in master/slave mode where
the master device initiates the data frame. Note for simplicity, the module name EUSCI_A and
EUSCI_B have been omitted from the APl names.

This library provides the API for handling a 3-wire SPI communication
The SPI module can be configured as either a master or a slave device.

The SPI module also includes a programmabile bit rate clock divider and prescaler to generate the
output serial clock derived from the SSI module’s input clock.

Basic Operation Modes

To use the module as a master, the user must call SPI_masterlnit() to configure the SPI Master.
This is followed by enabling the SPI module using SPI_enable(). The interrupts are then enabled
(if needed). It is recommended to enable the SPI module before enabling the interrupts. A data
transmit is then initiated using SPI_transmitData and then when the receive flag is set, the
received data is read using SPI_receiveData and this indicates that an RX/TX operation is
complete.

To use the module as a slave, initialization is done using SPI_initSlave and this is followed by
enabling the module using SPI_enableModule . Following this, the interrupts may be enabled as
needed. When the receive flag is set, data is first transmitted using SPI_transmitData and this is
followed by a data reception by SPI_receiveData .

Wed Aug 14 17:01:15 -05 2019 312

Serial Peripheral Interface (SPI)

22.3 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the SPI module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a very brief code example showing how to configure the SPI module in 3wire master
mode.

In the code snippet below, the configuration settings for SPI in 3wire master mode can be seen:

In this code snippet, the SPI module is configured and enabled for 3wire SPI operation using the
DriverLib APls:

Wed Aug 14 17:01:15 -05 2019 313

Serial Peripheral Interface (SPI)

22.4 Definitions

Data Structures

struct _eUSCI_SPI_MasterConfig
struct _eUSCI_SPI_SlaveConfig

Functions

void EUSCI_A_SPI_changeClockPhasePolarity (uint32_t baseAddress, uint16_t clockPhase,
uint16_t clockPolarity)

void EUSCI_A_SPI_clearInterruptFlag (uint32_t baseAddress, uint16_t mask)

void EUSCI_A_SPI_disable (uint32_t baseAddress)

void EUSCI_A_SPI_disablelnterrupt (uint32_t baseAddress, uint16_t mask)

void EUSCI_A_SPI_enable (uint32_t baseAddress)

void EUSCI_A_SPI_enablelnterrupt (uint32_t baseAddress, uint16_t mask)

uint8_t EUSCI_A_SPI_getInterruptStatus (uint32_t baseAddress, uint8_t mask)

uint32_t EUSCI_A_SPI_getReceiveBufferAddressForDMA (uint32_t baseAddress)
uint32_t EUSCI_A_SPI_getTransmitBufferAddressForDMA (uint32_t baseAddress)

bool EUSCI_A_SPI_isBusy (uint32_t baseAddress)

void EUSCI_A_SPI_masterChangeClock (uint32_t baseAddress, uint32_t
clockSourceFrequency, uint32_t desiredSpiClock)

uint8_t EUSCI_A_SPI_receiveData (uint32_t baseAddress)

void EUSCI_A_SPI_select4PinFunctionality (uint32_t baseAddress, uint8_t
select4PinFunctionality)

bool EUSCI_A_SPI_slavelnit (uint32_t baseAddress, uint16_t msbFirst, uint16_t clockPhase,
uint16_t clockPolarity, uint16_t spiMode)

void EUSCI_A_SPI_transmitData (uint32_t baseAddress, uint8_t transmitData)

void EUSCI_B_SPI_changeClockPhasePolarity (uint32_t baseAddress, uint16_t clockPhase,
uint16_t clockPolarity)

void EUSCI_B_SPI_clearinterruptFlag (uint32_t baseAddress, uint16_t mask)

void EUSCI_B_SPI_disable (uint32_t baseAddress)

void EUSCI_B_SPI_disablelnterrupt (uint32_t baseAddress, uint16_t mask)

void EUSCI_B_SPI_enable (uint32_t baseAddress)

void EUSCI_B_SPI_enablelnterrupt (uint32_t baseAddress, uint16_t mask)

uint8_t EUSCI_B_SPI_getinterruptStatus (uint32_t baseAddress, uint8_t mask)

uint32_t EUSCI_B_SPI_getReceiveBufferAddressForDMA (uint32_t baseAddress)
uint32_t EUSCI_B_SPI_getTransmitBufferAddressForDMA (uint32_t baseAddress)

bool EUSCI_B_SPI_isBusy (uint32_t baseAddress)

void EUSCI_B_SPI_masterChangeClock (uint32_t baseAddress, uint32_t
clockSourceFrequency, uint32_t desiredSpiClock)

uint8_t EUSCI_B_SPI_receiveData (uint32_t baseAddress)

void EUSCI_B_SPI_select4PinFunctionality (uint32_t baseAddress, uint8_t
select4PinFunctionality)

bool EUSCI_B_SPI_slavelnit (uint32_t baseAddress, uint16_t msbFirst, uint16_t clockPhase,
uint16_t clockPolarity, uint16_t spiMode)

void EUSCI_B_SPI_transmitData (uint32_t baseAddress, uint8_t transmitData)

void SPI_changeClockPhasePolarity (uint32_t modulelnstance, uint_fast16_t clockPhase,
uint_fast16_t clockPolarity)

void SPI_changeMasterClock (uint32_t modulelnstance, uint32_t clockSourceFrequency,
uint32_t desiredSpiClock)

void SPI_clearlnterruptFlag (uint32_t modulelnstance, uint_fast16_t mask)

void SPI_disablelnterrupt (uint32_t modulelnstance, uint_fast16_t mask)

void SPI_disableModule (uint32_t modulelnstance)

Wed Aug 14 17:01:15 -05 2019 314

Serial Peripheral Interface (SPI)

void SPI_enablelnterrupt (uint32_t modulelnstance, uint_fast16_t mask)

void SPI_enableModule (uint32_t modulelnstance)

uint_fast8_t SPI_getEnabledInterruptStatus (uint32_t modulelnstance)

uint_fast8 t SPI_getinterruptStatus (uint32_t modulelnstance, uint16_t mask)
uint32_t SPI_getReceiveBufferAddressForDMA (uint32_t modulelnstance)

uint32_t SPI_getTransmitBufferAddressForDMA (uint32_t modulelnstance)

bool SPI_initMaster (uint32_t modulelnstance, const eUSCI_SPI_MasterConfig xconfig)
bool SPI_initSlave (uint32_t modulelnstance, const eUSCI_SPI_SlaveConfig xconfig)
uint_fast8_t SPI_isBusy (uint32_t modulelnstance)

uint8_t SPI_receiveData (uint32_t modulelnstance)

void SPI_registerinterrupt (uint32_t modulelnstance, void(xintHandler)(void))

void SPI_selectFourPinFunctionality (uint32_t modulelnstance, uint_fast8_t
select4PinFunctionality)

void SPI_transmitData (uint32_t modulelnstance, uint_fast8_t transmitData)

m void SPI_unregisterinterrupt (uint32_t modulelnstance)

22.4.1 Detailed Description

The code for this module is contained in driverlib/spi.c, with driverlib/spi .h containing
the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 315

Serial Peripheral Interface (SPI)

22.4.2 Data Structure Documentation

22.4.2.1 struct _eUSCI_SPI_MasterConfig

Type definition for _eUSCI_SPI_MasterConfig structure.
ypedef eUSCI_SPI_MasterConfig

Configuration structure for master mode in the SPI module. See SPI_initMaster for parameter
documentation.

22.4.2.2 struct _eUSCI_SPI_SlaveConfig

Type definition for _eUSCI_SPI_SlaveConfig structure.
ypedef eUSCI_SPI_SlaveConfig

Configuration structure for slave mode in the SPI module. See SPI_initSlave for parameter
documentation.

22.4.3 Function Documentation

22.4.3.1 void EUSCI_A_SPI_changeClockPhasePolarity (uint32_t baseAddress, uint16_t
clockPhase, uint16_t clockPolarity)

Changes the SPI colock phase and polarity. At the end of this function call, SPI module is left
enabled.

Parameters

baseAddress | is the base address of the EUSCI_A_SPI module.

clockPhase | is clock phase select. Valid values are:

m EUSCI_A_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
[Default]

m EUSCI_A_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity | is clock polarity select Valid values are:
m EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
m EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]

Modified bits are EUSCI_A_CTLWO0_CKPL, EUSCI_A_CTLWO0_CKPH and UCSWRST of
UCAxCTLWO register.

Wed Aug 14 17:01:15 -05 2019 316

Serial Peripheral Interface (SPI)

Returns
None

Referenced by SPI_changeClockPhasePolarity().

22.4.3.2 void EUSCI_A_SPI_clearinterruptFlag (uint32_t baseAddress, uint16_t mask)

Clears the selected SPI interrupt status flag.

Wed Aug 14 17:01:15 -05 2019 317

Serial Peripheral Interface (SPI)

Parameters

baseAddress | is the base address of the EUSCI_A_SPI module.

mask | is the masked interrupt flag to be cleared. Mask value is the logical OR of any of the
following:

m EUSCI_A_SPI_TRANSMIT_INTERRUPT
m EUSCI_A_SPI_RECEIVE_INTERRUPT

Modified bits of UCAXIFG register.

Returns
None

Referenced by SPI_clearInterruptFlag().

22.4.3.3 void EUSCI_A_SPI_disable (uint32_t baseAddress)

Disables the SPI block.
This will disable operation of the SPI block.

Parameters

] baseAddress | is the base address of the EUSCI_A_SPI module.

Modified bits are UCSWRST of UCAXCTLWO register.

Returns
None

Referenced by SPI_disableModule().

22.4.3.4 void EUSCI_A_SPI_disablelnterrupt (uint32_t baseAddress, uint16_t mask)

Disables individual SPI interrupt sources.

Disables the indicated SPI interrupt sources. Only the sources that are enabled can be reflected to
the processor interrupt; disabled sources have no effect on the processor.

Parameters

baseAddress | is the base address of the EUSCI_A_SPI module.

mask | is the bit mask of the interrupt sources to be disabled. Mask value is the logical OR of any
of the following:

= EUSCI_A_SPI_TRANSMIT_INTERRUPT
= EUSCI_A_SPI_RECEIVE_INTERRUPT

Modified bits of UCAXIE register.

Returns
None

Referenced by SPI_disablelnterrupt().

Wed Aug 14 17:01:15 -05 2019 318

Serial Peripheral Interface (SPI)

22.4.3.5 void EUSCI_A_SPI_enable (uint32_t baseAddress)

Enables the SPI block.
This will enable operation of the SPI block.

Parameters

| baseAddress | is the base address of the EUSCI_A_SPI module.

Modified bits are UCSWRST of UCAxCTLWO register.

Returns
None

Referenced by SPI_enableModule().

22.4.3.6 void EUSCI_A_SPI_enablelnterrupt (uint32_t baseAddress, uint16_t mask)

Enables individual SPI interrupt sources.

Enables the indicated SPI interrupt sources. Only the sources that are enabled can be reflected to
the processor interrupt; disabled sources have no effect on the processor. Does not clear interrupt
flags.

Parameters

baseAddress | is the base address of the EUSCI_A_SPI module.

mask | is the bit mask of the interrupt sources to be enabled. Mask value is the logical OR of any
of the following:

= EUSCI_A_SPI_TRANSMIT_INTERRUPT
= EUSCI_A_SPI_RECEIVE_INTERRUPT

Modified bits of UCAXIFG register and bits of UCAXIE register.

Returns
None

Referenced by SPI_enablelnterrupt().

22.4.3.7 uint8_t EUSCI_A_SPI_getinterruptStatus (uint32_t baseAddress, uint8_t mask
)

Gets the current SPI interrupt status.

This returns the interrupt status for the SPI module based on which flag is passed.

Wed Aug 14 17:01:15 -05 2019 319

Serial Peripheral Interface (SPI)

Parameters

baseAddress | is the base address of the EUSCI_A_SPI module.

mask | is the masked interrupt flag status to be returned. Mask value is the logical OR of any of
the following:

m EUSCI_A_SPI_TRANSMIT_INTERRUPT
m EUSCI_A_SPI_RECEIVE_INTERRUPT

Returns
Logical OR of any of the following:

m EUSCI_A_SPI_TRANSMIT_INTERRUPT

m EUSCI_A_SPI_RECEIVE_INTERRUPT
indicating the status of the masked interrupts

Referenced by SPI_getinterruptStatus().

22.4.3.8 uint32_t EUSCI_A_SPI_getReceiveBufferAddressForDMA (uint32_t
baseAddress)

Returns the address of the RX Buffer of the SPI for the DMA module.

Returns the address of the SPI RX Buffer. This can be used in conjunction with the DMA to store
the received data directly to memory.

Parameters

| baseAddress | is the base address of the EUSCI_A_SPI module.

Returns
the address of the RX Buffer

Referenced by SPI_getReceiveBufferAddressForDMA().

22.4.3.9 uint32_t EUSCI_A_SPI_getTransmitBufferAddressForDMA (uint32_t
baseAddress)

Returns the address of the TX Buffer of the SPI for the DMA module.

Returns the address of the SPI TX Buffer. This can be used in conjunction with the DMA to obtain
transmitted data directly from memory.

Parameters

| baseAddress | is the base address of the EUSCI_A_SPI module.

Returns
the address of the TX Buffer

Referenced by SPI_getTransmitBufferAddressForDMA().

Wed Aug 14 17:01:15 -05 2019 320

Serial Peripheral Interface (SPI)

22.4.3.10

22.4.3.11

22.4.3.12

bool EUSCI_A_SPI_isBusy (uint32_t baseAddress)

Indicates whether or not the SPI bus is busy.

This function returns an indication of whether or not the SPI bus is busy.This function checks the
status of the bus via UCBUSY bit

Parameters

| baseAddress | is the base address of the EUSCI_A_SPI module.

Returns
true if busy, false otherwise

Referenced by SPI_isBusy().
void EUSCI_A_SPI_masterChangeClock (uint32_t baseAddress, uint32_t
clockSourceFrequency, uint32_t desiredSpiClock)

Initializes the SPI Master clock. At the end of this function call, SPI module is left enabled.

Parameters

baseAddress | is the base address of the EUSCI_A_SPI module.

clockSourceFre- | is the frequency of the slected clock source
quency

desiredSpiClock | is the desired clock rate for SPI communication

Modified bits are UCSWRST of UCAxCTLWO register.

Returns
None

Referenced by SPI_changeMasterClock().

uint8 t EUSCI_A_SPI _receiveData (uint32_t baseAddress)

Receives a byte that has been sent to the SPI Module.
This function reads a byte of data from the SPI receive data Register.

Parameters

] baseAddress | is the base address of the EUSCI_A_SPI module.

Wed Aug 14 17:01:15 -05 2019 321

Serial Peripheral Interface (SPI)

Returns
Returns the byte received from by the SPI module, cast as an uint8_t.

Referenced by SPI_receiveData().

22.4.3.13 void EUSCI_A_SPI_select4PinFunctionality (uint32_t baseAddress, uint8 t
select4PinFunctionality)

Selects 4Pin Functionality.

This function should be invoked only in 4-wire mode. Invoking this function has no effect in 3-wire
mode.

Parameters

baseAddress | is the base address of the EUSCI_A_SPI module.

se- | selects 4 pin functionality Valid values are:
lect4PinFunctionality w Eysci_A_SPI_PREVENT_CONFLICTS_WITH_OTHER_MASTERS
= EUSCI_A_SPI_ENABLE_SIGNAL_FOR_4WIRE_SLAVE

Modified bits are UCSTEM of UCAXCTLWO register.

Returns
None

Referenced by SPI_selectFourPinFunctionality().

22.4.3.14 bool EUSCI_A_SPI_slavelnit (uint32_t baseAddress, uint16_t msbFirst,
uint16_t clockPhase, uint16_t clockPolarity, uint16_t spiMode)

Initializes the SPI Slave block.

Upon successful initialization of the SPI slave block, this function will have initailized the slave
block, but the SPI Slave block still remains disabled and must be enabled with
EUSCI_A_SPI_enable()

Parameters

baseAddress | is the base address of the EUSCI_A_SPI Slave module.

msbFirst | controls the direction of the receive and transmit shift register. Valid values are:
m EUSCI_A_SPI_MSB_FIRST
m EUSCI_A_SPI_LSB_FIRST [Default]

Wed Aug 14 17:01:15 -05 2019 322

Serial Peripheral Interface (SPI)

clockPhase | is clock phase select. Valid values are:

m EUSCI_A_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
[Default]

m EUSCI_A_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity | is clock polarity select Valid values are:
m EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
m EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]

spiMode | is SPI mode select Valid values are:

m EUSCI_A_SPI_3PIN

m EUSCI_A_SPI_4PIN_UCXSTE_ACTIVE_HIGH
m EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_LOW

Modified bits are EUSCI_A_CTLWO0_MSB, EUSCI_A_CTLWO0_MST,
EUSCI_A_CTLWO_SEVENBIT, EUSCI_A_CTLWO0_CKPL, EUSCI_A_CTLWO0_CKPH, UCMODE
and UCSWRST of UCAXCTLWO register.

Returns
true

22.4.3.15 void EUSCI_A_SPI_transmitData (uint32_t baseAddress, uint8_t transmitData)

Transmits a byte from the SPI Module.
This function will place the supplied data into SPI trasmit data register to start transmission.

Parameters

baseAddress | is the base address of the EUSCI_A_SPI module.

transmitData | data to be transmitted from the SPI module

Returns
None

Referenced by SPI_transmitData().

22.4.3.16 void EUSCI_B_SPI_changeClockPhasePolarity (uint32_t baseAddress, uint16 _t
clockPhase, uint16_t clockPolarity)

Changes the SPI colock phase and polarity. At the end of this function call, SPI module is left
enabled.

Parameters

Wed Aug 14 17:01:15 -05 2019 323

Serial Peripheral Interface (SPI)

baseAddress

is the base address of the EUSCI_B_SPI module.

clockPhase

is clock phase select. Valid values are:

m EUSCI_B_SPI_ PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
[Default]

m EUSCI_B_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity

is clock polarity select Valid values are:
m EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
m EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]

Modified bits are EUSCI_A_CTLWO0_CKPL, EUSCI_A_CTLWO0_CKPH and UCSWRST of
UCAXCTLWO register.

Returns
None

Referenced by SPI_changeClockPhasePolarity().

22.4.3.17 void EUSCI_B_SPI_clearInterruptFlag (uint32_t baseAddress, uint16_t mask)

Clears the selected SPI interrupt status flag.

Parameters

baseAddress

is the base address of the EUSCI_B_SPI module.

mask

is the masked interrupt flag to be cleared. Mask value is the logical OR of any of the
following:

m EUSCI_B_SPI_TRANSMIT_INTERRUPT
m EUSCI_B_SPI_RECEIVE_INTERRUPT

Modified bits of UCAXIFG register.

Returns
None

Referenced by SPI_clearinterruptFlag().

22.4.3.18 void EUSCI_B_SPI_disable (uint32_t baseAddress)

Disables the SPI block.
This will disable operation of the SPI block.

Parameters

| baseAddress | is the base address of the EUSCI_B_SPI module.

Modified bits are UCSWRST of UCBxCTLWO register.

Wed Aug 14 17:01:15 -05 2019

324

Serial Peripheral Interface (SPI)

Returns
None

Referenced by SPI_disableModule().

22.4.3.19 void EUSCI_B_SPI_disablelnterrupt (uint32_t baseAddress, uint16_t mask)

Disables individual SPI interrupt sources.

Disables the indicated SPI interrupt sources. Only the sources that are enabled can be reflected to
the processor interrupt; disabled sources have no effect on the processor.

Parameters

baseAddress | is the base address of the EUSCI_B_SPI module.

mask | is the bit mask of the interrupt sources to be disabled. Mask value is the logical OR of any
of the following:

m EUSCI_B_SPI_TRANSMIT_INTERRUPT
m EUSCI_B_SPI_RECEIVE_INTERRUPT

Modified bits of UCAXIE register.

Returns
None

Referenced by SPI_disablelnterrupt().

22.4.3.20 void EUSCI_B_SPI_enable (uint32_t baseAddress)

Enables the SPI block.
This will enable operation of the SPI block.

Parameters

| baseAddress | is the base address of the EUSCI_B_SPI module.

Modified bits are UCSWRST of UCBxCTLWO register.

Returns
None

Referenced by SPI_enableModule().

22.4.3.21 void EUSCI_B_SPI_enablelnterrupt (uint32_t baseAddress, uint16_t mask)

Enables individual SPI interrupt sources.

Enables the indicated SPI interrupt sources. Only the sources that are enabled can be reflected to
the processor interrupt; disabled sources have no effect on the processor. Does not clear interrupt
flags.

Wed Aug 14 17:01:15 -05 2019 325

Serial Peripheral Interface (SPI)

22.4.3.22

22.4.3.23

Parameters

baseAddress | is the base address of the EUSCI_B_SPI module.

mask | is the bit mask of the interrupt sources to be enabled. Mask value is the logical OR of any

of the following:
m EUSCI_B_SPI_TRANSMIT_INTERRUPT
m EUSCI_B_SPI_RECEIVE_INTERRUPT

Modified bits of UCAXIFG register and bits of UCAXIE register.

Returns
None

Referenced by SPI_enablelnterrupt().

uint8_t EUSCI_B_SPI_getInterruptStatus (uint32_t baseAddress, uint8_t mask
)

Gets the current SPI interrupt status.
This returns the interrupt status for the SPI module based on which flag is passed.

Parameters

baseAddress | is the base address of the EUSCI_B_SPI module.

mask | is the masked interrupt flag status to be returned. Mask value is the logical OR of any of

the following:
m EUSCI_B_SPI_TRANSMIT_INTERRUPT
m EUSCI_B_SPI_RECEIVE_INTERRUPT

Returns
Logical OR of any of the following:

m EUSCI_B_SPI_TRANSMIT_INTERRUPT

m EUSCI_B_SPI_RECEIVE_INTERRUPT
indicating the status of the masked interrupts

Referenced by SPI_getinterruptStatus().

uint32_t EUSCI_B_SPI_getReceiveBufferAddressForDMA (uint32_t
baseAddress)

Returns the address of the RX Buffer of the SPI for the DMA module.

Returns the address of the SPI RX Buffer. This can be used in conjunction with the DMA to store
the received data directly to memory.

Wed Aug 14 17:01:15 -05 2019 326

Serial Peripheral Interface (SPI)

Parameters

] baseAddress | is the base address of the EUSCI_B_SPI module.

Returns
the address of the RX Buffer

Referenced by SPI_getReceiveBufferAddressForDMA().

22.4.3.24 uint32_t EUSCI_B_SPI_getTransmitBufferAddressForDMA (uint32_t
baseAddress)

Returns the address of the TX Buffer of the SPI for the DMA module.

Returns the address of the SPI TX Buffer. This can be used in conjunction with the DMA to obtain
transmitted data directly from memory.

Parameters

| baseAddress | is the base address of the EUSCI_B_SPI module.

Returns
the address of the TX Buffer

Referenced by SPI_getTransmitBufferAddressForDMA().

22.4.3.25 bool EUSCI_B_SPI_isBusy (uint32_t baseAddress)

Indicates whether or not the SPI bus is busy.

This function returns an indication of whether or not the SPI bus is busy.This function checks the
status of the bus via UCBUSY bit

Parameters

| baseAddress | is the base address of the EUSCI_B_SPI module.

Returns
true if busy, false otherwise

Referenced by SPI_isBusy().

22.4.3.26 void EUSCI_B_SPI_masterChangeClock (uint32_t baseAddress, uint32_t
clockSourceFrequency, uint32_t desiredSpiClock)

Initializes the SPI Master clock. At the end of this function call, SPI module is left enabled.

Wed Aug 14 17:01:15 -05 2019 327

Serial Peripheral Interface (SPI)

Parameters

baseAddress | is the base address of the EUSCI_B_SPI module.

clockSourceFre- | is the frequency of the slected clock source
quency

desiredSpiClock | is the desired clock rate for SPI communication

Modified bits are UCSWRST of UCAXCTLWO register.

Returns
None

Referenced by SPI_changeMasterClock().

22.4.3.27 uint8_t EUSCI_B_SPI_receiveData (uint32_t baseAddress)

Receives a byte that has been sent to the SPI Module.
This function reads a byte of data from the SPI receive data Register.

Parameters

| baseAddress | is the base address of the EUSCI_B_SPI module.

Returns
Returns the byte received from by the SPI module, cast as an uint8_t.

Referenced by SPI_receiveData().

22.4.3.28 void EUSCI_B_SPI_select4PinFunctionality (uint32_t baseAddress, uint8_t
select4PinFunctionality)

Selects 4Pin Functionality.

This function should be invoked only in 4-wire mode. Invoking this function has no effect in 3-wire
mode.

Parameters

baseAddress | is the base address of the EUSCI_B_SPI module.

se- | selects 4 pin functionality Valid values are:
lect4PinFunctiondlity 4 gyscl B _SPI PREVENT CONFLICTS WITH OTHER _MASTERS
= EUSCI_B_SPI_ENABLE_SIGNAL FOR_4WIRE_SLAVE

Modified bits are UCSTEM of UCAXCTLWO register.

Returns
None

Referenced by SPI_selectFourPinFunctionality().

Wed Aug 14 17:01:15 -05 2019 328

Serial Peripheral Interface (SPI)

22.4.3.29 bool EUSCI_B_SPI_slavelnit (uint32_t baseAddress, uint16_t msbFirst,
uint16_t clockPhase, uint16_t clockPolarity, uint16_t spiMode)

Initializes the SPI Slave block.

Upon successful initialization of the SPI slave block, this function will have initailized the slave
block, but the SPI Slave block still remains disabled and must be enabled with
EUSCI_B_SPI_enable()

Parameters

baseAddress | is the base address of the EUSCI_B_SPI Slave module.

msbFirst | controls the direction of the receive and transmit shift register. Valid values are:
m EUSCI_B_SPI_MSB_FIRST
m EUSCI_B_SPI_LSB_FIRST [Default]

clockPhase | is clock phase select. Valid values are:

m EUSCI_B_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
[Default]

m EUSCI_B_SPI_ PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity | is clock polarity select Valid values are:
m EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
m EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]

spiMode | is SPI mode select Valid values are:

m EUSCI_B_SPI_3PIN

m EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_HIGH
m EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_LOW

Modified bits are EUSCI_A_CTLWO0_MSB, EUSCI_A_CTLWO0_MST,
EUSCI_A_CTLWO_SEVENBIT, EUSCI_A_CTLWO0_CKPL, EUSCI_A_CTLWO0_CKPH, UCMODE
and UCSWRST of UCAxCTLWO register.

Returns
true

22.4.3.30 void EUSCI_B_SPI_transmitData (uint32_t baseAddress, uint8 t transmitData)

Transmits a byte from the SPI Module.
This function will place the supplied data into SPI trasmit data register to start transmission.

Parameters

baseAddress | is the base address of the EUSCI_B_SPI module.

transmitData | data to be transmitted from the SPI module

Wed Aug 14 17:01:15 -05 2019 329

Serial Peripheral Interface (SPI)

Returns
None

Referenced by SPI_transmitData().

22.4.3.31 void SPI_changeClockPhasePolarity (uint32_t modulelnstance, uint_fast16_t
clockPhase, uint_fast16_t clockPolarity)

Changes the SPI clock phase and polarity.At the end of this function call, SPI module is left
enabled.

Parameters

modulelnstance | is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO0_BASE
= EUSCI_A1_BASE
= EUSCI_A2 BASE
= EUSCI_A3_BASE
= EUSCI_B0_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

clockPhase | is clock phase select. Valid values are:

m EUSCI_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
[Default Value]

m EUSCI_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity | is clock polarity select. Valid values are:
m EUSCI_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
m EUSCI_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default Value]

Modified bits are UCSWRST, UCCKPH, UCCKPL, UCSWRST bits of UCAXCTLWO

Returns
None

References EUSCI_A_SPI_changeClockPhasePolarity(), and
EUSCI_B_SPI_changeClockPhasePolarity().

22.4.3.32 void SPI_changeMasterClock (uint32_t modulelnstance, uint32_t
clockSourceFrequency, uint32_t desiredSpiClock)

Initializes the SPI Master clock.At the end of this function call, SPI module is left enabled.

Wed Aug 14 17:01:15 -05 2019 330

Serial Peripheral Interface (SPI)

Parameters

modulelnstance | is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

m EUSCI_AO0_BASE
m EUSCI_A1_BASE
m EUSCI_A2_BASE
m EUSCI_A3_BASE
m EUSCI_B0_BASE
m EUSCI_B1_BASE
m EUSCI_B2_BASE
m EUSCI_B3_BASE

clockSourceFre- | is the frequency of the selected clock source
quency

desiredSpiClock | is the desired clock rate for SPI communication.

Modified bits are UCSWRST bit of UCAXCTLWO register and UCAxXBRW register

Returns
None

References EUSCI_A_SPI_masterChangeClock(), and EUSCI_B_SPI_masterChangeClock().

22.4.3.33 void SPI_clearInterruptFlag (uint32_t modulelnstance, uint_fast16_t mask)

Clears the selected SPI interrupt status flag.

Parameters

modulelnstance | is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

m EUSCI_AO0_BASE
m EUSCI_A1_BASE
m EUSCI_A2_BASE
m EUSCI_A3_BASE
= EUSCI_BO_BASE
m EUSCI_B1_BASE
m EUSCI_B2_BASE
m EUSCI_B3_BASE

mask | is the masked interrupt flag to be cleared.

The mask parameter is the logical OR of any of the following:

m EUSCI_SPI_RECEIVE_INTERRUPT -Receive interrupt
m EUSCI_SPI_TRANSMIT_INTERRUPT - Transmit interrupt Modified registers are UCAXIFG.

Wed Aug 14 17:01:15 -05 2019 331

Serial Peripheral Interface (SPI)

Returns
None

References EUSCI_A_SPI_clearlnterruptFlag(), and EUSCI_B_SPI_clearlnterruptFlag().

22.4.3.34 void SPI_disablelnterrupt (uint32_t modulelnstance, uint_fast16_t mask)

Disables individual SPI interrupt sources.

Parameters

modulelnstance

is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE
= EUSCI_A3_BASE
= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

mask

is the bit mask of the interrupt sources to be disabled.

Disables the indicated SPI interrupt sources. Only the sources that are enabled can be reflected to
the processor interrupt; disabled sources have no effect on the processor.

The mask parameter is the logical OR of any of the following:

m EUSCI_SPI_RECEIVE_INTERRUPT Receive interrupt
m EUSCI_SPI_TRANSMIT_INTERRUPT Transmit interrupt

Modified register is UCAXIE

Wed Aug 14 17:01:15 -05 2019

332

Serial Peripheral Interface (SPI)

Returns
None.

References EUSCI_A_SPI_disablelnterrupt(), and EUSCI_B_SPI_disablelnterrupt().

22.4.3.35 void SPI_disableModule (uint32_t modulelnstance)

Disables the SPI block.

Parameters

modulelnstance

is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE
= EUSCI_A3_BASE
= EUSCI_B0_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

This will disable operation of the SPI block.
Modified bits are UCSWRST bit of UCAXCTLWO register.

Returns
None.

References EUSCI_A_SPI_disable(), and EUSCI_B_SPI_disable().

22.4.3.36 void SPI_enablelnterrupt (uint32_t modulelnstance, uint_fast16_t mask)

Enables individual SPI interrupt sources.

Wed Aug 14 17:01:15 -05 2019

333

Serial Peripheral Interface (SPI)

Parameters

modulelnstance

is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO0_BASE
= EUSCI_A1_BASE
EUSCI_A2 BASE
EUSCI_A3_BASE
EUSCI_BO_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE
EUSCI_B3_BASE

mask

is the bit mask of the interrupt sources to be enabled.

Enables the indicated SPI interrupt sources. Only the sources that are enabled can be reflected to
the processor interrupt; disabled sources have no effect on the processor.

The mask parameter is the logical OR of any of the following:

m EUSCI_SPI_RECEIVE_INTERRUPT Receive interrupt
m EUSCI_SPI_TRANSMIT_INTERRUPT Transmit interrupt

Modified registers are UCAXIFG and UCAXIE

Returns
None.

References EUSCI_A_SPI_enablelnterrupt(), and EUSCI_B_SPI_enablelnterrupt().

22.4.3.37 void SPI_enableModule (uint32_t modulelnstance)

Enables the SPI block.

Parameters

modulelnstance

is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
EUSCI_A2 BASE
EUSCI_A3_BASE
EUSCI_BO_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE
EUSCI_B3_BASE

This will enable operation of the SPI block. Modified bits are UCSWRST bit of UCAXCTLWO

register.

Wed Aug 14 17:01:15 -05 2019

334

Serial Peripheral Interface (SPI)

Returns
None.

References EUSCI_A_SPI_enable(), and EUSCI_B_SPI_enable().

22.4.3.38 uint_fast8 t SPI_getEnabledInterruptStatus (uint32_t modulelnstance)

Gets the current SPI interrupt status masked with the enabled interrupts. This function is useful to
call in ISRs to get a list of pending interrupts that are actually enabled and could have caused the

ISR.
Parameters

modulelnstance

is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

m EUSCI_AO_BASE
m EUSCI_A1_BASE
m EUSCI_A2_BASE
m EUSCI_A3_BASE
m EUSCI_B0_BASE
m EUSCI_B1_BASE
m EUSCI_B2_BASE
m EUSCI_B3_BASE

Modified registers are UCAXIFG.

Returns

The current interrupt status as the mask of the set flags Mask parameter can be either any of
the following selection:

m EUSCI_SPI_RECEIVE_INTERRUPT -Receive interrupt
m EUSCI_SPI_TRANSMIT_INTERRUPT - Transmit interrupt

References SPI_getinterruptStatus().

22.4.3.39 uint_fast8_t SPI_getinterruptStatus (uint32_t modulelnstance, uint16_t mask)

Gets the current SPI interrupt status.

Wed Aug 14 17:01:15 -05 2019

335

Serial Peripheral Interface (SPI)

Parameters

modulelnstance | is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE
= EUSCI_A3_BASE
= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

mask | Mask of interrupt to filter. This can include:
m EUSCI_SPI_RECEIVE_INTERRUPT -Receive interrupt
m EUSCI_SPI_TRANSMIT_INTERRUPT - Transmit interrupt

Modified registers are UCAXIFG.

Returns
The current interrupt status as the mask of the set flags Mask parameter can be either any of
the following selection:

m EUSCI_SPI_RECEIVE_INTERRUPT -Receive interrupt
m EUSCI_SPI_TRANSMIT_INTERRUPT - Transmit interrupt

References EUSCI_A_SPI_getinterruptStatus(), and EUSCI_B_SPI_getinterruptStatus().
Referenced by SPI_getEnabledInterruptStatus().

22.4.3.40 uint32_t SPI_getReceiveBufferAddressForDMA (uint32_t modulelnstance)

Returns the address of the RX Buffer of the SPI for the DMA module.
Parameters

modulelnstance | is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE
= EUSCI_A3_BASE
= EUSCI_B0_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

Wed Aug 14 17:01:15 -05 2019 336

Serial Peripheral Interface (SPI)

Returns the address of the SPI RX Buffer. This can be used in conjunction with the DMA to store
the received data directly to memory.

Returns
NONE

References EUSCI_A_SPI_getReceiveBufferAddressForDMA(), and
EUSCI_B_SPI_getReceiveBufferAddressForDMA().

22.4.3.41 uint32_t SPI_getTransmitBufferAddressForDMA (uint32_t modulelnstance)

Returns the address of the TX Buffer of the SPI for the DMA module.

Parameters

modulelnstance

is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

m EUSCI_AO_BASE
m EUSCI_A1_BASE
m EUSCI_A2_BASE
m EUSCI_A3_BASE
m EUSCI_BO_BASE
= EUSCI_B1_BASE
m EUSCI_B2_BASE
m EUSCI_B3_BASE

Returns the address of the SPI TX Buffer. This can be used in conjunction with the DMA to obtain
transmitted data directly from memory.

Wed Aug 14 17:01:15 -05 2019

337

Serial Peripheral Interface (SPI)

Returns
NONE

References EUSCI_A_SPI_getTransmitBufferAddressForDMA(), and
EUSCI_B_SPI_getTransmitBufferAddressForDMA().

22.4.3.42 bool SPI_initMaster (uint32_t modulelnstance, const eUSCI_SPI_MasterConfig

x config)

Initializes the SPI Master block.
Parameters

include:
= EUSCI_AO0_BASE
m EUSCI_A1_BASE
= EUSCI_A2_ BASE
m EUSCI_A3_BASE
m EUSCI_B0_BASE
m EUSCI_B1_BASE
m EUSCI_B2 BASE
= EUSCI_B3_BASE

modulelnstance | is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can

config | Configuration structure for SPI master mode

Configuration options for eUSCI_SPI_MasterConfig structure.

Parameters

selectClock- | selects clock source. Valid values are
Source m EUSCI_SPI_CLOCKSOURCE_ACLK
m EUSCI_SPI_CLOCKSOURCE_SMCLK

clockSourceFre- | is the frequency of the selected clock source
quency

desiredSpiClock | is the desired clock rate for SPI communication

m EUSCI_SPI_MSB_FIRST
m EUSCI_SPI_LSB_FIRST [Default Value]

msbFirst | controls the direction of the receive and transmit shift register. Valid values are

Wed Aug 14 17:01:15 -05 2019

338

Serial Peripheral Interface (SPI)

clockPhase | is clock phase select. Valid values are

m EUSCI_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
[Default Value]

m EUSCI_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity | is clock polarity select. Valid values are
m EUSCI_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
m EUSCI_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default Value]

spiMode | is SPI mode select. Valid values are
m EUSCI_SPI_3PIN [Default Value]
m EUSCI_SPI_4PIN_UCXSTE_ACTIVE_HIGH

m EUSCI_SPI_4PIN_UCxSTE_ACTIVE_LOW Upon successful initialization of the SPI
master block, this function will have set the bus speed for the master, but the SPI
Master block still remains disabled and must be enabled with SPI_enableModule()

Modified bits are UCCKPH, UCCKPL, UC7BIT, UCMSB, UCSSELx, UCSWRST bits of
UCAxCTLWO register

Returns
true

22.4.3.43 bool SPI_initSlave (uint32_t modulelnstance, const eUSCI_SPI_SlaveConfig x
config)

Initializes the SPI Slave block.
Parameters

modulelnstance | is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE
= EUSCI_A3_BASE
= EUSCI_B0_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

Wed Aug 14 17:01:15 -05 2019 339

Serial Peripheral Interface (SPI)

] config | Configuration structure for SPI slave mode

Configuration options for eUSCI_SPI_SlaveConfig structure.

Parameters

msbFirst | controls the direction of the receive and transmit shift register. Valid values are
m EUSCI_SPI_MSB_FIRST
m EUSCI_SPI_LSB_FIRST [Default Value]

clockPhase | is clock phase select. Valid values are

m EUSCI_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT
[Default Value]

m EUSCI_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity | is clock polarity select. Valid values are
m EUSCI_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
m EUSCI_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default Value]

spiMode | is SPI mode select. Valid values are
m EUSCI_SPI_3PIN [Default Value]
m EUSCI_SPI_4PIN_UCxSTE_ACTIVE_HIGH

m EUSCI_SPI_4PIN_UCxSTE_ACTIVE_LOW Upon successful initialization of the SPI
slave block, this function will have initialized the slave block, but the SPI Slave block
still remains disabled and must be enabled with SPI_enableModule()

Modified bits are UCMSB, UC7BIT, UCMST, UCCKPL, UCCKPH, UCMODE, UCSWRST bits of
UCAxCTLWO

Returns
true

22.4.3.44 uint_fast8 t SPI_isBusy (uint32_t modulelnstance)

Indicates whether or not the SPI bus is busy.

Wed Aug 14 17:01:15 -05 2019 340

Serial Peripheral Interface (SPI)

Parameters

modulelnstance | is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE
= EUSCI_A3_BASE
= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

This function returns an indication of whether or not the SPI bus is busy.This function checks the
status of the bus via UCBBUSY bit

Returns
EUSCI_SPI_BUSY if the SPI module transmitting or receiving is busy; otherwise, returns
EUSCI_SPI_NOT_BUSY.

References EUSCI_A_SPI_isBusy(), and EUSCI_B_SPI_isBusy().

22.4.3.45 uint8_t SPI_receiveData (uint32_t modulelnstance)

Receives a byte that has been sent to the SPI Module.

Parameters

modulelnstance | is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE
= EUSCI_A3_BASE
= EUSCI_B0_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

This function reads a byte of data from the SPI receive data Register.

Returns
Returns the byte received from by the SPI module, cast as an uint8_t.

References EUSCI_A_SPI_receiveData(), and EUSCI_B_SPI_receiveData().

Wed Aug 14 17:01:15 -05 2019 341

Serial Peripheral Interface (SPI)

22.4.3.46 void SPI_registerinterrupt (uint32_t modulelnstance, void(x)(void) intHandler)

Registers an interrupt handler for the timer capture compare interrupt.

Wed Aug 14 17:01:15 -05 2019 342

Serial Peripheral Interface (SPI)

Parameters

modulelnstance

is the instance of the eUSCI (SPI) module. Valid parameters vary from part to part, but
can include:

EUSCI_A0_BASE
EUSCI_A1_BASE
EUSCI_A2_BASE
EUSCI_A3_BASE
EUSCI_B0_BASE
EUSCI_B1_BASE
EUSCI_B2_BASE

EUSCI_B3_BASE It is important to note that for eUSCI modules, only "B" modules
such as EUSCI_BO can be used. "A" modules such as EUSCI_AO do not support
the 12C mode.

intHandler

is a pointer to the function to be called when the timer capture compare interrupt occurs.

This function registers the handler to be called when a timer interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific SPI interrupts must be enabled via
SPI_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt source via
SPI_clearlnterruptFlag().

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

22.4.3.47 void SPI_selectFourPinFunctionality (uint32_t modulelnstance, uint_fast8 t
select4PinFunctionality)

Selects 4Pin Functionality

Wed Aug 14 17:01:15 -05 2019

343

Serial Peripheral Interface (SPI)

Parameters

modulelnstance | is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE
= EUSCI_A3_BASE
= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

se- | selects Clock source. Valid values are
lectdPinFunctiondlity w EysCI_SPI_PREVENT_CONFLICTS_WITH_OTHER_MASTERS

m EUSCI_SPI_ENABLE_SIGNAL_FOR_4WIRE_SLAVE This function should be in-
voked only in 4-wire mode. Invoking this function has no effect in 3-wire mode.

Modified bits are UCSTEM bit of UCAxCTLWO register

Returns
true

References EUSCI_A_SPI_select4PinFunctionality(), and
EUSCI_B_SPI_select4PinFunctionality().
22.4.3.48 void SPI_transmitData (uint32_t modulelnstance, uint_fast8 t transmitData)

Transmits a byte from the SPI Module.

Parameters

modulelnstance | is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE
= EUSCI_A3_BASE
= EUSCI_BO_BASE
= EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

Wed Aug 14 17:01:15 -05 2019 344

Serial Peripheral Interface (SPI)

] transmitData | data to be transmitted from the SPI module

This function will place the supplied data into SPI transmit data register to start transmission
Modified register is UCAXTXBUF

Returns
None.

References EUSCI_A_SPI_transmitData(), and EUSCI_B_SPI_transmitData().

22.4.3.49 void SPI_unregisterinterrupt (uint32_t modulelnstance)

Unregisters the interrupt handler for the timer

Parameters

modulelnstance

is the instance of the eUSCI A/B module. Valid parameters vary from part to part, but can
include:

= EUSCI_AO0_BASE
= EUSCI_A1_BASE
EUSCI_A2 BASE
EUSCI_A3_BASE
EUSCI_BO_BASE
EUSCI_B1_BASE
= EUSCI_B2_BASE
= EUSCI_B3_BASE

This function unregisters the handler to be called when timer interrupt occurs. This function also
masks off the interrupt in the interrupt controller so that the interrupt handler no longer is called.

See Also

Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019

345

System Control Module (SysCtl)

23 System Control Module (SysCitl)

MOAUIE OPEIAtIONttt e et e e e e e e 349
Programming EXampleo 349
DB NI ONS e 350

23.1 Module Operation

The SysCtl module is a conglomeration of miscellaneous system control modules that do not fit
into any specific hardware peripheral.

Some of the functionalities of the SysCtl module include:

m Configure and enable/disable NMI sources

m Retrieve the SRAM/Flash size through software calls

m Disable/enable SRAM banks completely as well as disable retention during sleep
m Enable/disable GPIO glitch filters

m Change the type of reset that occurs on a WDT violation

23.2 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the SysCtl module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a very brief code example showing how to retrieve the Flash and SRAM sizes using a
software API. This is useful if the programmer is making a program that is meant to be run on
multiple devices in the MSP432 family with different memory footprints.

Wed Aug 14 17:01:15 -05 2019 346

System Control Module (SysCtl)

23.3 Definitions

Functions

void SysCtl_disableGlitchFilter (void)

void SysCtl_disableNMISource (uint_fast8_t flags)

void SysCtl_disablePeripheralAtCPUHalt (uint_fast16_t devices)

void SysCtl_disableSRAMBank (uint_fast8_t sramBank)

void SysCtl_disableSRAMBankRetention (uint_fast8_t sramBank)

void SysCtl_enableGlitchFilter (void)

void SysCtl_enableNMISource (uint_fast8_t flags)

void SysCtl_enablePeripheral AtCPUHalt (uint_fast16_t devices)

void SysCtl_enableSRAMBank (uint_fast8_t sramBank)

void SysCtl_enableSRAMBankRetention (uint_fast8_t sramBank)

uint_least32_t SysCtl_getFlashSize (void)

uint_fast8_t SysCtl_getNMISourceStatus (void)

uint_least32_t SysCtl _getSRAMSize (void)

uint_fast16_t SysCtl_getTempCalibrationConstant (uint32_t refVoltage, uint32_t temperature)
void SysCtl_getTLVInfo (uint_fast8_t tag, uint_fast8_t instance, uint_fast8_t xlength, uint32_t
x+xdata_address)

void SysCtl_rebootDevice (void)

void SysCtl_setWDTPasswordViolationResetType (uint_fast8_t resetType)

m void SysCtl_setWDTTimeoutResetType (uint_fast8_t resetType)

23.3.1 Detailed Description

The code for this module is contained in driverlib/sysctl.c, withdriverlib/sysctl.h
containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 347

System Control Module (SysCtl)

23.3.2

23.3.2.1

23.3.2.2

23.3.2.3

Function Documentation

void SysCtl_disableGlitchFilter (void)

Disables glitch suppression on the reset pin of the device. Refer to the device data sheet for
specific information about glitch suppression

Returns
None.

void SysCtl_disableNMISource (uint_fast8_t flags)

Disables NMls for the provided modules. When disabled, a NMI flag will not occur when a fault
condition comes from the corresponding modules.

Parameters

flags | The NMI sources to disable Can be a bitwise OR of the following parameters:
m SYSCTL_NMIPIN_SRC,

m SYSCTL_PCM_SRC,

m SYSCTL_PSS_SRC,

m SYSCTL_CS_SRC

Referenced by CS_startHFXTWithTimeout(), and CS_startLFXTWithTimeout().

void SysCtl_disablePeripheralAtCPUHalt (uint_fast16_t devices)

Makes it so that the provided peripherals will either halt execution after a CPU HALT. Parameters
in this function can be combined to account for multiple peripherals. By default, all peripherals
keep running after a CPU HALT.

Parameters

] devices | The peripherals to disable after a CPU HALT

The devices parameter can be a bitwise OR of the following values: This can be a bitwise OR of
the following values:

m SYSCTL_PERIPH_DMA,
m SYSCTL_PERIPH_WDT,
m SYSCTL_PERIPH_ADC,
m SYSCTL_PERIPH_EUSCIBS3,
m SYSCTL_PERIPH_EUSCIB2,
m SYSCTL_PERIPH_EUSCIB1
m SYSCTL_PERIPH_EUSCIBO,
m SYSCTL_PERIPH_EUSCIAS,
m SYSCTL_PERIPH_EUSCIA2

Wed Aug 14 17:01:15 -05 2019 348

System Control Module (SysCtl)

= SYSCTL_PERIPH_EUSCIA1,

= SYSCTL_PERIPH_EUSCIAO,

= SYSCTL_PERIPH_TIMER32_0_MODULE,
= SYSCTL_PERIPH_TIMER16_3,

= SYSCTL_PERIPH_TIMER16_2,

= SYSCTL_PERIPH_TIMER16_1,

= SYSCTL_PERIPH_TIMER16_0

Returns
None.

23.3.2.4 void SysCtl_disableSRAMBank (uint_fast8 t sramBank)

Disables a set of banks in the SRAM. This can be used to optimize power consumption when
every SRAM bank isn’t needed. It is important to note that when a higher bank is disabled, all of
the SRAM banks above that bank are also disabled. For example, if the user disables
SYSCTL_SRAM_BANKS5, the banks SYSCTL_SRAM_BANK®6 through SYSCTL_SRAM_BANK?7
will be disabled.

Parameters

sramBank | The SRAM bank tier to disable. Must be only one of the following values:
m SYSCTL_SRAM_BANK{1,
m SYSCTL_SRAM_BANK2,
m SYSCTL_SRAM_BANKS,
m SYSCTL_SRAM_BANK4,
m SYSCTL_SRAM_BANKS5,
m SYSCTL_SRAM_BANKS,
m SYSCTL_SRAM_BANK?7

Note
SYSCTL_SRAM_BANKO is reserved and always enabled.

Returns
None.

23.3.2.5 void SysCtl_disableSRAMBankRetention (uint_fast8 t sramBank)

Disables retention of the specified SRAM bank register when the device goes into LPM3 mode.
When the system is placed in LPM3 mode, the SRAM banks specified with this function will not be
placed into retention mode. By default, retention of every SRAM bank except
SYSCTL_SRAM_BANKO (reserved) is disabled. Retention of individual banks can be set without
the restrictions of the enable/disable SRAM bank functions.

Wed Aug 14 17:01:15 -05 2019 349

System Control Module (SysCtl)

Parameters

sramBank | The SRAM banks to disable retention Can be a bitwise OR of the following values:
m SYSCTL_SRAM_BANK1,
m SYSCTL_SRAM_BANK2,
m SYSCTL_SRAM_BANKS,
m SYSCTL_SRAM_BANK4,
m SYSCTL_SRAM_BANKS,
m SYSCTL_SRAM_BANKS,
m SYSCTL_SRAM_BANK?7

Note
SYSCTL_SRAM_BANKO is reserved and retention is always enabled.

Returns
None.

23.3.2.6 void SysCtl_enableGlitchFilter (void)

23.3.2.7

23.3.2.8

Enables glitch suppression on the reset pin of the device. Refer to the device data sheet for
specific information about glitch suppression

Returns
None.

void SysCtl_enableNMISource (uint_fast8_t flags)

Enables NMIs for the provided modules. When enabled, a NMI flag will occur when a fault
condition comes from the corresponding modules.

Parameters

flags | The NMI sources to enable Can be a bitwise OR of the following parameters:
m SYSCTL_NMIPIN_SRC,

m SYSCTL_PCM_SRC,

m SYSCTL_PSS_SRC,

m SYSCTL_CS_SRC

Referenced by CS_startHFXTWithTimeout(), and CS_startLFXTWithTimeout().

void SysCtl_enablePeripheralAtCPUHalt (uint_fast16_t devices)

Makes it so that the provided peripherals will either halt execution after a CPU HALT. Parameters
in this function can be combined to account for multiple peripherals. By default, all peripherals

Wed Aug 14 17:01:15 -05 2019 350

System Control Module (SysCtl)

keep running after a CPU HALT.

Wed Aug 14 17:01:15 -05 2019 351

System Control Module (SysCtl)

Parameters

devices

The peripherals to continue running after a CPU HALT This can be a bitwise OR of the
following values:

= SYSCTL_PERIPH_DMA,
= SYSCTL_PERIPH_WDT,

= SYSCTL_PERIPH_ADC,

= SYSCTL_PERIPH_EUSCIB3,

= SYSCTL_PERIPH_EUSCIB2,

= SYSCTL_PERIPH_EUSCIB1

= SYSCTL_PERIPH_EUSCIBO,

= SYSCTL_PERIPH_EUSCIA3,

= SYSCTL_PERIPH_EUSCIA2

= SYSCTL_PERIPH_EUSCIA1,

= SYSCTL_PERIPH_EUSCIAOQ,

= SYSCTL_PERIPH_TIMER32_0_MODULE,
= SYSCTL_PERIPH_TIMER16_3,

= SYSCTL_PERIPH_TIMER16_2,

= SYSCTL_PERIPH_TIMER16_1,

= SYSCTL_PERIPH_TIMER16_0

Returns
None.

23.3.2.9 void SysCtl_enableSRAMBank (uint_fast8_t sramBank)

Enables a set of banks in the SRAM. This can be used to optimize power consumption when every
SRAM bank isn’t needed. It is important to note that when a higher bank is enabled, all of the
SRAM banks below that bank are also enabled. For example, if the user enables
SYSCTL_SRAM_BANK?7, the banks SYSCTL_SRAM_BANK1 through SYSCTL_SRAM_BANK?7
will be enabled (SRAM_BANKO is reserved and always enabled).

Parameters

sramBank

The SRAM bank tier to enable. Must be only one of the following values:
m SYSCTL_SRAM_BANK{1,
m SYSCTL_SRAM_BANK2,
m SYSCTL_SRAM_BANKS,
m SYSCTL_SRAM_BANK4,
m SYSCTL_SRAM_BANKS,
m SYSCTL_SRAM_BANKS,
m SYSCTL_SRAM_BANK?7

Wed Aug 14 17:01:15 -05 2019

352

System Control Module (SysCtl)

Note
SYSCTL_SRAM_BANKO is reserved and always enabled.

Returns
None.

23.3.2.10 void SysCtl_enableSRAMBankRetention (uint_fast8 t sramBank)

Enables retention of the specified SRAM bank register when the device goes into LPM3 mode.
When the system is placed in LPM3 mode, the SRAM banks specified with this function will be
placed into retention mode. By default, retention of every SRAM bank except
SYSCTL_SRAM_BANKO (reserved) is disabled. Retention of individual banks can be set without
the restrictions of the enable/disable functions.

Parameters

sramBank | The SRAM banks to enable retention Can be a bitwise OR of the following values:
m SYSCTL_SRAM_BANK{1,
m SYSCTL_SRAM_BANK2,
m SYSCTL_SRAM_BANKS,
m SYSCTL_SRAM_BANK4,
m SYSCTL_SRAM_BANKS,
m SYSCTL_SRAM_BANKS,
m SYSCTL_SRAM_BANK?7

Note
SYSCTL_SRAM_BANKO is reserved and retention is always enabled.

Returns
None.

23.3.2.11 uint_least32_t SysCtl getFlashSize (void)

Gets the size of the flash.

Returns
The total number of bytes of flash.

Referenced by FlashCtl_eraseSector(), FlashCtl_getMemorylnfo(), FlashCtl_initiateSectorErase(),
FlashCtl_performMassErase(), and FlashCtl_verifyMemory().

23.3.2.12 uint_fast8_t SysCtl_getNMISourceStatus (void)

Returns the current sources of NMls that are enabled

Wed Aug 14 17:01:15 -05 2019 353

System Control Module (SysCtl)

Returns
Bitwise OR of NMI flags that are enabled

Referenced by CS_startHFXTWithTimeout(), and CS_startLFXTWithTimeout().

23.3.2.13 uint_least32_t SysCtl_getSRAMSize (void)

Gets the size of the SRAM.

Returns
The total number of bytes of SRAM.

23.3.2.14 uint_fast16_t SysCtl_getTempCalibrationConstant (uint32_t refVoltage, uint32_t
temperature ')

Retrieves the calibration constant of the temperature sensor to be used in temperature calculation.

Parameters

] refVoltage | Reference voltage being used.

The refVoltage parameter must be only one of the following values:

m SYSCTL_1_2V_REF
m SYSCTL_1_45V_REF
m SYSCTL_2 5V_REF

Parameters

] temperature \ is the calibration temperature that the user wants to be returned.

The temperature parameter must be only one of the following values:

m SYSCTL_30_DEGREES_C
m SYSCTL_85_DEGREES_C

Returns
None.

23.3.2.15 void SysCtl_getTLVInfo (uint_fast8_t tag, uint fast8 t instance, uint_fast8 t x
length, uint32_t xx data_address)

The TLV structure uses a tag or base address to identify segments of the table where information
is stored. Some examples of TLV tags are Peripheral Descriptor, Interrupts, Info Block and Die
Record. This function retrieves the value of a tag and the length of the tag.

Wed Aug 14 17:01:15 -05 2019 354

System Control Module (SysCtl)

Parameters

tag

represents the tag for which the information needs to be retrieved. Valid values are:
m TLV_TAG_RESERVED1
m TLV_TAG_RESERVED2
m TLV_TAG_CS
m TLV_TAG_FLASHCTL
= TLV_TAG_ADC14
m TLV_TAG_RESERVEDG6
m TLV_TAG_RESERVED7
m TLV_TAG_REF
= TLV_TAG_RESERVED9
m TLV_TAG_RESERVED10
= TLV_TAG_DEVINFO
m TLV_TAG_DIEREC
m TLV_TAG_RANDNUM
m TLV_TAG_RESERVED14

instance

In some cases a specific tag may have more than one instance. For example there may
be multiple instances of timer calibration data present under a single Timer Cal tag. This
variable specifies the instance for which information is to be retrieved (0, 1, etc.). When
only one instance exists; 0 is passed.

length

Acts as a return through indirect reference. The function retrieves the value of the TLV tag
length. This value is pointed to by xlength and can be used by the application level once
the function is called. If the specified tag is not found then the pointer is null 0.

data_address

acts as a return through indirect reference. Once the function is called data_address
points to the pointer that holds the value retrieved from the specified TLV tag. If the
specified tag is not found then the pointer is null 0.

Returns
None

Referenced by CS_getDCOFrequency(), CS_setDCOFrequency(), FlashCtl_eraseSector(), and
FlashCtl_programMemory().

23.3.2.16 void SysCtl_rebootDevice (void)

Reboots the device and causes the device to re-initialize itself.

Returns

This function does not return.

23.3.2.17 void SysCtl_setWDTPasswordViolationResetType (uint_fast8_t resetType)

Sets the type of RESET that happens when a watchdog password violation occurs.

Wed Aug 14 17:01:15 -05 2019

355

System Control Module (SysCtl)

Parameters

] resetType | The type of reset to set

The resetType parameter must be only one of the following values:

m SYSCTL_HARD_RESET,
m SYSCTL_SOFT_RESET

Returns
None.

Referenced by WDT_A_setPasswordViolationReset().

23.3.2.18 void SysCtl_setWDTTimeoutResetType (uint_fast8_t resetType)

Sets the type of RESET that happens when a watchdog timeout occurs.

Parameters

] resetType | The type of reset to set

The resetType parameter must be only one of the following values:

m SYSCTL_HARD_RESET,
m SYSCTL_SOFT_RESET

Returns
None.

Referenced by WDT_A_setTimeoutReset().

Wed Aug 14 17:01:15 -05 2019 356

System Control Module (SysCtla)

24

241

24.2

System Control Module (SysCtl,)

MOAUIE OPEIALIONttt ettt e e e 361
Programming EXamPIeo e 361
D iNIEIONS .. 362

Module Operation

Note that this module is for use exclusively on the MSP432P4111. If using the MSP432P401,
please refer to the non-a variant.

The SysCtl_A module is a conglomeration of miscellaneous system control modules that do not fit
into any specific hardware peripheral.

Some of the functionalities of the SysCtl_A module include:

m Configure and enable/disable NMI sources

m Retrieve the SRAM/Flash size through software calls

Disable/enable SRAM banks completely as well as disable retention during sleep
Enable/disable GPIO glitch filters

Change the type of reset that occurs on a WDT violation

Programming Example

Wed Aug 14 17:01:15 -05 2019 357

System Control Module (SysCtla)

24.3 Definitions

Functions

void SysCtl_A_disableGlitchFilter (void)

void SysCtl_A_disableNMISource (uint_fast8_t flags)

void SysCtl_A_disablePeripheralAtCPUHalt (uint_fast16_t devices)

bool SysCtl_A_disableSRAM (uint32_t addr)

bool SysCtl_A disableSRAMRetention (uint32_t startAddr, uint32_t endAddr)

void SysCtl_A_enableGlitchFilter (void)

void SysCtl_A_enableNMISource (uint_fast8_t flags)

void SysCtl_A_enablePeripheralAtCPUHalt (uint_fast16_t devices)

bool SysCtl_A_enableSRAM (uint32_t addr)

bool SysCtl_A_enableSRAMRetention (uint32_t startAddr, uint32_t endAddr)

uint_least32_t SysCtl_A_getFlashSize (void)

uint_least32_t SysCtl_A_getInfoFlashSize (void)

uint_fast8 t SysCtl_A_getNMISourceStatus (void)

uint_least32_t SysCtl_A_getSRAMSize (void)

uint_fast16_t SysCtl_A_getTempCalibrationConstant (uint32_t refVoltage, uint32_t

temperature)

m void SysCtl_A getTLVInfo (uint_fast8_t tag, uint_fast8_t instance, uint_fast8_t «length,
uint32_t x«data_address)

m void SysCtl_A_rebootDevice (void)

void SysCtl_A_setWDTPasswordViolationResetType (uint_fast8_t resetType)

m void SysCtl_A_setWDTTimeoutResetType (uint_fast8_t resetType)

24.3.1 Detailed Description

The code for this module is contained in driverlib/sysctl_a.c, with
driverlib/sysctl_a.h containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 358

System Control Module (SysCtla)

24.3.2

24.3.2.1

24.3.2.2

24.3.2.3

Function Documentation

void SysCtl_A_disableGlitchFilter (void)

Disables glitch suppression on the reset pin of the device. Refer to the device data sheet for
specific information about glitch suppression

Returns
None.

void SysCtl_A disableNMISource (uint_fast8_t flags)

Disables NMls for the provided modules. When disabled, a NMI flag will not occur when a fault
condition comes from the corresponding modules.

Parameters

flags | The NMI sources to disable Can be a bitwise OR of the following parameters:
m SYSCTL_A_NMIPIN_SRC,

m SYSCTL_A_PCM_SRC,

m SYSCTL_A_PSS_SRC,

m SYSCTL_A_CS_SRC

Referenced by CS_startHFXTWithTimeout(), and CS_startLFXTWithTimeout().

void SysCtl_A_disablePeripheralAtCPUHalt (uint_fast16_t devices)

Makes it so that the provided peripherals will either halt execution after a CPU HALT. Parameters
in this function can be combined to account for multiple peripherals. By default, all peripherals
keep running after a CPU HALT.

Parameters

] devices | The peripherals to disable after a CPU HALT

The devices parameter can be a bitwise OR of the following values: This can be a bitwise OR of
the following values:

= SYSCTL_A_PERIPH_LCD,
= SYSCTL_A_PERIPH_DMA,
= SYSCTL_A_PERIPH_WDT,
= SYSCTL_A_PERIPH_ADC,
= SYSCTL_A_PERIPH_EUSCIB3,
= SYSCTL_A_PERIPH_EUSCIB2,
= SYSCTL_A_PERIPH_EUSCIB1
= SYSCTL_A_PERIPH_EUSCIBO,
= SYSCTL_A_PERIPH_EUSCIA3,

Wed Aug 14 17:01:15 -05 2019 359

System Control Module (SysCtla)

= SYSCTL_A_PERIPH_EUSCIA2
= SYSCTL_A_PERIPH_EUSCIA1,

= SYSCTL_A_PERIPH_EUSCIAO,

= SYSCTL_A_PERIPH_TIMER32_0_MODULE,
= SYSCTL_A_PERIPH_TIMER16_3,

= SYSCTL_A_PERIPH_TIMER16_2,

= SYSCTL_A_PERIPH_TIMER16_1,

= SYSCTL_A_PERIPH_TIMER16_0

Returns
None.

24.3.2.4 Dbool SysCtl_A_disableSRAM (uint32_t adadr)

Disables areas of SRAM memory. This can be used to optimize power consumption when every
SRAM bank isn’t needed. It is important to note that when a higher bank is disabled, all of the
SRAM banks above that bank are also disabled. For example, if the address of 0x2001FAOQ is
given, all SRAM banks from 0x2001FAO to the top of SRAM will be disabled. This function takes in
a 32-bit address to the area in SRAM to to disable. It will convert this address into the
corresponding register settings and set them in the register accordingly. Note that passing an
address to an area other than SRAM will result in unreliable behavior. Addresses should be given
with reference to the SRAM_DATA area of SRAM (usually starting at 0x20000000).

Parameters

addr | Break address of SRAM to disable. All SRAM above this address will also be disabled. If
an unaligned address is given the appropriate aligned address will be calculated.

Note
The first bank of SRAM is reserved and always enabled.

Returns
true if banks were set, false otherwise. If the BNKEN_RDY bit is not set in the STAT register,
this function will return false.

References SysCtl_A_getSRAMSize().

24.3.2.5 bool SysCtl_A_disableSRAMRetention (uint32_t startAddr, uint32_t endAddr)

Disables retention of the specified SRAM block address range when the device goes into LPM3
mode. When the system is placed in LPM3 mode, the SRAM banks specified with this function will
be placed into retention mode. Retention of individual blocks can be set without the restrictions of
the enable/disable functions. Note that any memory range given outside of SRAM will result in
unreliable behavior. Also note that any unaligned addresses will be truncated to the closest
aligned address before the address given. Addresses should be given with reference to the
SRAM_DATA area of SRAM (usually starting at 0x20000000).

Wed Aug 14 17:01:15 -05 2019 360

System Control Module (SysCtla)

24.3.2.6

24.3.2.7

24.3.2.8

Parameters

startAddr | Start address to disable retention

endtAddr | End address to disable retention

Note
Block 0 is reserved and retention is always enabled.

Returns
true if banks were set, false otherwise. If the BLKEN_RDY bit is not set in the STAT register,
this function will return false.

References SysCtl_A_getSRAMSize().

void SysCtl_A_enableGlitchFilter (void)

Enables glitch suppression on the reset pin of the device. Refer to the device data sheet for
specific information about glitch suppression

Returns
None.

void SysCtl_A_enableNMISource (uint_fast8_t flags)

Enables NMIs for the provided modules. When enabled, a NMI flag will occur when a fault
condition comes from the corresponding modules.

Parameters

flags | The NMI sources to enable Can be a bitwise OR of the following parameters:
m SYSCTL_A_NMIPIN_SRC,

m SYSCTL_A_PCM_SRC,

m SYSCTL_A_PSS_SRC,

m SYSCTL_A _CS_SRC

Referenced by CS_startHFXTWithTimeout(), and CS_startLFXTWithTimeout().

void SysCtl_A_enablePeripheralAtCPUHalt (uint_fast16_t devices)

Makes it so that the provided peripherals will either halt execution after a CPU HALT. Parameters
in this function can be combined to account for multiple peripherals. By default, all peripherals
keep running after a CPU HALT.

Wed Aug 14 17:01:15 -05 2019 361

System Control Module (SysCtla)

Parameters

devices

The peripherals to continue running after a CPU HALT This can be a bitwise OR of the
following values:

= SYSCTL_A_PERIPH_LCD,

= SYSCTL_A_PERIPH_DMA,

= SYSCTL_A_PERIPH_WDT,

= SYSCTL_A_PERIPH_ADC,

= SYSCTL_A_PERIPH_EUSCIBS3,

= SYSCTL_A_PERIPH_EUSCIB2,
= SYSCTL_A_PERIPH_EUSCIB1

= SYSCTL_A_PERIPH_EUSCIBO,
= SYSCTL_A_PERIPH_EUSCIAS3,
= SYSCTL_A_PERIPH_EUSCIA2

= SYSCTL_A_PERIPH_EUSCIAT,

= SYSCTL_A_PERIPH_EUSCIAQ,
= SYSCTL_A_PERIPH_TIMER32_0_MODULE,
= SYSCTL_A_PERIPH_TIMER16_3,
= SYSCTL_A_PERIPH_TIMER16_2,
= SYSCTL_A_PERIPH_TIMER16_1,
= SYSCTL_A_PERIPH_TIMER16_0

Returns
None.

24.3.2.9 bool SysCtl_A enableSRAM (uint32_t addr)

Enables areas of SRAM memory. This can be used to optimize power consumption when every
SRAM bank isn’t needed. This function takes in a 32-bit address to the area in SRAM to to enable.
It will convert this address into the corresponding register settings and set them in the register
accordingly. Note that passing an address to an area other than SRAM will result in unreliable
behavior. Addresses should be given with reference to the SRAM_DATA area of SRAM (usually
starting at 0x20000000).

Parameters

addr

Break address of SRAM to enable. All SRAM below this address will also be enabled. If
an unaligned address is given the appropriate aligned address will be calculated.

Note

The first bank of SRAM is reserved and always enabled.

Wed Aug 14 17:01:15 -05 2019

362

System Control Module (SysCtla)

Returns
true if banks were set, false otherwise. If the BNKEN_RDY bit is not set in the STAT register,
this function will return false.

References SysCil_A_getSRAMSize().

24.3.2.10 bool SysCtl_A enableSRAMRetention (uint32_t startAddr, uint32_t endAdadr)

24.3.2.11

Enables retention of the specified SRAM block address range when the device goes into LPM3
mode. When the system is placed in LPM3 mode, the SRAM banks specified with this function will
be placed into retention mode. Retention of individual blocks can be set without the restrictions of
the enable/disable functions. Note that any memory range given outside of SRAM will result in
unreliable behavior. Also note that any unaligned addresses will be truncated to the closest
aligned address before the address given. Addresses should be given with reference to the
SRAM_DATA area of SRAM (usually starting at 0x20000000).

Parameters

startAddr | Start address to enable retention

endtAddr | End address to enable retention

Note
Block 0 is reserved and retention is always enabled.

Returns
true if banks were set, false otherwise. If the BLKEN_RDY bit is not set in the STAT register,
this function will return false.

References SysCtl_A_getSRAMSize().

uint_least32_t SysCtl_A getFlashSize (void)

Gets the size of the flash.

Returns
The total number of bytes of main flash memory.

Note
This returns the total amount of main memory flash. To find how much INFO memory is
available, use the SysCtl_A_getinfoFlashSize function.

Referenced by FlashCtl_A_eraseSector(), FlashCtl_A_getMemoryInfo(),
FlashCtl_A_initiateSectorErase(), FlashCtl_A_isMemoryProtected(),
FlashCtl_A_performMassErase(), FlashCtl_A_protectMemory(), FlashCtl_A_unprotectMemory(),
and FlashCtl_A_verifyMemory().

24.3.2.12 uint_least32_t SysCtl_A_getInfoFlashSize (void)

Gets the size of the flash.

Wed Aug 14 17:01:15 -05 2019 363

System Control Module (SysCtla)

Returns
The total number of bytes of flash of INFO flash memory.

Note
This returns the total amount of INFO memory flash. To find how much main memory is
available, use the SysCtl_A_getFlashSize function.

Referenced by FlashCtl_A_isMemoryProtected(), FlashCtl_A_performMassErase(),
FlashCtl_A_protectMemory(), and FlashCtl_A_unprotectMemory().

24.3.2.13 uint_fast8 t SysCtl_A_getNMISourceStatus (void)

Returns the current sources of NMls that are enabled

Returns
NMI source status

Referenced by CS_startHFXTWithTimeout(), and CS_startLFXTWithTimeout().

24.3.2.14 uint_least32_t SysCtl_A getSRAMSize (void)

Gets the size of the SRAM.

Returns
The total number of bytes of SRAM.

Referenced by SysCtl_A_disableSRAM(), SysCtl_A_disableSRAMRetention(),
SysCtl_A_enableSRAM(), and SysCtl_A enableSRAMRetention().

24.3.2.15 uint_fast16_t SysCtl_A_ getTempCalibrationConstant (uint32_t refVoltage,
uint32_t temperature)

Retrieves the calibration constant of the temperature sensor to be used in temperature calculation.

Parameters

] refVoltage | Reference voltage being used.

The refVoltage parameter must be only one of the following values:

m SYSCTL_A_1_2V_REF
m SYSCTL_A_1_45V_REF
m SYSCTL_A_2 5V_REF

Parameters

] temperature \ is the calibration temperature that the user wants to be returned.

The temperature parameter must be only one of the following values:

= SYSCTL_A_30_DEGREES_C
= SYSCTL_A_85 DEGREES _C

Wed Aug 14 17:01:15 -05 2019 364

System Control Module (SysCtla)

Returns
None.

24.3.2.16 void SysCtl_A_getTLVInfo (uint_fast8 t tag, uint_fast8_t instance, uint_fast8_t x
length, uint32_t xx data_address)

The TLV structure uses a tag or base address to identify segments of the table where information
is stored. Some examples of TLV tags are Peripheral Descriptor, Interrupts, Info Block and Die
Record. This function retrieves the value of a tag and the length of the tag.

Parameters

tag

represents the tag for which the information needs to be retrieved. Valid values are:
m TLV_TAG_RESERVED1
m TLV_TAG_RESERVED2
m TLV_TAG_CS
m TLV_TAG_FLASHCTL
= TLV_TAG_ADC14
m TLV_TAG_RESERVEDG6
m TLV_TAG_RESERVED7
m TLV_TAG_REF
= TLV_TAG_RESERVED9
m TLV_TAG_RESERVED10
= TLV_TAG_DEVINFO
m TLV_TAG_DIEREC
m TLV_TAG_RANDNUM
m TLV_TAG_RESERVED14

instance

In some cases a specific tag may have more than one instance. For example there may
be multiple instances of timer calibration data present under a single Timer Cal tag. This
variable specifies the instance for which information is to be retrieved (0, 1, etc.). When
only one instance exists; 0 is passed.

length

Acts as a return through indirect reference. The function retrieves the value of the TLV tag
length. This value is pointed to by xlength and can be used by the application level once
the function is called. If the specified tag is not found then the pointer is null 0.

data_address

acts as a return through indirect reference. Once the function is called data_address
points to the pointer that holds the value retrieved from the specified TLV tag. If the
specified tag is not found then the pointer is null 0.

Wed Aug 14 17:01:15 -05 2019

365

System Control Module (SysCtla)

Returns
None

Referenced by CS_getDCOFrequency(), CS_setDCOFrequency(), FlashCtl_A_eraseSector(),
FlashCtl_A_performMassErase(), and FlashCtl_A_programMemory().

24.3.2.17 void SysCtl_A rebootDevice (void)

Reboots the device and causes the device to re-initialize itself.

Returns
This function does not return.

24.3.2.18 void SysCtl_A_setWDTPasswordViolationResetType (uint_fast8_t resetType)

Sets the type of RESET that happens when a watchdog password violation occurs.

Parameters

] resetType | The type of reset to set

The resetType parameter must be only one of the following values:

m SYSCTL_A_HARD_RESET,
m SYSCTL_A_SOFT_RESET

Returns
None.

Referenced by WDT_A_setPasswordViolationReset().

24.3.2.19 void SysCtl_A_setWDTTimeoutResetType (uint_fast8_t resetType)

Sets the type of RESET that happens when a watchdog timeout occurs.

Parameters

] resetType | The type of reset to set

The resetType parameter must be only one of the following values:

m SYSCTL_A_HARD_RESET,
m SYSCTL_A_SOFT_RESET

Returns
None.

Referenced by WDT_A_setTimeoutReset().

Wed Aug 14 17:01:15 -05 2019 366

System Tick (SysTick)

25

25.1

25.2

System Tick (SysTick)

MOAUIE OPEIAtIONttt e et e e e e e e 373
Programming EXampleo 373
DB NI ONS e 374

Module Operation

SysTick is a simple timer that is part of the NVIC controller in the Cortex-M microprocessor. Its
intended purpose is to provide a periodic interrupt for an RTOS, but it can be used for other simple
timing purposes.

The SysTick interrupt handler does not need to clear the SysTick interrupt source as it is cleared
automatically by the NVIC when the SysTick interrupt handler is called.

Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the SysTick module. These code examples are accessible under the examples/ folder of the
SDK release as well as through Tl Resource Explorer if using Code Composer Studio. These
code examples provide a comprehensive list of use cases as well as practical applications
involving each module.

Below is a very brief code example showing how to configure the SysTick module to interrupt
periodically and blink an LED attached to P1.0.

Wed Aug 14 17:01:15 -05 2019 367

System Tick (SysTick)

25.3 Definitions

Functions

void SysTick_disablelnterrupt (void)

void SysTick_disableModule (void)

void SysTick_enablelnterrupt (void)

void SysTick_enableModule (void)

uint32_t SysTick getPeriod (void)

uint32_t SysTick_getValue (void)

void SysTick_registerInterrupt (void(xintHandler)(void))
void SysTick_setPeriod (uint32_t period)

void SysTick_unregisterinterrupt (void)

25.3.1 Detailed Description

The code for this module is contained in driverlib/systick.c, withdriverlib/systick.h
containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 368

System Tick (SysTick)

25.3.2

25.3.2.1

25.3.2.2

25.3.2.3

25.3.2.4

Function Documentation

void SysTick_disablelnterrupt (void)

Disables the SysTick interrupt.
This function disables the SysTick interrupt, preventing it from being reflected to the processor.

Returns
None.

void SysTick_disableModule (void)

Disables the SysTick counter.
This function stops the SysTick counter. If an interrupt handler has been registered, it is not called
until SysTick is restarted.

Returns
None.

void SysTick_enablelnterrupt (void)

Enables the SysTick interrupt.

This function enables the SysTick interrupt, allowing it to be reflected to the processor.

Note
The SysTick interrupt handler is not required to clear the SysTick interrupt source because it
is cleared automatically by the NVIC when the interrupt handler is called.

Returns
None.

void SysTick_enableModule (void)

Enables the SysTick counter.

This function starts the SysTick counter. If an interrupt handler has been registered, it is called
when the SysTick counter rolls over.

Note
Calling this function causes the SysTick counter to (re)commence counting from its current
value. The counter is not automatically reloaded with the period as specified in a previous
call to SysTick_setPeriod(). If an immediate reload is required, the NVIC_ST_CURRENT
register must be written to force the reload. Any write to this register clears the SysTick
counter to 0 and causes a reload with the supplied period on the next clock.

Wed Aug 14 17:01:15 -05 2019 369

System Tick (SysTick)

25.3.2.5

25.3.2.6

25.3.2.7

25.3.2.8

Returns
None.

uint32_t SysTick_getPeriod (void)

Gets the period of the SysTick counter.

This function returns the rate at which the SysTick counter wraps, which equates to the number of
processor clocks between interrupts.

Returns
Returns the period of the SysTick counter.

uint32_t SysTick_getValue (void)

Gets the current value of the SysTick counter.

This function returns the current value of the SysTick counter, which is a value between the period
- 1 and zero, inclusive.

Returns
Returns the current value of the SysTick counter.

void SysTick_registerinterrupt (void(x)(void) intHandler)

Registers an interrupt handler for the SysTick interrupt.

Parameters

] intHandler \ is a pointer to the function to be called when the SysTick interrupt occurs.

This function registers the handler to be called when a SysTick interrupt occurs.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_registerinterrupt().

void SysTick_setPeriod (uint32_t period)

Sets the period of the SysTick counter.

Wed Aug 14 17:01:15 -05 2019 370

System Tick (SysTick)

Parameters

period | is the number of clock ticks in each period of the SysTick counter and must be between 1
and 16, 777, 216, inclusive.

This function sets the rate at which the SysTick counter wraps, which equates to the number of
processor clocks between interrupts.

Note
Calling this function does not cause the SysTick counter to reload immediately. If an
immediate reload is required, the NVIC_ST_CURRENT register must be written. Any write to
this register clears the SysTick counter to 0 and causes a reload with the period supplied
here on the next clock after SysTick is enabled.

Returns
None.

25.3.2.9 void SysTick_unregisterinterrupt (void)

Unregisters the interrupt handler for the SysTick interrupt.

This function unregisters the handler to be called when a SysTick interrupt occurs.

See Also
Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 371

32-bit ARM Timer (Timer32)

26

26.1

26.2

32-bit ARM Timer (Timer32)

MOAUIE OPEIAtIONttt e et e e e e e e 378
Basic Operation MOGESt e 378
Programming EXample o 379
D iNIEIONS .. e 380

Module Operation

The Timer32 module in MSP432 is a simple 32-bit (or 16-bit depending on configuration) down
counter which was implemented by ARM. While the user’s guide for Timer32 treats the module as
one unified timer, the DriverLib API separates the two timers into two separate modules. To
choose between the module, the user either provides TIMER32_0 or TIMER32_1 to the timer in
order to specify which timer is to be used.

Basic Operation Modes

Free Run Mode In free run mode, the timer will run from a value of UINT16_MAX or
UINT32_MAX (depending on what resolution is selected).

Periodic Mode In periodic mode, the timer will run to a specified period by the user.

For both periodic and free run modes, the one shot boolean option in the Timer32_startTimer()
function. If specified, when the count reaches zero from the specified period the timer will stop and
not automatically resume with the next iteration of the count.

Wed Aug 14 17:01:15 -05 2019 372

32-bit ARM Timer (Timer32)

26.3 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the Timer32 module. These code examples are accessible under the examples/ folder of the
SDK release as well as through Tl Resource Explorer if using Code Composer Studio. These
code examples provide a comprehensive list of use cases as well as practical applications
involving each module.

Below is a very brief code example showing how to configure the Timer32 as a simple down
counter with interrupts enabled:

Wed Aug 14 17:01:15 -05 2019 373

32-bit ARM Timer (Timer32)

26.4 Definitions

Functions

void Timer32_clearInterruptFlag (uint32_t timer)

void Timer32_disablelnterrupt (uint32_t timer)

void Timer32_enablelnterrupt (uint32_t timer)

uint32_t Timer32_getinterruptStatus (uint32_t timer)

uint32_t Timer32_getValue (uint32_t timer)

void Timer32_haltTimer (uint32_t timer)

void Timer32_initModule (uint32_t timer, uint32_t preScaler, uint32_t resolution, uint32_t
mode)

void Timer32_regqisterinterrupt (uint32_t timerlnterrupt, void(xintHandler)(void))
void Timer32_setCount (uint32_t timer, uint32_t count)

void Timer32_setCountIinBackground (uint32_t timer, uint32_t count)

void Timer32_startTimer (uint32_t timer, bool oneShot)

void Timer32_unregisterinterrupt (uint32_t timerinterrupt)

26.4.1 Detailed Description

The code for this module is contained in driverlib/timer32.c, With driverlib/timer32.h
containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 374

32-bit ARM Timer (Timer32)

26.4.2 Function Documentation

26.4.2.1 void Timer32_clearInterruptFlag (uint32_t timer)

Clears Timer32 interrupt source.

Parameters

timer | is the instance of the Timer32 module. Valid parameters must be one of the following
values:

= TIMER32_0_BASE
= TIMER32_1_BASE

The Timer32 interrupt source is cleared, so that it no longer asserts.

Returns
None.

26.4.2.2 void Timer32_disablelnterrupt (uint32_t timer)

Disables a Timer32 interrupt source.

Parameters

timer | is the instance of the Timer32 module. Valid parameters must be one of the following
values:

= TIMER32_0_BASE
= TIMER32_1_BASE

Disables the indicated Timer32 interrupt source.

Returns
None.

26.4.2.3 void Timer32_enablelnterrupt (uint32_t timer)

Enables a Timer32 interrupt source.

Parameters

timer | is the instance of the Timer32 module. Valid parameters must be one of the following
values:

= TIMER32_0_BASE
= TIMER32_1_BASE

Enables the indicated Timer32 interrupt source.

Wed Aug 14 17:01:15 -05 2019 375

32-bit ARM Timer (Timer32)

Returns
None.

26.4.2.4 uint32_t Timer32_getinterruptStatus (uint32_t timer)

Gets the current Timer32 interrupt status.

Parameters

values:
= TIMER32 0 BASE
= TIMER32 1 BASE

timer | is the instance of the Timer32 module. Valid parameters must be one of the following

This returns the interrupt status for the Timer32 module. A positive value will indicate that an

interrupt is pending while a zero value will indicate that no interrupt is pending.

Returns
The current interrupt status

26.4.2.5 uint32_t Timer32_getValue (uint32_t timer)

Returns the current value of the timer.

Parameters
timer | is the instance of the Timer32 module. Valid parameters must be one of the following
values:
= TIMER32_0_BASE
= TIMER32_1_BASE
Returns

The current count of the timer.

26.4.2.6 void Timer32_haltTimer (uint32_t timer)

Halts the timer. Current count and setting values are preserved.

Parameters

values:
= TIMER32_0 BASE
= TIMER32 1 _BASE

timer | is the instance of the Timer32 module. Valid parameters must be one of the following

Wed Aug 14 17:01:15 -05 2019

376

32-bit ARM Timer (Timer32)

Returns
None

26.4.2.7 void Timer32_initModule (uint32_t timer, uint32_t preScaler, uint32_t resolution,

uint32_t mode)

Initializes the Timer32 module

Parameters

timer

is the instance of the Timer32 module. Valid parameters must be one of the following
values:

= TIMER32_0_BASE
= TIMER32_1_BASE

preScaler

is the prescaler (or divider) to apply to the clock source given to the Timer32 module. Valid
values are

= TIMER32_PRESCALER_1 [DEFAULT]
= TIMER32_PRESCALER_16
= TIMER32_PRESCALER_256

resolution

is the bit resolution of the Timer32 module. Valid values are
= TIMER32_16BIT [DEFAULT]
= TIMER32_32BIT

mode

selects between free run and periodic mode. In free run mode, the value of the timer
is reset to UINT16_MAX (for 16-bit mode) or UINT32_MAX (for 16-bit mode) when
the timer reaches zero. In periodic mode, the timer is reset to the value set by the
Timer32_setCount function. Valid values are

= TIMER32_FREE_RUN_MODE [DEFAULT]
= TIMER32_PERIODIC_MODE

Wed Aug 14 17:01:15 -05 2019

377

32-bit ARM Timer (Timer32)

Returns
None.

26.4.2.8 void Timer32_regqisterinterrupt (uint32_t timerinterrupt, void(x)(void) intHandler)

Registers an interrupt handler for Timer32 interrupts.

Parameters

timerinterrupt

is the specific interrupt to register. For the Timer32 module, there are a total of three dif-
ferent interrupts: one interrupt for each two Timer32 modules, and a "combined" interrupt
which is a logical OR of each individual Timer32 interrupt.

= TIMER32_0_INTERRUPT
= TIMER32_1_INTERRUPT
= TIMER32_COMBINED_INTERRUPT

intHandler

is a pointer to the function to be called when the Timer32 interrupt occurs.

This function registers the handler to be called when an Timer32 interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific Timer32 interrupts must be enabled
via Timer32_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt
source via Timer32_clearInterruptFlag().

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

26.4.2.9 void Timer32_setCount (uint32_t timer, uint32_t count)

Sets the count of the timer and resets the current value to the value passed. This value is set on
the next rising edge of the clock provided to the timer module

Parameters
timer | is the instance of the Timer32 module. Valid parameters must be one of the following
values:
= TIMER32_0_BASE
= TIMER32_1_BASE
count | Value of the timer to set. Note that if the timer is in 16-bit mode and a value is passed in
that exceeds UINT16_MAX, the value will be truncated to UINT16_MAX.

Also note that if the timer is operating in periodic mode, the value passed into this function will
represent the new period of the timer (the value which is reloaded into the timer each time it
reaches a zero value).

Returns
None

Wed Aug 14 17:01:15 -05 2019

378

32-bit ARM Timer (Timer32)

26.4.2.10 void Timer32_setCountInBackground (uint32_t timer, uint32_t count)

Sets the count of the timer without resetting the current value. When the current value of the timer
reaches zero, the value passed into this function will be set as the new count value.

Wed Aug 14 17:01:15 -05 2019 379

32-bit ARM Timer (Timer32)

Parameters

timer

is the instance of the Timer32 module. Valid parameters must be one of the following
values:

= TIMER32_0_BASE
= TIMER32_1_BASE

count

Value of the timer to set in the background. Note that if the timer is in 16-bit mode
and a value is passed in that exceeds UINT16_MAX, the value will be truncated to
UINT16_MAX.

Also note that if the timer is operating in periodic mode, the value passed into this function will
represent the new period of the timer (the value which is reloaded into the timer each time it
reaches a zero value).

Returns
None

26.4.2.11 void Timer32_startTimer (uint32_t timer, bool oneShot)

Starts the timer. The Timer32_initModule function should be called (in conjunction with
Timer32_setCount if periodic mode is desired) prior to

Parameters
timer | is the instance of the Timer32 module. Valid parameters must be one of the following
values:
= TIMER32_0_BASE
= TIMER32_1_BASE
oneShot | sets whether the Timer32 module operates in one shot or continuous mode. In one shot

mode, the timer will halt when a zero is reached and stay halted until either:
m The user calls the Timer32PeriodSet function

m The Timer32_initModule is called to reinitialize the timer with one-shot mode dis-
abled.

A true value will cause the timer to operate in one shot mode while a false value will cause the
timer to operate in continuous mode

Returns
None

26.4.2.12 void Timer32_unregisterinterrupt (uint32_t timerinterrupt)

Unregisters the interrupt handler for the Timer32 interrupt.

Wed Aug 14 17:01:15 -05 2019

380

32-bit ARM Timer (Timer32)

Parameters

timerinterrupt

is the specific interrupt to register. For the Timer32 module, there are a total of three dif-
ferent interrupts: one interrupt for each two Timer32 modules, and a "combined" interrupt
which is a logical OR of each individual Timer32 interrupt.

= TIMER32_0_INTERRUPT
= TIMER32_1_INTERRUPT
= TIMER32_COMBINED_INTERRUPT

This function unregisters the handler to be called when a Timer32 interrupt occurs. This function
also masks off the interrupt in the interrupt controller so that the interrupt handler no longer is

called.

See Also

Interrupt_registerInterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019

381

16-Bit Timer with Precision PWM (Timer_A)

27

271

27.2

16-Bit Timer with Precision PWM (Timer_A)

MOAUIE OPEIAtIONttt e et e e e e e e 388
Basic Operation MOGESt e 388
Programming EXample o 389
D iNIEIONS .. e 390

Module Operation

TimerA is a 16-bit timer/counter with multiple capture/compare registers. TimerA can support
multiple capture/compares, PWM outputs, and interval timing. TimerA also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each
of the capture/compare registers.

This peripheral API handles Timer A hardware peripheral.

TimerA features include:

m Asynchronous 16-bit timer/counter with four operating modes

m Selectable and configurable clock source

m Up to seven configurable capture/compare registers

m Configurable outputs with pulse width modulation (PWM) capability
m Asynchronous input and output latching

m Interrupt vector register for fast decoding of all Timer interrupts

Basic Operation Modes

TimerA can operate in 3 modes:

m Continuous Mode
m Up Mode
® Down Mode

TimerA Interrupts may be generated on counter overflow conditions and during capture compare
events.

The TimerA may also be used to generate PWM outputs. PWM outputs can be generated by
initializing the compare mode with TimerA_initCompare() and the necessary parameters. The
PWM may be customized by selecting a desired timer mode (continuous/up/upDown), duty cycle,
output mode, timer period etc. The library also provides a simpler way to generate PWM using
TimerA_generatePWM() API. However the level of customization and the kinds of PWM generated
are limited in this API. Depending on how complex the PWM is and what level of customization is
required, the user can use TimerA_generatePWM() or a combination of TimerA_initCompare and
timer start APls.

The TimerA API provides a set of functions for dealing with the TimerA module. Functions are
provided to configure and control the timer, along with functions to modify timer/counter values,
and to manage interrupt handling for the timer.

Wed Aug 14 17:01:15 -05 2019 382

16-Bit Timer with Precision PWM (Timer_A)

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate
that an event has been captured.

27.3 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the TimerA module. These code examples are accessible under the examples/ folder of the
SDK release as well as through Tl Resource Explorer if using Code Composer Studio. These
code examples provide a comprehensive list of use cases as well as practical applications
involving each module.

Below is a very brief code example showing how to generate a PWM signal using the TimerA
DriverLib module.

Below is the configuration parameter for the TimerA PWM config API:

The next snippet of code is used to actually configure the PWM signal:

Wed Aug 14 17:01:15 -05 2019 383

16-Bit Timer with Precision PWM (Timer_A)

27.4 Definitions

Data Structures

struct _Timer_A_CaptureModeConfig
struct _Timer_A_CompareModeConfig
struct _Timer_A_ContinuousModeConfig
struct _Timer_A_PWMConfig

struct _Timer_A_UpDownModeConfig
struct _Timer_A_UpModeConfig

Functions

void Timer_A_clearCaptureComparelnterrupt (uint32_t timer, uint_fast16_t
captureCompareRegister)

void Timer_A_clearInterruptFlag (uint32_t timer)

void Timer_A_clearTimer (uint32_t timer)

void Timer_A_configureContinuousMode (uint32_t timer, const
Timer_A_ContinuousModeConfig xconfig)

void Timer_A_configureUpDownMode (uint32_t timer, const Timer_A_UpDownModeConfig
xconfig)

void Timer_A_configureUpMode (uint32_t timer, const Timer_A_UpModeConfig xconfig)
void Timer_A_disableCaptureComparelnterrupt (uint32_t timer, uint_fast16_t
captureCompareRegister)

void Timer_A_disablelnterrupt (uint32_t timer)

void Timer_A_enableCaptureComparelnterrupt (uint32_t timer, uint_fast16_t
captureCompareRegister)

void Timer_A_enablelnterrupt (uint32_t timer)

void Timer_A_generatePWM (uint32_t timer, const Timer_A_PWMConfig xconfig)
uint_fast16_t Timer_A_getCaptureCompareCount (uint32_t timer, uint_fast16_t
captureCompareRegister)

uint32_t Timer_A_getCaptureCompareEnabledInterruptStatus (uint32_t timer, uint_fast16_t
captureCompareRegister)

uint32_t Timer_A_getCaptureComparelnterruptStatus (uint32_t timer, uint_fast16_t
captureCompareRegister, uint_fast16_t mask)

uint16_t Timer_A_getCounterValue (uint32_t timer)

uint32_t Timer_A_getEnabledInterruptStatus (uint32_t timer)

uint32_t Timer_A_getlnterruptStatus (uint32_t timer)

uint_fast8_t Timer_A_getOutputForOutputModeOutBitValue (uint32_t timer, uint_fast16_t
captureCompareRegister)

uint_fast8_t Timer_A_getSynchronizedCaptureComparelnput (uint32_t timer, uint_fast16_t
captureCompareRegister, uint_fast16_t synchronizedSetting)

void Timer_A_initCapture (uint32_t timer, const Timer_A_CaptureModeConfig xconfig)
void Timer_A_initCompare (uint32_t timer, const Timer_A_CompareModeConfig xconfig)
void Timer_A_registerInterrupt (uint32_t timer, uint_fast8_t interruptSelect,
void(xintHandler)(void))

void Timer_A_setCompareValue (uint32_t timer, uint_fast16_t compareRegister,
uint_fast16_t compareValue)

void Timer_A_setOutputForOutputModeOutBitValue (uint32_t timer, uint_fast16_t
captureCompareRegister, uint_fast8_t outputModeOutBitValue)

void Timer_A_startCounter (uint32_t timer, uint_fast16_t timerMode)

void Timer_A_stopTimer (uint32_t timer)

void Timer_A_unregisterinterrupt (uint32_t timer, uint_fast8_t interruptSelect)

Wed Aug 14 17:01

:15-05 2019 384

16-Bit Timer with Precision PWM (Timer_A)

27.4.1 Detailed Description

The code for this module is contained in driverlib/timer_a.c, with driverlib/timer_a.h
containing the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 385

16-Bit Timer with Precision PWM (Timer_A)

27.4.2

27.4.2.1

27.42.2

27.4.2.3

27.4.2.4

27.4.2.5

27.4.2.6

Data Structure Documentation

struct _Timer_A_CaptureModeConfig

Type definition for _Timer_A_CaptureModeConfig structure.
ypedef Timer_A_CaptureModeConfig

Configuration structure for capture mode in the Timer_A module. See Timer_A_initCapture for
parameter documentation.

struct _Timer_A_CompareModeConfig

Type definition for _Timer_A_CompareModeConfig structure.
ypedef Timer_A_CompareModeConfig

Configuration structure for compare mode in the Timer_A module. See Timer_A_initCompare for
parameter documentation.

struct _Timer_A_ContinuousModeConfig

Type definition for _Timer_A_ContinuousModeConfig structure.
ypedef Timer_A_ContinuousModeConfig

Configuration structure for continuous mode in the Timer_A module. See
Timer_A_configureContinuousMode for parameter documentation.

struct _Timer_A_PWMConfig

Type definition for _Timer_A_PWMConfig structure.
ypedef Timer_A_PWMConfig

Configuration structure for PWM mode in the Timer_A module. See Timer_A_generatePWM for
parameter documentation.

struct _Timer_A_UpDownModeConfig

Type definition for _Timer_A_UpDownModeConfig structure.
ypedef Timer_A_UpDownModeConfig

Configuration structure for UpDown mode in the Timer_A module. See
Timer_A_configureUpDownMode for parameter documentation.

struct _Timer_A_UpModeConfig

Type definition for _Timer_A_UpModeConfig structure.

Wed Aug 14 17:01:15 -05 2019 386

16-Bit Timer with Precision PWM (Timer_A)

ypedef Timer_A_UpModeConfig

Configuration structure for Up mode in the Timer_A module. See Timer_A_configureUpMode for
parameter documentation.

27.4.3 Function Documentation

27.4.3.1 void Timer_A_clearCaptureComparelnterrupt (uint32_t timer, uint_fast16_t
captureCompareRegister)

Clears the capture-compare interrupt flag

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

captureCompar-
eRegister

selects the Capture-compare register being used. Valid values are
= TIMER_A_CAPTURECOMPARE_REGISTER_0
= TIMER_A_CAPTURECOMPARE_REGISTER_1
= TIMER_A_CAPTURECOMPARE_REGISTER_2
= TIMER_A_CAPTURECOMPARE_REGISTER_3
= TIMER_A_CAPTURECOMPARE_REGISTER_4
= TIMER_A_CAPTURECOMPARE_REGISTER_5

= TIMER_A_CAPTURECOMPARE_REGISTER_6

Refer to the datasheet to ensure the device has the capture compare register being
used

Wed Aug 14 17:01:15 -05 2019

387

16-Bit Timer with Precision PWM (Timer_A)

Returns
None

27.4.3.2 void Timer_A_clearlnterruptFlag (uint32_t timer)

Clears the Timer TAIFG interrupt flag

Parameters
timer | is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:
= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE
Returns
None

27.4.3.3 void Timer_A_clearTimer (uint32_t timer)

Reset/Clear the timer clock divider, count direction, count

Parameters
timer | is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:
= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE
Returns
None

27.4.3.4 void Timer_A_configureContinuousMode (uint32_t timer, const
Timer_A_ContinuousModeConfig « config)

Configures Timer_A in continuous mode.

Wed Aug 14 17:01:15 -05 2019

388

16-Bit Timer with Precision PWM (Timer_A)

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

config

Configuration structure for Timer_A continuous mode

Configuration options for Timer_A_ContinuousModeConfig structure.

Wed Aug 14 17:01:15 -05 2019

389

16-Bit Timer with Precision PWM (Timer_A)

Parameters

clockSource | selects Clock source. Valid values are

m TIMER_A_CLOCKSOURCE_EXTERNAL_TXCLK [Default value]
= TIMER_A_CLOCKSOURCE_ACLK

m TIMER_A_CLOCKSOURCE_SMCLK

= TIMER_A_CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK

timerinter- | is the divider for Clock source. Valid values are:
ab/; UP%ffE = TIMER_A_CLOCKSOURCE_DIVIDER_1 [Default value]
- = TIMER_A_CLOCKSOURCE_DIVIDER_2
= TIMER_A_CLOCKSOURCE_DIVIDER_4
= TIMER_A_CLOCKSOURCE_DIVIDER_8
= TIMER_A_CLOCKSOURCE_DIVIDER_3
m TIMER_A_CLOCKSOURCE_DIVIDER_5
= TIMER_A_CLOCKSOURCE_DIVIDER_6
= TIMER_A_CLOCKSOURCE_DIVIDER_7
= TIMER_A_CLOCKSOURCE_DIVIDER_10
= TIMER_A_CLOCKSOURCE_DIVIDER_12
= TIMER_A_CLOCKSOURCE_DIVIDER_14
= TIMER_A_CLOCKSOURCE_DIVIDER_16
= TIMER_A_CLOCKSOURCE_DIVIDER_20
= TIMER_A_CLOCKSOURCE_DIVIDER_24
= TIMER_A_CLOCKSOURCE_DIVIDER_28
= TIMER_A_CLOCKSOURCE_DIVIDER_32
= TIMER_A_CLOCKSOURCE_DIVIDER_40
= TIMER_A_CLOCKSOURCE_DIVIDER_48
= TIMER_A_CLOCKSOURCE_DIVIDER_56
= TIMER_A_CLOCKSOURCE_DIVIDER_64

timerlinter- | is to enable or disable Timer_A interrupt. Valid values are
rupten- = TIMER_A TAIE_INTERRUPT_ENABLE
able TAIE
- m TIMER_A_TAIE_INTERRUPT_DISABLE [Default value]

Wed Aug 14 17:01:15 -05 2019 390

16-Bit Timer with Precision PWM (Timer_A)

timerClear

decides if Timer_A clock divider, count direction, count need to be reset. Valid values are
= TIMER_A DO _CLEAR
m TIMER_A_SKIP_CLEAR [Default value]

Note

This APl does not start the timer. Timer needs to be started when required using the
Timer_A_startCounter API.

Returns
None

27.4.3.5 void Timer_A_configureUpDownMode (uint32_t timer, const
Timer_A_UpDownModeConfig « config)

Configures Timer_A in up down mode.

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

config

Configuration structure for Timer_A UpDown mode

Configuration options for Timer_A_UpDownModeConfig structure.

Parameters

clockSource

selects Clock source. Valid values are
= TIMER_A_CLOCKSOURCE_EXTERNAL_TXCLK [Default value]
= TIMER_A_CLOCKSOURCE_ACLK
m TIMER_A_CLOCKSOURCE_SMCLK
= TIMER_A_CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK

Wed Aug 14 17:01:15 -05 2019

391

16-Bit Timer with Precision PWM (Timer_A)

clockSourceDi- | is the divider for Clock source. Valid values are:
vider | w TIMER_A_CLOCKSOURCE_DIVIDER_1 [Default value]
m TIMER_A_CLOCKSOURCE_DIVIDER_2
m TIMER_A_CLOCKSOURCE_DIVIDER_4
m TIMER_A_CLOCKSOURCE_DIVIDER_8
m TIMER_A_CLOCKSOURCE_DIVIDER_3
m TIMER_A_CLOCKSOURCE_DIVIDER_5
m TIMER_A_CLOCKSOURCE_DIVIDER_6
m TIMER_A_CLOCKSOURCE_DIVIDER_7
m TIMER_A_CLOCKSOURCE_DIVIDER_10
m TIMER_A_CLOCKSOURCE_DIVIDER_12
m TIMER_A_CLOCKSOURCE_DIVIDER_14
= TIMER_A_CLOCKSOURCE_DIVIDER_16
m TIMER_A_CLOCKSOURCE_DIVIDER_20
m TIMER_A_CLOCKSOURCE_DIVIDER_24
= TIMER_A_CLOCKSOURCE_DIVIDER_28
m TIMER_A_CLOCKSOURCE_DIVIDER_32
= TIMER_A_CLOCKSOURCE_DIVIDER_40
m TIMER_A_CLOCKSOURCE_DIVIDER_48
= TIMER_A_CLOCKSOURCE_DIVIDER_56
m TIMER_A_CLOCKSOURCE_DIVIDER_64

Wed Aug 14 17:01:15 -05 2019 392

16-Bit Timer with Precision PWM (Timer_A)

able_CCRO_CCIE

timerPeriod | is the specified Timer_A period
timerinter- | is to enable or disable Timer_A interrupt. Valid values are
ab/; UP%EfE = TIMER_A TAIE_INTERRUPT_ENABLE
- m TIMER_A_TAIE_INTERRUPT_DISABLE [Default value]
captureCom- | is to enable or disable Timer_A CCRO captureComapre interrupt. Valid values are
parelnterrupten- = TIMER_A_CCIE_CCRO_INTERRUPT_ENABLE and

= TIMER_A_CCIE_CCRO_INTERRUPT_DISABLE [Default value]

timerClear

decides if Timer_A clock divider, count direction, count need to be reset. Valid values are
= TIMER_A DO_CLEAR
m TIMER_A_SKIP_CLEAR [Default value]

This API does not start the timer. Timer needs to be started when required using the
Timer_A_startCounter API.

Returns
None

27.4.3.6 void Timer_A_configureUpMode (uint32_t timer, const
Timer_A_UpModeConfig x config)

Configures Timer_A in up mode.

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

config

Configuration structure for Timer_A Up mode

Configuration options for Timer_A_UpModeConfig structure.

Wed Aug 14 17:01:15 -05 2019

393

16-Bit Timer with Precision PWM (Timer_A)

Parameters
clockSource | selects Clock source. Valid values are
= TIMER_A _CLOCKSOURCE_EXTERNAL_TXCLK [Default value]
m TIMER_A CLOCKSOURCE_ACLK
= TIMER_A_CLOCKSOURCE_SMCLK
= TIMER_A CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK
clockSourceDi- | is the divider for Clock source. Valid values are:

vider

= TIMER_A_CLOCKSOURCE_DIVIDER_1 [Default value]
= TIMER_A_CLOCKSOURCE_DIVIDER_2
= TIMER_A_CLOCKSOURCE_DIVIDER_4
= TIMER_A_CLOCKSOURCE_DIVIDER_8
= TIMER_A_CLOCKSOURCE_DIVIDER_3
= TIMER_A_CLOCKSOURCE_DIVIDER_5
= TIMER_A_CLOCKSOURCE_DIVIDER_6
= TIMER_A_CLOCKSOURCE_DIVIDER_7
= TIMER_A_CLOCKSOURCE_DIVIDER_10
= TIMER_A_CLOCKSOURCE_DIVIDER_12
= TIMER_A_CLOCKSOURCE_DIVIDER_14
= TIMER_A_CLOCKSOURCE_DIVIDER_16
= TIMER_A_CLOCKSOURCE_DIVIDER_20
= TIMER_A_CLOCKSOURCE_DIVIDER_24
= TIMER_A_CLOCKSOURCE_DIVIDER_28
= TIMER_A_CLOCKSOURCE_DIVIDER_32
= TIMER_A_CLOCKSOURCE_DIVIDER_40
= TIMER_A_CLOCKSOURCE_DIVIDER_48
= TIMER_A_CLOCKSOURCE_DIVIDER_56
= TIMER_A_CLOCKSOURCE_DIVIDER_64

Wed Aug 14 17:01:15 -05 2019

394

16-Bit Timer with Precision PWM (Timer_A)

timerPeriod

is the specified Timer_A period. This is the value that gets written into the CCRO. Limited
to 16 bits[uint16_t]

able_CCRO_CCIE

timerinter- | is to enable or disable Timer_A interrupt. Valid values are:
b/fUP;EI”I:; = TIMER_A_TAIE_INTERRUPT_ENABLE and
able
- = TIMER_A_TAIE_INTERRUPT_DISABLE [Default value]
captureCom- | is to enable or disable Timer_A CCRO captureComapre interrupt. Valid values are
parelnterruptEn- = TIMER_A_CCIE_CCRO_INTERRUPT_ENABLE and

= TIMER_A_CCIE_CCRO_INTERRUPT_DISABLE [Default value]

timerClear

decides if Timer_A clock divider, count direction, count need to be reset. Valid values are
= TIMER_A DO CLEAR
m TIMER_A_SKIP_CLEAR [Default value]

Note

This API does not start the timer. Timer needs to be started when required using the
Timer_A_startCounter API.

Returns
None

27.4.3.7 void Timer_A_disableCaptureComparelnterrupt (uint32_t timer, uint fast16_t
captureCompareRegister)

Disable capture compare interrupt

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_ BASE
= TIMER_A3_BASE

Wed Aug 14 17:01:15 -05 2019

395

16-Bit Timer with Precision PWM (Timer_A)

captureCompar-
eRegister

is the selected capture compare register

Returns
None

27.4.3.8 void Timer_A_disablelnterrupt (uint32_t timer)

Disable timer interrupt

Parameters
timer | is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:
= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE
Returns
None

27.4.3.9 void Timer_A_enableCaptureComparelnterrupt (uint32_t timer, uint_fast16 t
captureCompareRegister)

Enable capture compare interrupt

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

Wed Aug 14 17:01:15 -05 2019

396

16-Bit Timer with Precision PWM (Timer_A)

captureCompar-
eRegister

is the selected capture compare register

Returns
None

27.4.3.10 void Timer_A_enablelnterrupt (uint32_t timer)

Enable timer interrupt

Parameters
timer | is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:
= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE
Returns
None

27.4.3.11 void Timer_A_generatePWM (uint32_t timer, const Timer_A_PWMConfig x

config)

Generate a PWM with timer running in up mode

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

Wed Aug 14 17:01:15 -05 2019

397

16-Bit Timer with Precision PWM (Timer_A)

| config | Configuration structure for Timer_A PWM mode

Configuration options for Timer_A_PWMConfig structure.

Parameters

clockSource | selects Clock source. Valid values are

= TIMER_A_CLOCKSOURCE_EXTERNAL_TXCLK

= TIMER_A_CLOCKSOURCE_ACLK

= TIMER_A_CLOCKSOURCE_SMCLK

= TIMER_A_CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK

clockSourceDi- | is the divider for Clock source. Valid values are
vider | w TIMER_A_CLOCKSOURCE_DIVIDER_1
m TIMER_A_CLOCKSOURCE_DIVIDER_2
m TIMER_A_CLOCKSOURCE_DIVIDER_4
m TIMER_A_CLOCKSOURCE_DIVIDER_8
m TIMER_A_CLOCKSOURCE_DIVIDER_3
m TIMER_A_CLOCKSOURCE_DIVIDER_5
m TIMER_A_CLOCKSOURCE_DIVIDER_6
m TIMER_A_CLOCKSOURCE_DIVIDER_7
m TIMER_A_CLOCKSOURCE_DIVIDER_10
= TIMER_A_CLOCKSOURCE_DIVIDER_12
m TIMER_A_CLOCKSOURCE_DIVIDER_14
= TIMER_A_CLOCKSOURCE_DIVIDER_16
m TIMER_A_CLOCKSOURCE_DIVIDER_20
m TIMER_A_CLOCKSOURCE_DIVIDER_24
m TIMER_A_CLOCKSOURCE_DIVIDER_28
m TIMER_A_CLOCKSOURCE_DIVIDER_32
= TIMER_A_CLOCKSOURCE_DIVIDER_40
m TIMER_A_CLOCKSOURCE_DIVIDER_48
m TIMER_A_CLOCKSOURCE_DIVIDER_56
= TIMER_A_CLOCKSOURCE_DIVIDER_64

Wed Aug 14 17:01:15 -05 2019 398

16-Bit Timer with Precision PWM (Timer_A)

timerPeriod

selects the desired timer period

compareRegis-
ter

selects the compare register being used. Valid values are
= TIMER_A_CAPTURECOMPARE_REGISTER_0
= TIMER_A_CAPTURECOMPARE_REGISTER_1
= TIMER_A_CAPTURECOMPARE_REGISTER_2
= TIMER_A_CAPTURECOMPARE_REGISTER_3
= TIMER_A_CAPTURECOMPARE_REGISTER_4
= TIMER_A_CAPTURECOMPARE_REGISTER_5

= TIMER_A_CAPTURECOMPARE_REGISTER_6
Refer to datasheet to ensure the device has the capture compare register being used

compareQutput-
Mode

specifies the ouput mode. Valid values are:
= TIMER_A_OUTPUTMODE_OUTBITVALUE,
= TIMER_A_OUTPUTMODE_SET,
= TIMER_A_OUTPUTMODE_TOGGLE_RESET,
= TIMER_A_OUTPUTMODE_SET_RESET
= TIMER_A_OUTPUTMODE_TOGGLE,
= TIMER_A_OUTPUTMODE_RESET,
= TIMER_A_OUTPUTMODE_TOGGLE_SET,
= TIMER_A_OUTPUTMODE_RESET_SET

dutyCycle

specifies the dutycycle for the generated waveform

Returns
None

27.4.3.12 uint_fast16_t Timer_A_getCaptureCompareCount (uint32_t timer, uint_fast16_t
captureCompareRegister)

Get current capture compare count

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

Wed Aug 14 17:01:15 -05 2019

399

16-Bit Timer with Precision PWM (Timer_A)

captureCompar- | selects the Capture register being used. Valid values are
eRegister | u TIMER_A_CAPTURECOMPARE_REGISTER_0

= TIMER_A CAPTURECOMPARE_REGISTER 1

= TIMER_A_CAPTURECOMPARE_REGISTER_2

= TIMER_A CAPTURECOMPARE_REGISTER_3

= TIMER_A_CAPTURECOMPARE_REGISTER_4

= TIMER_A CAPTURECOMPARE_REGISTER 5

m TIMER_A_CAPTURECOMPARE_REGISTER_6
Refer to datasheet to ensure the device has the capture compare register being used

Returns
current count as uint16_t

27.4.3.13 uint32_t Timer_A_getCaptureCompareEnabledInterruptStatus (uint32_t timer,
uint_fast16_t captureCompareRegister)

Return capture compare interrupt status masked with the enabled interrupts. This function is
useful to call in ISRs to get a list of pending interrupts that are actually enabled and could have
caused the ISR.

Parameters

timer | is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO0_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

captureCompar- | is the selected capture compare register
eRegister

Returns
uint32_t. The mask of the set flags. Valid values is an OR of

= TIMER_A_CAPTURE_OVERFLOW,
= TIMER_A_CAPTURECOMPARE_INTERRUPT FLAG

References Timer_A_getCaptureComparelnterruptStatus().

27.4.3.14 uint32_t Timer_A_getCaptureComparelnterruptStatus (uint32_t timer,
uint_fast16_t captureCompareRegister, uint_fast16_t mask)

Return capture compare interrupt status

Wed Aug 14 17:01:15 -05 2019 400

16-Bit Timer with Precision PWM (Timer_A)

Parameters

timer | is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO0_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

captureCompar- | is the selected capture compare register
eRegister

mask | is the mask for the interrupt status Mask value is the logical OR of any of the following:
= TIMER_A_CAPTURE_OVERFLOW
m TIMER_A_CAPTURECOMPARE_INTERRUPT_FLAG

Returns
uint32_t. The mask of the set flags. Valid values is an OR of
= TIMER_A_CAPTURE_OVERFLOW,
= TIMER_A_CAPTURECOMPARE_INTERRUPT_FLAG

Referenced by Timer_A_getCaptureCompareEnabledinterruptStatus().

27.4.3.15 uint16_t Timer_A_getCounterValue (uint32_t timer)

Returns the current value of the specified timer. Note that according to the Timer A user guide,
reading the value of the counter is unreliable if the system clock is asynchronous from the timer
clock. The APl addresses this concern by reading the timer count register twice and then
determining the integrity of the value. If the two values are within 10 timer counts of each other,
the value is deemed safe and returned. If not, the process is repeated until a reliable timer value is
determined.

Parameters

timer | is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

Wed Aug 14 17:01:15 -05 2019 401

16-Bit Timer with Precision PWM (Timer_A)

Returns
The value of the specified timer

27.4.3.16 uint32_t Timer_A_getEnabledInterruptStatus (uint32_t timer)

Get timer interrupt status masked with the enabled interrupts. This function is useful to call in ISRs
to get a list of pending interrupts that are actually enabled and could have caused the ISR.

Wed Aug 14 17:01:15 -05 2019 402

16-Bit Timer with Precision PWM (Timer_A)

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

Returns

uint32_t. Return interrupt status. Valid values are
m TIMER_A_INTERRUPT_PENDING
m TIMER_A_INTERRUPT_NOT_PENDING

References Timer_A_getinterruptStatus().

27.4.3.17 uint32_t Timer_A_getiInterruptStatus (uint32_t timer)

Get timer interrupt status

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

Returns

uint32_t. Return interrupt status. Valid values are
= TIMER_A_INTERRUPT_PENDING
= TIMER_A_INTERRUPT_NOT_PENDING

Referenced by Timer_A_getEnabledInterruptStatus().

27.4.3.18 uint_fast8 t Timer_A_getOutputForOutputModeOutBitValue (uint32_t timer,
uint_fast16_t captureCompareRegister)

Get ouput bit for output mode

Wed Aug 14 17:01:15 -05 2019

403

16-Bit Timer with Precision PWM (Timer_A)

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

captureCompar-
eRegister

selects the Capture register being used. Valid values are
m TIMER_A_CAPTURECOMPARE_REGISTER_0
m TIMER_A_CAPTURECOMPARE_REGISTER_1
m TIMER_A_CAPTURECOMPARE_REGISTER_2
m TIMER_A_CAPTURECOMPARE_REGISTER_3
m TIMER_A_CAPTURECOMPARE_REGISTER_4
m TIMER_A_CAPTURECOMPARE_REGISTER_5

= TIMER_A_CAPTURECOMPARE_REGISTER_6
Refer to datasheet to ensure the device has the capture compare register being used

Returns

TIMER_A_OUTPUTMODE_OUTBITVALUE_HIGH or
= TIMER_A_OUTPUTMODE_OUTBITVALUE_LOW

27.4.3.19 uint_fast8_t Timer_A_getSynchronizedCaptureComparelnput (uint32_t timer,
uint_fast16_t captureCompareRegister, uint_fast16_t synchronizedSetting)

Get synchronized capture compare input

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

Wed Aug 14 17:01:15 -05 2019

404

16-Bit Timer with Precision PWM (Timer_A)

captureCompar- | selects the Capture register being used. Valid values are
eRegister | u TIMER_A_CAPTURECOMPARE_REGISTER_0

m TIMER_A_CAPTURECOMPARE_REGISTER_1

= TIMER_A_CAPTURECOMPARE_REGISTER_2

m TIMER_A_CAPTURECOMPARE_REGISTER_3

= TIMER_A_CAPTURECOMPARE_REGISTER_4

m TIMER_A_CAPTURECOMPARE_REGISTER_5

m TIMER_A_CAPTURECOMPARE_REGISTER_6
Refer to datasheet to ensure the device has the capture compare register being used

synchronized- | is to select type of capture compare input. Valid values are
Setting | w TIMER_A_READ_CAPTURE_COMPARE_INPUT
m TIMER_A_READ_SYNCHRONIZED CAPTURECOMPAREINPUT

Returns
TIMER_A_CAPTURECOMPARE_INPUT_HIGH or

= TIMER_A_CAPTURECOMPARE_INPUT_LOW

27.4.3.20 void Timer_A_initCapture (uint32_t timer, const Timer_A_CaptureModeConfig
x config)

Initializes Capture Mode

Parameters

timer | is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

config | Configuration structure for Timer_A capture mode

Configuration options for Timer_A_CaptureModeConfig structure.

Wed Aug 14 17:01:15 -05 2019 405

16-Bit Timer with Precision PWM (Timer_A)

Parameters

captureRegister

selects the Capture register being used. Valid values are
= TIMER_A_CAPTURECOMPARE_REGISTER_0
= TIMER_A_CAPTURECOMPARE_REGISTER_1
= TIMER_A_CAPTURECOMPARE_REGISTER_2
= TIMER_A_CAPTURECOMPARE_REGISTER_3
= TIMER_A_CAPTURECOMPARE_REGISTER_4
= TIMER_A_CAPTURECOMPARE_REGISTER_5
= TIMER_A_CAPTURECOMPARE_REGISTER_6

Refer to datasheet to ensure the device has the capture compare register being used

captureMode

is the capture mode selected. Valid values are
= TIMER_A_CAPTUREMODE_NO_CAPTURE [Default value]
m TIMER_A_CAPTUREMODE_RISING_EDGE
= TIMER_A_CAPTUREMODE_FALLING_EDGE
m TIMER_A_CAPTUREMODE_RISING_AND_FALLING_EDGE

capturelnputSe-
lect

decides the Input Select
= TIMER_A_CAPTURE_INPUTSELECT_CCIxA [Default value]
= TIMER_A_CAPTURE_INPUTSELECT_CCIxB
= TIMER_A_CAPTURE_INPUTSELECT_GND
= TIMER_A_CAPTURE_INPUTSELECT Vcc

synchronize-
CaptureSource

decides if capture source should be synchronized with timer clock Valid values are
= TIMER_A_CAPTURE_ASYNCHRONOUS [Default value]
= TIMER_A_CAPTURE_SYNCHRONOUS

capturelnter-
ruptEnable

is to enable or disable timer captureComapre interrupt. Valid values are
= TIMER_A_CAPTURECOMPARE_INTERRUPT_DISABLE [Default value]
m TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE

captureOutput-
Mode

specifies the ouput mode. Valid values are
m TIMER_A_OUTPUTMODE_OUTBITVALUE [Default value],
= TIMER_A_OUTPUTMODE_SET,
= TIMER_A_OUTPUTMODE_TOGGLE_RESET,
m TIMER_A_OUTPUTMODE_SET_RESET
= TIMER_A_OUTPUTMODE_TOGGLE,
= TIMER_A_OUTPUTMODE_RESET,
= TIMER_A_OUTPUTMODE_TOGGLE_SET,
m TIMER_A_OUTPUTMODE_RESET_SET

Wed Aug 14 17:01:15 -05 2019

406

16-Bit Timer with Precision PWM (Timer_A)

Returns
None

27.4.3.21 void Timer_A_initCompare (uint32_t timer, const
Timer_A_CompareModeConfig « config)

Initializes Compare Mode

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

config

Configuration structure for Timer_A compare mode

Configuration options for Timer_A_CompareModeConfig structure.

Parameters

compareRegis-
ter

selects the Capture register being used. Valid values are
= TIMER_A_CAPTURECOMPARE_REGISTER_0
= TIMER_A_CAPTURECOMPARE_REGISTER_1
= TIMER_A_CAPTURECOMPARE_REGISTER_2
= TIMER_A_CAPTURECOMPARE_REGISTER_3
= TIMER_A_CAPTURECOMPARE_REGISTER_4
m TIMER_A_CAPTURECOMPARE_REGISTER_5

= TIMER_A_CAPTURECOMPARE_REGISTER_6
Refer to datasheet to ensure the device has the capture compare register being used

Wed Aug 14 17:01:15 -05 2019

407

16-Bit Timer with Precision PWM (Timer_A)

comparelnter- | is to enable or disable timer captureComapre interrupt. Valid values are
ruptEnable | g TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE and
m TIMER_A_CAPTURECOMPARE_INTERRUPT_DISABLE [Default value]

compareQutput- | specifies the output mode. Valid values are
Mode m TIMER_A_OUTPUTMODE_OUTBITVALUE [Default value],
= TIMER_A_OUTPUTMODE_SET,
m TIMER_A_OUTPUTMODE_TOGGLE_RESET,
m TIMER_A_OUTPUTMODE_SET_ RESET
= TIMER_A_OUTPUTMODE_TOGGLE,
m TIMER_A_OUTPUTMODE_RESET,
m TIMER_A_OUTPUTMODE_TOGGLE_SET,
m TIMER_A_OUTPUTMODE_RESET_SET

compareValue | is the count to be compared with in compare mode

Returns
None

27.4.3.22 void Timer_A_registerinterrupt (uint32_t timer, uint_fast8 t interruptSelect,
void(x)(void) intHandler)

Registers an interrupt handler for the timer capture compare interrupt.

Parameters

timer | is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

Wed Aug 14 17:01:15 -05 2019 408

16-Bit Timer with Precision PWM (Timer_A)

interruptSelect

Selects which timer interrupt handler to register. For the timer module, there are two
separate interrupt handlers that can be registered:

= TIMER_A_CCRO_INTERRUPT Corresponds to the interrupt for CCRO

= TIMER_A_CCRX_AND_OVERFLOW_INTERRUPT Corresponds to the interrupt for
CCR1-6, as well as the overflow interrupt.

intHandler

is a pointer to the function to be called when the timer capture compare interrupt occurs.

This function registers the handler to be called when a timer interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific Timer_Ainterrupts must be enabled
via Timer_A_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt
source via Timer_A_clearCaptureComparelnterrupt().

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

27.4.3.23 void Timer_A_setCompareValue (uint32_t timer, uint_fast16_t compareRegister,
uint_fast16_t compareValue)

Sets the value of the capture-compare register

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_ BASE
= TIMER_A3_BASE

compareRegis-
ter

selects the Capture register being used. Valid values are
= TIMER_A_CAPTURECOMPARE_REGISTER_0
= TIMER_A_CAPTURECOMPARE_REGISTER_1
= TIMER_A_CAPTURECOMPARE_REGISTER_2
= TIMER_A_CAPTURECOMPARE_REGISTER_3
= TIMER_A_CAPTURECOMPARE_REGISTER_4
= TIMER_A_CAPTURECOMPARE_REGISTER_5

= TIMER_A_CAPTURECOMPARE_REGISTER_6
Refer to datasheet to ensure the device has the capture compare register being used

Wed Aug 14 17:01:15 -05 2019

409

16-Bit Timer with Precision PWM (Timer_A)

] compareValue \ is the count to be compared with in compare mode

Returns
None

27.4.3.24 void Timer_A_setOutputForOutputModeOutBitValue (uint32_t timer,
uint_fast16_t captureCompareRegister, uint_fast8 t outputModeQutBitValue)

Set ouput bit for output mode

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

captureCompar-
eRegister

selects the Capture register being used. are
= TIMER_A_CAPTURECOMPARE_REGISTER_0
= TIMER_A_CAPTURECOMPARE_REGISTER_1
= TIMER_A_CAPTURECOMPARE_REGISTER_2
= TIMER_A_CAPTURECOMPARE_REGISTER_3
= TIMER_A_CAPTURECOMPARE_REGISTER_4
= TIMER_A_CAPTURECOMPARE_REGISTER_5

= TIMER_A_CAPTURECOMPARE_REGISTER_6
Refer to datasheet to ensure the device has the capture compare register being used

Wed Aug 14 17:01:15 -05 2019

410

16-Bit Timer with Precision PWM (Timer_A)

outputModeOQut- | the value to be set for out bit. Valid values are:
Bitvalue | u TIMER_A_OUTPUTMODE_OUTBITVALUE_HIGH
= TIMER_A OUTPUTMODE_OUTBITVALUE_LOW
Returns
None

27.4.3.25 void Timer_A_startCounter (uint32_t timer, uint_fast16_t timerMode)

Starts Timer_A counter

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO0_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

timerMode

selects Clock source. Valid values are
= TIMER_A_CONTINUOUS_MODE [Default value]
= TIMER_A_UPDOWN_MODE
= TIMER_A_UP_MODE

Note

This function assumes that the timer has been previously configured using
Timer_A_configureContinuousMode, Timer_A_configureUpMode or
Timer_A_configureUpDownMode.

Wed Aug 14 17:01:15 -05 2019

411

16-Bit Timer with Precision PWM (Timer_A)

Returns
None

27.4.3.26 void Timer_A_stopTimer (uint32_t timer)

Stops the timer
Parameters
timer | is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:
m TIMER_AO_BASE
m TIMER_A1_BASE
m TIMER_A2_BASE
m TIMER_A3_BASE
Returns
None

27.4.3.27 void Timer_A_unregisterinterrupt (uint32_t timer, uint_fast8 t interruptSelect)

Unregisters the interrupt handler for the timer

Parameters

timer

is the instance of the Timer_A module. Valid parameters vary from part to part, but can
include:

= TIMER_AO_BASE
= TIMER_A1_BASE
= TIMER_A2_BASE
= TIMER_A3_BASE

interruptSelect

Selects which timer interrupt handler to register. For the timer module, there are two
separate interrupt handlers that can be registered:

= TIMER_A_CCRO_INTERRUPT Corresponds to the interrupt for CCRO

= TIMER_A_CCRX_AND_OVERFLOW_INTERRUPT Corresponds to the interrupt for
CCR1-6, as well as the overflow interrupt.

This function unregisters the handler to be called when timer interrupt occurs. This function also
masks off the interrupt in the interrupt controller so that the interrupt handler no longer is called.

See Also

Interrupt_registerInterrupt() for important information about registering interrupt handlers.

Wed Aug 14 17:01:15 -05 2019

412

16-Bit Timer with Precision PWM (Timer_A)

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 413

Universal Asynchronous Receiver/Transmitter (UART)

28

28.1

Universal Asynchronous
Receiver/Transmitter (UART)

MOAUIE OPEIAIONttt ettt et e e 420
Programming EXampleo 421
D iNIEIONS .. e e 422

Module Operation

The SDK library for UART mode features include:

m Odd, even, or non-parity

m Independent transmit and receive shift registers

m Separate transmit and receive buffer registers

m LSB-first or MSB-first data transmit and receive

m Built-in idle-line and address-bit communication protocols for multiprocessor systems
m Status flags for error detection and suppression

m Status flags for address detection

= |Independent interrupt capability for receive and transmit

The modes of operations supported by the UART and the library include

m UART mode
m |dle-line multiprocessor mode
m Address-bit multiprocessor mode
m UART mode with automatic baud-rate detection
In UART mode, the USCI transmits and receives characters at a bit rate asynchronous to another

device. Timing for each character is based on the selected baud rate of the USCI. The transmit
and receive functions use the same baud-rate frequency.

Wed Aug 14 17:01:15 -05 2019 414

Universal Asynchronous Receiver/Transmitter (UART)

28.2 Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the UART module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a very brief code example showing how to configure and enable the UART module. In the
case of this example, we assume the MCLK is operating off of the DCO and the DCO is tuned to
12MHz. This makes the configuration parameters so that the baud rate is 9600.

Below is an example of the UART configuration parameter:

This code snippet is the actual configuration of the UART module using the DriverLib APls:

Wed Aug 14 17:01:15 -05 2019 415

Universal Asynchronous Receiver/Transmitter (UART)

28.3 Definitions

Data Structures

struct _eUSCI_eUSCI_UART_ConfigV1

Functions

void UART_clearlnterruptFlag (uint32_t modulelnstance, uint_fast8 t mask)

void UART_disablelnterrupt (uint32_t modulelnstance, uint_fast8_t mask)

void UART_disableModule (uint32_t modulelnstance)

void UART_enablelnterrupt (uint32_t modulelnstance, uint_fast8 t mask)

void UART_enableModule (uint32_t modulelnstance)

uint_fast8_t UART_getEnabledInterruptStatus (uint32_t modulelnstance)
uint_fast8 t UART_getinterruptStatus (uint32_t modulelnstance, uint8_t mask)
uint32_t UART_getReceiveBufferAddressForDMA (uint32_t modulelnstance)
uint32_t UART_getTransmitBufferAddressForDMA (uint32_t modulelnstance)

bool UART _initModule (uint32_t modulelnstance, const eUSCI_UART_ConfigV1 xconfig)
uint_fast8_t UART_queryStatusFlags (uint32_t modulelnstance, uint_fast8_t mask)
uint8_t UART_receiveData (uint32_t modulelnstance)

void UART _registerinterrupt (uint32_t modulelnstance, void(xintHandler)(void))

void UART_resetDormant (uint32_t modulelnstance)

void UART_selectDeglitchTime (uint32_t modulelnstance, uint32_t deglitchTime)
void UART_setDormant (uint32_t modulelnstance)

void UART_transmitAddress (uint32_t modulelnstance, uint_fast8_t transmitAddress)
void UART_transmitBreak (uint32_t modulelnstance)

void UART _transmitData (uint32_t modulelnstance, uint_fast8_t transmitData)

void UART_unregisterinterrupt (uint32_t modulelnstance)

28.3.1 Detailed Description

The code for this module is contained in uart/adcl4.c, with driverlib/uart.h containing
the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 416

Universal Asynchronous Receiver/Transmitter (UART)

28.3.2 Data Structure Documentation

28.3.2.1 struct _eUSCI_eUSCI_UART_ConfigV1

Type definition for _eUSCI_UART_Config structure.
ypedef eUSCI_eUSCI_UART_ConfigV1

Configuration structure for compare mode in the UART module. See UART _initModule for
parameter documentation.

28.3.3 Function Documentation

28.3.3.1 void UART_clearInterruptFlag (uint32_t modulelnstance, uint_fast8_t mask)

Clears UART interrupt sources.

Parameters

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

EUSCI_A0_BASE
EUSCI_A1_BASE
EUSCI_A2_BASE

EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AOQ
can be used. "B" modules such as EUSCI_BO do not support the UART mode

mask | is a bit mask of the interrupt sources to be cleared.

The UART interrupt source is cleared, so that it no longer asserts. The highest interrupt flag is
automatically cleared when an interrupt vector generator is used.

The mask parameter has the same definition as the mask parameter to
EUSCI_A_UART_enablelnterrupt().

Modified register is UCAXIFG

Returns
None.

28.3.3.2 void UART _disablelnterrupt (uint32_t modulelnstance, uint_fast8 t mask)

Disables individual UART interrupt sources.

Parameters

Wed Aug 14 17:01:15 -05 2019 417

Universal Asynchronous Receiver/Transmitter (UART)

28.3.3.3

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE

= EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AO0
can be used. "B" modules such as EUSCI_BO0 do not support the UART mode

mask | is the bit mask of the interrupt sources to be disabled.

Disables the indicated UART interrupt sources. Only the sources that are enabled can be reflected
to the processor interrupt; disabled sources have no effect on the processor.

The mask parameter is the logical OR of any of the following:
m EUSCI_A_UART_RECEIVE_INTERRUPT -Receive interrupt

m EUSCI_A_UART_TRANSMIT_INTERRUPT - Transmit interrupt

m EUSCI_A_UART_RECEIVE_ERRONEOUSCHAR_INTERRUPT - Receive
erroneous-character interrupt enable

m EUSCI_A_UART_BREAKCHAR_INTERRUPT - Receive break character interrupt enable
Modified register is UCAXIFG, UCAXIE and UCAxCTL1

Returns
None.

void UART_disableModule (uint32_t modulelnstance)

Disables the UART block.
Parameters

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE

= EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AO0
can be used. "B" modules such as EUSCI_BO do not support the UART mode

This will disable operation of the UART block.
Modified register is UCAXCTLA1

Returns
None.

Wed Aug 14 17:01:15 -05 2019 418

Universal Asynchronous Receiver/Transmitter (UART)

28.3.3.4 void UART_enablelnterrupt (uint32_t modulelnstance, uint_fast8 t mask)

Enables individual UART interrupt sources.

Wed Aug 14 17:01:15 -05 2019 419

Universal Asynchronous Receiver/Transmitter (UART)

Parameters

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE

m EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AOQ
can be used. "B" modules such as EUSCI_BO do not support the UART mode

mask | is the bit mask of the interrupt sources to be enabled.

Enables the indicated UART interrupt sources. The interrupt flag is first and then the
corresponding interrupt is enabled. Only the sources that are enabled can be reflected to the
processor interrupt; disabled sources have no effect on the processor.

The mask parameter is the logical OR of any of the following:
m EUSCI_A_UART_RECEIVE_INTERRUPT -Receive interrupt

m EUSCI_A_UART_TRANSMIT_INTERRUPT - Transmit interrupt

m EUSCI_A_UART_RECEIVE_ERRONEOUSCHAR_INTERRUPT - Receive
erroneous-character interrupt enable

m EUSCI_A UART_BREAKCHAR_INTERRUPT - Receive break character interrupt enable
Modified register is UCAXIFG, UCAXIE and UCAXCTL1

Returns
None.

28.3.3.5 void UART_enableModule (uint32_t modulelnstance)

Enables the UART block.
Parameters

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

= EUSCI_AO0_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE

= EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AOQ
can be used. "B" modules such as EUSCI_BO0 do not support the UART mode

This will enable operation of the UART block.
Modified register is UCAXCTLA1

Wed Aug 14 17:01:15 -05 2019 420

Universal Asynchronous Receiver/Transmitter (UART)

Returns
None.

28.3.3.6 uint_fast8 t UART_getEnabledInterruptStatus (uint32_t modulelnstance)

Gets the current UART interrupt status masked with the enabled interrupts. This function is useful
to call in ISRs to get a list of pending interrupts that are actually enabled and could have caused

the ISR.
Parameters
modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:
= EUSCI_AO0_BASE
m EUSCI_A1_BASE
m EUSCI_A2_BASE
m EUSCI_A3_BASE
It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AO0
can be used. "B" modules such as EUSCI_BO do not support the UART mode
Returns

The current interrupt status as an ORed bit mask:
m EUSCI_A_UART_RECEIVE_INTERRUPT_FLAG -Receive interrupt flag
m EUSCI_A_UART_TRANSMIT_INTERRUPT_FLAG - Transmit interrupt flag

References UART_getinterruptStatus().

28.3.3.7 uint_fast8_t UART_getinterruptStatus (uint32_t modulelnstance, uint8_t mask)

Gets the current UART interrupt status.

Wed Aug 14 17:01:15 -05 2019

421

Universal Asynchronous Receiver/Transmitter (UART)

Parameters

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

EUSCI_A0_BASE
EUSCI_A1_BASE
EUSCI_A2_BASE

EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AOQ
can be used. "B" modules such as EUSCI_BO0 do not support the UART mode

mask | is the masked interrupt flag status to be returned. Mask value is the logical OR of any of
the following:

EUSCI_A_UART_RECEIVE_INTERRUPT_FLAG
EUSCI_A_UART_TRANSMIT_INTERRUPT_FLAG
EUSCI_A_UART_STARTBIT_INTERRUPT_FLAG
EUSCI_A_UART_TRANSMIT_COMPLETE_INTERRUPT_FLAG

Returns
The current interrupt status as an ORed bit mask:

m EUSCI_A_UART_RECEIVE_INTERRUPT_FLAG -Receive interrupt flag
m EUSCI_A_UART_TRANSMIT_INTERRUPT_FLAG - Transmit interrupt flag

Referenced by UART_getEnabledInterruptStatusy().

28.3.3.8 uint32_t UART_getReceiveBufferAddressForDMA (uint32_t modulelnstance)

Returns the address of the RX Buffer of the UART for the DMA module.
Parameters

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

EUSCI_AO0_BASE
EUSCI_A1_BASE
EUSCI_A2_BASE

EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AOQ
can be used. "B" modules such as EUSCI_BO0 do not support the UART mode

Returns the address of the UART RX Buffer. This can be used in conjunction with the DMA to
store the received data directly to memory.

Returns
None

Wed Aug 14 17:01:15 -05 2019 422

Universal Asynchronous Receiver/Transmitter (UART)

28.3.3.9 uint32_t UART_getTransmitBufferAddressForDMA (uint32_t modulelnstance)

Returns the address of the TX Buffer of the UART for the DMA module.

Wed Aug 14 17:01:15 -05 2019 423

Universal Asynchronous Receiver/Transmitter (UART)

Parameters

modulelnstance

is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

EUSCI_A0_BASE
EUSCI_A1_BASE
EUSCI_A2_BASE

EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AOQ
can be used. "B" modules such as EUSCI_BO0 do not support the UART mode

Returns the address of the UART TX Buffer. This can be used in conjunction with the DMA to
obtain transmitted data directly from memory.

Returns
None

28.3.3.10 bool UART _initModule (uint32_t modulelnstance, const
eUSCI_UART_ConfigV1 « config)

Initialization routine for the UART block. The values to be written into the UCAXxBRW and
UCAXMCTLW registers should be pre-computed and passed into the initialization function

Parameters

modulelnstance

is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

EUSCI_A0_BASE
EUSCI_A1_BASE
EUSCI_A2_BASE
EUSCI_A3_BASE

config

Configuration structure for the UART module

Configuration options for eUSCI_UART_ConfigV1 structure.

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AO can be used.
"B" modules such as EUSCI_BO0 do not support the UART mode.

Parameters

selectClock-
Source

selects Clock source. Valid values are
m EUSCI_A UART _CLOCKSOURCE_SMCLK
m EUSCI_A UART _CLOCKSOURCE_ACLK

Wed Aug 14 17:01:15 -05 2019

424

Universal Asynchronous Receiver/Transmitter (UART)

clockPrescalar

is the value to be written into UCBRXx bits

firstModReg

is First modulation stage register setting. This value is a pre-calculated value which can
be obtained from the Device User Guide.This value is written into UCBRFx bits of UCAxM-
CTLW.

secondModReg

is Second modulation stage register setting. This value is a pre-calculated value which
can be obtained from the Device User Guide. This value is written into UCBRSx bits of
UCAXMCTLW.

parity

is the desired parity. Valid values are
m EUSCI_A_UART_NO_PARITY [Default Value],
m EUSCI_A_UART_ODD_PARITY,
m EUSCI_A_UART_EVEN_PARITY

msborLsbFirst

controls direction of receive and transmit shift register. Valid values are
m EUSCI_A_UART_MSB_FIRST
m EUSCI_A_UART_LSB_FIRST [Default Value]

numberofStop-
Bits

indicates one/two STOP bits Valid values are
m EUSCI_A _UART_ONE_STOP_BIT [Default Value]
m EUSCI_A UART_TWO_STOP_BITS

uartMode

selects the mode of operation Valid values are

m EUSCI_A_UART_MODE [Default Value],
EUSCI_A_UART_IDLE_LINE_MULTI_PROCESSOR_MODE,
EUSCI_A_UART_ADDRESS_BIT_MULTI_PROCESSOR_MODE,
EUSCI_A_UART_AUTOMATIC_BAUDRATE_DETECTION_MODE

overSampling

indicates low frequency or oversampling baud generation Valid values are
m EUSCI_A_UART_OVERSAMPLING_BAUDRATE_GENERATION
m EUSCI_A_UART_LOW_FREQUENCY_BAUDRATE_GENERATION

datalLength

indicates Character length. Selects 7-bit or 8-bit character length. Valid values are
m EUSCI_A_UART_8_BIT_LEN
m EUSCI_A_UART_7_BIT_LEN

Upon successful initialization of the UART block, this function will have initialized the module, but
the UART block still remains disabled and must be enabled with UART_enableModule()

Referto this calculator for help on calculating values for the parameters.

Modified bits are UCPEN, UCPAR, UCMSB, UC7BIT, UCSPB, UCMODEX, UCSYNC bits of
UCAXCTLO and UCSSELx, UCSWRST bits of UCAXCTLA1

Wed Aug 14 17:01:15 -05 2019

425

http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430BaudRateConverter/index.html

Universal Asynchronous Receiver/Transmitter (UART)

Returns
true or false of the initialization process

28.3.3.11 uint_fast8_t UART_queryStatusFlags (uint32_t modulelnstance, uint_fast8_t
mask)

Gets the current UART status flags.

Wed Aug 14 17:01:15 -05 2019 426

Universal Asynchronous Receiver/Transmitter (UART)

Parameters

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

EUSCI_A0_BASE
EUSCI_A1_BASE
EUSCI_A2_BASE

EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AOQ
can be used. "B" modules such as EUSCI_BO0 do not support the UART mode

mask | is the masked interrupt flag status to be returned.

This returns the status for the UART module based on which flag is passed. mask parameter can
be either any of the following selection.

EUSCI_A_UART_LISTEN_ENABLE
EUSCI_A_UART_FRAMING_ERROR
EUSCI_A_UART_OVERRUN_ERROR
EUSCI_A_UART_PARITY_ERROR
eUARTBREAK_DETECT
EUSCI_A_UART_RECEIVE_ERROR
EUSCI_A_UART_ADDRESS_RECEIVED
EUSCI_A_UART_IDLELINE
EUSCI_A_UART_BUSY

Modified register is UCAXSTAT

Returns
the masked status flag

28.3.3.12 uint8_t UART receiveData (uint32_t modulelnstance)

Receives a byte that has been sent to the UART Module.

Parameters

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

EUSCI_A0_BASE
EUSCI_A1_BASE
EUSCI_A2_BASE

EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AOQ
can be used. "B" modules such as EUSCI_BO0 do not support the UART mode

This function reads a byte of data from the UART receive data Register.
Modified register is UCAXRXBUF

Wed Aug 14 17:01:15 -05 2019 427

Universal Asynchronous Receiver/Transmitter (UART)

Returns

Returns the byte received from by the UART module, cast as an uint8_t.

28.3.3.13 void UART _registerInterrupt (uint32_t modulelnstance, void(x)(void) intHandler

)

Registers an interrupt handler for UART interrupts.

Parameters

modulelnstance

is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

= EUSCI_A0_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE

= EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AO0
can be used. "B" modules such as EUSCI_BO0 do not support the UART mode.

intHandler

is a pointer to the function to be called when the timer capture compare interrupt occurs.

This function registers the handler to be called when an UART interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific UART interrupts must be enabled
via UART_enablelnterrupt(). It is the interrupt handler’s responsibility to clear the interrupt source
via UART _clearInterruptFlag().

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

28.3.3.14 void UART_resetDormant (uint32_t modulelnstance)

Re-enables UART module from dormant mode

Parameters

modulelnstance

is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

= EUSCI_AO_BASE
= EUSCI_A1_BASE
= EUSCI_A2 BASE

m EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AO0
can be used. "B" modules such as EUSCI_BO do not support the UART mode

Not dormant. All received characters set UCRXIFG.
Modified bits are UCDORM of UCAXCTLA1 register.

Wed Aug 14 17:01:15 -05 2019

428

Universal Asynchronous Receiver/Transmitter (UART)

Returns
None.

28.3.3.15 void UART_selectDeglitchTime (uint32_t modulelnstance, uint32_t deglitchTime
)

Sets the deglitch time

Parameters

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

EUSCI_A0_BASE
EUSCI_A1_BASE
EUSCI_A2_BASE

EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AO0
can be used. "B" modules such as EUSCI_BO do not support the UART mode

deglitchTime | is the selected deglitch time Valid values are
EUSCI_A_UART_DEGLITCH_TIME_2ns
EUSCI_A_UART_DEGLITCH_TIME_50ns
EUSCI_A_UART_DEGLITCH_TIME_100ns
EUSCI_A_UART_DEGLITCH_TIME_200ns

Returns the address of the UART TX Buffer. This can be used in conjunction with the DMA to
obtain transmitted data directly from memory.

Returns
None

28.3.3.16 void UART _setDormant (uint32_t modulelnstance)

Sets the UART module in dormant mode
Parameters

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

EUSCI_A0_BASE
EUSCI_A1_BASE
EUSCI_A2_BASE
EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AOQ
can be used. "B" modules such as EUSCI_BO0 do not support the UART mode

Wed Aug 14 17:01:15 -05 2019 429

Universal Asynchronous Receiver/Transmitter (UART)

Puts USCI in sleep mode Only characters that are preceded by an idle-line or with address bit set
UCRXIFG. In UART mode with automatic baud-rate detection, only the combination of a break
and synch field sets UCRXIFG.

Modified register is UCAXCTLA1

Returns
None.

28.3.3.17 void UART _transmitAddress (uint32_t modulelnstance, uint_fast8 t
transmitAddress)

Transmits the next byte to be transmitted marked as address depending on selected
multiprocessor mode

Parameters

modulelnstance

is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

= EUSCI_AO0_BASE
= EUSCI_A1_BASE
= EUSCI_A2_BASE

= EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AOQ
can be used. "B" modules such as EUSCI_BO0 do not support the UART mode

transmitAddress

is the next byte to be transmitted

Modified register is UCAxCTL1, UCAXTXBUF

Returns
None.

28.3.3.18 void UART_transmitBreak (uint32_t modulelnstance)

Transmit break. Transmits a break with the next write to the transmit buffer. In UART mode with
automatic baud-rate detection, EUSCI_A_ UART_AUTOMATICBAUDRATE_SYNC(0x55) must be
written into UCAXTXBUF to generate the required break/synch fields. Otherwise,
DEFAULT_SYNC(0x00) must be written into the transmit buffer. Also ensures module is ready for
transmitting the next data

Wed Aug 14 17:01:15 -05 2019

430

Universal Asynchronous Receiver/Transmitter (UART)

Parameters

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

EUSCI_A0_BASE
EUSCI_A1_BASE
EUSCI_A2_BASE

EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such asEUSCI_AO0
can be used. "B" modules such as EUSCI_BO do not support the UART mode

Modified register is UCAXCTL1, UCAXTXBUF

Returns
None.

28.3.3.19 void UART_transmitData (uint32_t modulelnstance, uint_fast8_t transmitData)

Transmits a byte from the UART Module.
Parameters

modulelnstance | is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

EUSCI_A0_BASE
EUSCI_A1_BASE
EUSCI_A2_BASE

EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AO0
can be used. "B" modules such as EUSCI_BO do not support the UART mode

transmitData | data to be transmitted from the UART module

This function will place the supplied data into UART transmit data register to start transmission
Modified register is UCAXTXBUF

Wed Aug 14 17:01:15 -05 2019 431

Universal Asynchronous Receiver/Transmitter (UART)

Returns
None.

28.3.3.20 void UART _unregisterinterrupt (uint32_t modulelnstance)

Unregisters the interrupt handler for the UART module

Parameters

modulelnstance

is the instance of the eUSCI A (UART) module. Valid parameters vary from part to part,
but can include:

= EUSCI_A0_BASE
= EUSCI_A1_BASE
= EUSCI_A2 BASE

= EUSCI_A3_BASE

It is important to note that for eUSCI modules, only "A" modules such as EUSCI_AO0
can be used. "B" modules such as EUSCI_BO0 do not support the UART mode.

This function unregisters the handler to be called when timer interrupt occurs. This function also
masks off the interrupt in the interrupt controller so that the interrupt handler no longer is called.

See Also

Interrupt_registerinterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019

432

Watchdog Timer (WDT_A)

29

29.1

29.2

29.3

Watchdog Timer (WDT_A)

MOAUIE OPEIAtIONttt e et e e e e e e 437
WatChdog MOGe e e 437
INTErval MOGE ... e 437
SettiNG RESEt TYPE .ot 438
Programming EXamipleo 438
D NIt IONS .. 439

Module Operation

MSP432 includes a standard watchdog module that is identical to the WDT_A module of MSP430.
By using DriverLib, the user can configure all aspects of the watchdog peripheral including using
the watchdog in interval mode as well as watchdog mode.

Watchdog Mode

Once the module is initiated in watchdog mode, the timer will reset part if the count expires. The
reset can be set as either a soft or hard reset. This use case is useful when the programmer wants
to make sure that the code execution isn’t perpetually stuck/locked in an unrecoverable state.

To configure the WDT module in watchdog mode, the WDT_initWatchdogTimer function is used
such as follows:

This will set the watchdog timer to be sourced from SMCLK and have a duration of 512, 000
SMCLK cycles. This means that once started, if the watchdog timer goes 512, 000 iterations
without being reset a reset will occur. To reset the counter (after using WDT_startTimer to start the
timer), the user should use the WDT_resetTimer function.

Interval Mode

MSP432 Driverlib can also configure the WDT module to work in interval mode. This turns the
WDT into an ordinary 16-bit down counter with interrupt support. This can be used if the user
needs access to another low power counter, however has already used other resources. To
configure the module in interval mode, use the WDT _initIntervalTimer function such as follows:

This will configure the WDT module to be sourced from SMCLK and have a period of 32, 000
cycles. In this example, we have previously configured SMCLK to be 64Khz making this timer’s
period be approximately half a second. After using the WDT_startTimer function to start the timer,
the user can service interrupts from interval mode after enabling interrupts using the
Interrupt_enablelnterrupt function.

Wed Aug 14 17:01:15 -05 2019 433

Watchdog Timer (WDT_A)

29.4

29.5

Setting Reset Type

The type of reset that occurs on watchdog timeout/password violation can be configured through
the SysCtl module using the SysCtl_setWDTPasswordViolationResetType and
SysCtl_setWDTTimeoutResetType APIs. These APIs will allow the user to change whether a soft
or hard reset occurs on a watchdog timeout and password violation. For the user, the convenience
functions WDT _setPasswordViolationReset and WDT _setTimeoutReset exist in the WDT APIs.

Programming Example

The DriverLib package contains a variety of different code examples that demonstrate the usage
of the WDT module. These code examples are accessible under the examples/ folder of the SDK
release as well as through Tl Resource Explorer if using Code Composer Studio. These code
examples provide a comprehensive list of use cases as well as practical applications involving
each module.

Below is a very brief code example showing how to configure the WDT module in interval mode:

Wed Aug 14 17:01:15 -05 2019 434

Watchdog Timer (WDT_A)

29.6 Definitions

Functions

void WDT_A_clearTimer (void)

void WDT_A_holdTimer (void)

void WDT_A_initIntervalTimer (uint_fast8_t clockSelect, uint_fast8_t clockDivider)
void WDT_A_initWatchdogTimer (uint_fast8_t clockSelect, uint_fast8_t clockDivider)
void WDT_A_registerinterrupt (void(xintHandler)(void))

void WDT_A_setPasswordViolationReset (uint_fast8_t resetType)

void WDT_A_setTimeoutReset (uint_fast8_t resetType)

void WDT_A_startTimer (void)

void WDT_A_unregisterinterrupt (void)

29.6.1 Detailed Description

The code for this module is contained in driverlib/wdt.c, with driverlib/wdt .h containing
the API declarations for use by applications.

Wed Aug 14 17:01:15 -05 2019 435

Watchdog Timer (WDT_A)

29.6.2

29.6.2.1

29.6.2.2

29.6.2.3

Function Documentation

void WDT_A_clearTimer (void)

Clears the timer counter of the Watchdog Timer.

This function clears the watchdog timer count to 0x0000h. This function is used to "service the
dog" when operating in watchdog mode.

Returns
None

void WDT_A_holdTimer (void)
Holds the Watchdog Timer.
This function stops the watchdog timer from running. This way no interrupt or PUC is asserted.

Returns
None

Referenced by PCM_gotoLPM4().
void WDT_A initintervalTimer (uint_fast8 t clockSelect, uint fast8 t
clockDivider ')

Sets the clock source for the Watchdog Timer in timer interval mode.

Parameters

clockSelect | is the clock source that the watchdog timer will use. Valid values are
m WDT_A_CLOCKSOURCE_SMCLK [Default]

m WDT_A_CLOCKSOURCE_ACLK

m WDT_A_CLOCKSOURCE_VLOCLK

m WDT_A_CLOCKSOURCE_BCLK

clocklterations | is the number of clock iterations for a watchdog interval. Valid values are
m WDT_A_CLOCKITERATIONS_2G [Default]

m WDT_A_CLOCKITERATIONS_128M

= WDT_A_CLOCKITERATIONS_8192K

= WDT_A_CLOCKITERATIONS_512K

m WDT_A_CLOCKITERATIONS_32K

= WDT_A_CLOCKITERATIONS_8192

m WDT_A_CLOCKITERATIONS_512

m WDT_A_CLOCKITERATIONS_64

Wed Aug 14 17:01:15 -05 2019 436

Watchdog Timer (WDT_A)

29.6.2.4

29.6.2.5

This function sets the watchdog timer as timer interval mode, which will assert an interrupt without
causing a PUC.

Returns
None

void WDT_A _initWatchdogTimer (uint_fast8_t clockSelect, uint fast8 t
clockDivider)

Sets the clock source for the Watchdog Timer in watchdog mode.

Parameters

clockSelect | is the clock source that the watchdog timer will use. Valid values are
m WDT_A_CLOCKSOURCE_SMCLK [Default]

= WDT_A_CLOCKSOURCE_ACLK

m WDT_A_CLOCKSOURCE_VLOCLK

m WDT_A_CLOCKSOURCE_BCLK

clocklterations | is the number of clock iterations for a watchdog timeout. Valid values are
m WDT_A_CLOCKITERATIONS_2G [Default]

= WDT_A_CLOCKITERATIONS_128M

m WDT_A_CLOCKITERATIONS_8192K

m WDT_A_CLOCKITERATIONS_512K

m WDT_A_CLOCKITERATIONS_ 32K

m WDT_A_CLOCKITERATIONS 8192

= WDT_A_CLOCKITERATIONS 512

m WDT_A_CLOCKITERATIONS_ 64

This function sets the watchdog timer in watchdog mode, which will cause a PUC when the timer
overflows. When in the mode, a PUC can be avoided with a call to WDT_A_resetTimer() before
the timer runs out.

Returns
None

void WDT_A_registerinterrupt (void(x)(void) intHandler)

Registers an interrupt handler for the watchdog interrupt.

Parameters

] intHandler \ is a pointer to the function to be called when the watchdog interrupt occurs.

Wed Aug 14 17:01:15 -05 2019 437

Watchdog Timer (WDT_A)

29.6.2.6

29.6.2.7

29.6.2.8

Returns
None.

References Interrupt_enablelnterrupt(), and Interrupt_registerinterrupt().

void WDT_A_setPasswordViolationReset (uint_fast8_t resetType)

Sets the type of RESET that happens when a watchdog password violation occurs.

Parameters

] resetType | The type of reset to set

The resetType parameter must be only one of the following values:

= WDT_A_HARD_RESET
= WDT_A_SOFT_RESET

Returns
None.

References SysCtl_A setWDTPasswordViolationResetType(), and
SysCtl_setWDTPasswordViolationResetType().
void WDT_A_setTimeoutReset (uint_fast8 t resetType)

Sets the type of RESET that happens when a watchdog timeout occurs.

Parameters

] resetType | The type of reset to set

The resetType parameter must be only one of the following values:

= WDT_A_HARD_RESET
= WDT_A_SOFT_RESET

Returns
None.

References SysCtl_A_setWDTTimeoutResetType(), and SysCtl_setWDTTimeoutResetType().

void WDT_A_startTimer (void)
Starts the Watchdog Timer.
This function starts the watchdog timer functionality to start counting.

Returns
None

Wed Aug 14 17:01:15 -05 2019 438

Watchdog Timer (WDT_A)

29.6.2.9 void WDT_A_unregisterinterrupt (void)

Unregisters the interrupt handler for the watchdog.

This function unregisters the handler to be called when a watchdog interrupt occurs. This function
also masks off the interrupt in the interrupt controller so that the interrupt handler no longer is
called.

See Also
Interrupt_registerInterrupt() for important information about registering interrupt handlers.

Returns
None.

References Interrupt_disablelnterrupt(), and Interrupt_unregisterinterrupt().

Wed Aug 14 17:01:15 -05 2019 439

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48,
latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current
and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

Tl warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent T| deems necessary to
support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and appli-
cations using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate
design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by Tl regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of
the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of Tl components or services with statements different from or beyond the parameters stated by Tl for that component or service
voids all express and any implied warranties for the associated Tl component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of Tl components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the
use of any Tl components in safety-critical applications.

In some cases, Tl components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal
is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No Tl components are authorized for use in FDA Class llI (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended for use
in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of Tl components
which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

Tl has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use
of non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

Wed Aug 14 17:01:15 -05 2019 440

www.ti.com/audio
www.ti.com/automotive
amplifier.ti.com
www.ti.com/communications
dataconverter.ti.com
www.ti.com/computers
www.dlp.com
www.ti.com/consumer-apps
dsp.ti.com
www.ti.com/energy
www.ti.com/clocks
www.ti.com/industrial
interface.ti.com
www.ti.com/medical
logic.ti.com
www.ti.com/security
power.ti.com
www.ti.com/space-avionics-defense
microcontroller.ti.com
www.ti.com/video
www.ti-rfid.com
www.ti.com/omap
e2e.ti.com
www.ti.com/wirelessconnectivity

	Copyright
	Revision Information
	1 DriverLib Introduction
	1.1 What DriverLib is
	1.2 What DriverLib is not
	1.3 Cross Module Considerations
	1.4 DriverLib in ROM
	1.5 MSP430 Legacy APIs
	1.6 Quick Start

	2 14-Bit Analog-to-Digital Converter (ADC14)
	2.1 Module Operation
	2.2 Conversion Modes
	2.3 Repeat Modes
	2.4 Conversion of Results
	2.5 Programming Example
	2.6 Definitions

	3 Advanced Encryption Standard 256 Module (AES256)
	3.1 Module Operation
	3.2 Key Features
	3.3 Encryption/Decryption Cycle Times
	3.4 Programming Example
	3.5 Definitions

	4 Analog Comparator (COMP_E)
	4.1 Module Operation
	4.2 Programming Example
	4.3 Definitions

	5 Cyclic Redundancy Check 32 (CRC32)
	5.1 Module Operation
	5.2 Programming Example
	5.3 Definitions

	6 Clock System (CS)
	6.1 Module Operation
	6.2 Timeout Parameters
	6.3 Custom DCO Frequency
	6.4 Specifying External Crystal Frequencies
	6.5 Programming Example
	6.6 Definitions

	7 Direct Memory Access Controller (DMA)
	7.1 Module Operation
	7.2 Programming Example
	7.3 Definitions

	8 Flash Memory Controller (FlashCtl)
	8.1 Module Operation
	8.2 Flash Controller Limitations
	8.3 Wait State Considerations
	8.4 Programming Example
	8.5 Definitions

	9 Flash Memory Controller (FlashCtlA)
	9.1 Module Operation
	9.2 Flash Controller Limitations
	9.3 Wait State Considerations
	9.4 Programming Example
	9.5 Definitions

	10 Floating Point Unit (FPU)
	10.1 Module Operation
	10.2 Programming Example
	10.3 Definitions

	11 General Purpose Input/Output (GPIO)
	11.1 Module Operation
	11.2 Key Features
	11.3 Programming Example
	11.4 Definitions

	12 Inter-Integrated Circuit (I2C)
	12.1 I2C Module Operation
	12.2 Master Operation
	12.3 Slave Operation
	12.4 Timeout Parameters
	12.5 Programming Example
	12.6 Definitions

	13 Nested Vector Interrupt Controller (NVIC)
	13.1 Module Operation
	13.2 Basic Operation Modes
	13.3 Programming Example
	13.4 Definitions

	14 LCD Module (LCD_F)
	14.1 Module Operation
	14.2 Definitions

	15 Memory Protection Unit (MPU)
	15.1 Module Operation
	15.2 Module Operation
	15.3 Programming Example
	15.4 Definitions

	16 Power Control Module (PCM)
	16.1 Module Operation
	16.2 Switching States
	16.3 Switching Modes/Levels
	16.4 Low Power Mode and State Retention
	16.5 Enabling/Disabling Rude Mode
	16.6 Programming Example
	16.7 Definitions

	17 Port Mapper (PMAP)
	17.1 Module Operation
	17.2 Programming Example
	17.3 Definitions

	18 Power Supply System (PSS)
	18.1 Module Operation
	18.2 Programming Example
	18.3 Definitions

	19 Reference Module (REF_A)
	19.1 Module Operation
	19.2 Programming Example
	19.3 Definitions

	20 Reset Controller (ResetCtl)
	20.1 Module Operation
	20.2 Reset Sources
	20.3 Programming Example
	20.4 Definitions

	21 Real Time Clock (RTC_C)
	21.1 Module Operation
	21.2 Programming Example
	21.3 Definitions

	22 Serial Peripheral Interface (SPI)
	22.1 Module Operation
	22.2 Basic Operation Modes
	22.3 Programming Example
	22.4 Definitions

	23 System Control Module (SysCtl)
	23.1 Module Operation
	23.2 Programming Example
	23.3 Definitions

	24 System Control Module (SysCtlA)
	24.1 Module Operation
	24.2 Programming Example
	24.3 Definitions

	25 System Tick (SysTick)
	25.1 Module Operation
	25.2 Programming Example
	25.3 Definitions

	26 32-bit ARM Timer (Timer32)
	26.1 Module Operation
	26.2 Basic Operation Modes
	26.3 Programming Example
	26.4 Definitions

	27 16-Bit Timer with Precision PWM (Timer_A)
	27.1 Module Operation
	27.2 Basic Operation Modes
	27.3 Programming Example
	27.4 Definitions

	28 Universal Asynchronous Receiver/Transmitter (UART)
	28.1 Module Operation
	28.2 Programming Example
	28.3 Definitions

	29 Watchdog Timer (WDT_A)
	29.1 Module Operation
	29.2 Watchdog Mode
	29.3 Interval Mode
	29.4 Setting Reset Type
	29.5 Programming Example
	29.6 Definitions

	IMPORTANT NOTICE

